图像处理技术在小麦产量预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过田间实验数据及历史相关数据采集以及图像处理技术的应用,分析了不同施肥处理对产量形成过程的影响,建立产量形成过程的动态监测模型和产量预测模型。通过四大模块:图像预处理子系统、图像处理子系统、产量动态监测模型子系统及产量预测模型子系统构建成完整的系统,并利用VC++的编码技术实现了整个系统的功能。得到的主要结果如下:
     1、建立中优9507和京411在产量形成过程中的各生理变化因子的动态监测模型,这此生理指标主要包括叶面积指数、干物重和分蘖数;绿度因子有植株SPAD值和倒三叶SPAD值;以及植株氮累积量、叶片氮含量(%)和籽粒氮含量(%)。通过上述各因子在整个生育期内的动态监测模型,达到对最终形成产量的动态监测。
     2、据本试验实际情况,对中优9507和京411的五个施氮处理(高肥、中高、中肥、中低和低肥),依不同的生育期,利用逐步回归分析及分段控制逐步逼近的原则,分别建立不同生理指标(干物重、叶面积指数和叶绿素含量)对产量的动态预测模型。利用统计方法检验了模型对产量预测的准确程度。
     3、通过图像处理技术的应用,提取小麦图像形态特征参数和颜色特征参数,形态特征参数主要指小麦ILAI(图像叶面积指数);颜色特征参数包括图像的R(红)、G(绿)、B(蓝)、H(色调)、I(亮度)、S(饱和度)等与颜色相关的参数及其它们的统计参量,结合与之相关生理指标对产量的动态预测模型,间接实现了图像统计参数(ILAI和相对H值)对小麦产量的预测。
     4、欧氏距离法、直方图交叉法和直接差值法的比较应用,选取欧氏距离法为图像颜色模式匹配的方法,通过图像的直接匹配达到对小麦的产量预测,对其预测结果进行检验可达到图像匹配要求的精度。并且分别就上述三种方法:ILAI产量预测法、相对H值产量预测法和颜色匹配产量预测法进行统计检验分析及其方法评价。
     5、为了削减由于外界环境条件引起的图像噪声,本研究据小麦图像的具体特点,采用相对色差法来较正:图像色度值减去由标准绿色比色卡计算出的环境误差值来代替图像中原来的色度值。检验证明该方法在对室外图像的处理问题上有重要的借鉴意义。
     6、在VC++6.0编程环境中实现系统的所有功能,该系统可在同一界面内根据用户的不同需要,有选择性的实现小麦产量的动态预测不同方法的选择,不同生理指标的动态监测以及图像处理技术部分和图像预处理技术部分的实际应用。
The paper is to obtain data from the test and relative fields and applicate image processing technology, in the same time analyse the relation about different nitrogen between wheat yields. The models about wheat yield building and preview were build The whole system was founded of basing on VC++6.0 language, it includes four parts: image pretreatment subsystem, imgae processing subsystem, wheat yield dynamic forecast subsystem and yield prediction subsystem.Conclusions are drawed as following:
    1, In the study, two wheat(Zhongyou9507 and Jing411) are used as the ecperimental varieties. Building the dynamical inspect model about some physiology indexes. Their yield building course is inspected by different physiology index. These physiology indexes main are leaf area index, biomass, tilling, plant SPAD, the last three leaf SPAD and plant N cumulate quantity, leaf Nitrogen(%) and grain Nitrogen(%) content. The wheat yield is dynamic inspect by above physiology indexes in whole course of wheat growth.
    2, By the exeperiment, according to the different Nitrogen content of Zhongyou9507 and Jing411(high Nitrogen, middle high Nitrogen, middle Nitrogen, middle low Nitrogen and low Nitrogen) builds dynamic forecast models of wheat leaf area index and chlorophll. The models applicate regressive analytical method step by step and subsection control and approach slowly and slowly. The two way veracity is tested about wheat yield forecast by statistical methods.
    3 , By image processing technology, obtain wheat's shape and color character parameter. The shape character parameter main is wheat leaf area index in image, and the color character parameters are red, green, blue, hue, lightness and saturation and so on. The system obtain these parameters and their statistical numbers, then combine the physiology index model at last can predict wheat yield indirectly.
    4, The study use the way of Euclid distances, cross of maps of distribution and direct dispersion way of wheat image, and compare the result of the three ways. In the system the way of Euclid distances is used to match image. By the detected image matching the last similar image in the image database, the system offer the forecast result of wheat yield. In the paper test some forecast data indicate the way can be used forecast wheat yield. ILAI to forecast wheat yield, relative hue value and wheat image color matching three methods are tested and appraised by statistical way.
    5, The study use relative color dispersion for deduce the image yawp of environment. The method is that the number of the dispersion between the hue of original image and environment error obtained by compare with uniform green bar stead of the hue original image. The statistical test proves this way has important meaning to processing image of extraventricular image.
    
    
    
    6,The system is come true by VC++6.0 language. In this system the user can choice different part by different needs. It includes different methods are choiced to wheat yield forecast, different physiology index dynamic inspect and forecast, image processing technology and image pretreatment technology part.
引文
[1] Jones D., Barnes E.M.. Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agriculture Systems, 65 (2000) 137~158
    [2] Campbell R J, Mobley K N, Marini R P. Growing condition salter the relationship between SPAD-501 values and apple leaf chlorophyll [J].Hortscience, 1990, 25(3):330~331.
    [3] Casady W W, Singh N, Costello T A. Machine vision for measurement of rice canopy dimensions [J]. Trans of the ASAE, 1996,39(5):1891~1898
    [4] Chtioui Y, Panigrahi S, Backer L F. Rough sets theory as a pattern classification tool for quality assessment of edible beans [J]. Transactions of the ASAE [J], 1999,42(4):1145~1152
    [5] Chubachi N R, Asanol, OikavaT. The diagnosis of nitrogen of rice plants using chlorophyll meter[J].JapJSoilSciPiantNutri, 1986,57(1):109~113.
    [6] Davenel A, Guizard C H. Automatic detection of surface defects on fruit by using a vision system[J]. Journal of Agricultural Engineering Research, 1988, 41:1~9
    [7] Delwiche M J, Tang S, Thompson J f. Prune defect detection by line-scan imaging[J]. Trans of the ASAE, 1990, 33 (3):950~954
    [8] El-Faki, M. S., N. Zhang, and D. E. Peterson. Factors affecting color-based weed detection [J]. Trans of the ASAE, 2000, 43(4): 1001~1009
    [9] Elster R T, Goodrum J W. Detection of cracks in eggs using machine vision [J]. Trans of the ASAE, 1991, 34 (1):307~312
    [10] Geng Nan, He Dongjian, Wang Jing et al, Computer Vision detecting system for wheat growth information[J], Transactions of the CSAE[J], 17(1): 136~140
    [11] Goodrum J W, Elster R T. Machine vision for crack detection in rotation eggs [J]. Trans of the ASAE, 1992,35(4):1323~1328
    [12] Penning de Vries F W T, Laar H H. Simulation of plant growth and crop production. Wngeningen, the Netherlands:Pudoc, 1982.1~115
    [13] Granitto PM, Navone HD, Verdes PF, Cecatto HA, Computers and electronics in agriculture[J], 2002, 33(2):91~103
    [14] Gunasekaran S, Cooper T M, Berlage A G, et al. Image processing for stress cracks in corn kernels [J]. Trans of the ASAE, 1988, 31:257~263
    [15] Hussain F, Bronson K F, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia [J].Agron J,2000,92 (5):875~879.
    [16] Inada K.Studies on a method for determining the deepness of green color and chlorophyll content of intact crop leaves and its practical applications[J].ProcCropSci, 1963,22(6): 1230~1233.
    [17] Junwei Lu, Ma Chenglin,Zuo Chuncheng, Distinguishing onions and weeds in field by using color image[J], Trans of the ASAE,2001, 17(5):153~158
    
    
    [18] Kranzler G A. Applying digital image processing in agriculture [J]. Agricultural Engineering, 1985, 66(3):11~14
    [19] Lamm R.D., Slaughter D. C., Giles D.K.. Precision weed control system for cotton [J], Trans of the ASAE, 2002,45(1):231~238
    [20] Lian K, Reid J J, Ni B, et al. Corn kernel shape identification by machine vision using a neural network classifier. ASAE Paper, 1992.92~7017
    [21] M. S. El-Faki, N. Zhang, D. E. Peterson, Factors affecting color-based weed detection[J], Trans of the ASAE, 2000,43(4), 1001~1009
    [22] Miller B K, Delwiche M J. Peach defect detection with machine vision [J]. Trans of the ASAE, 1991, 34 (6):2588~2597
    [23] Jamieson P.D., Semenov M.A., Modelling nitrogen uptake and redistribution in wheat.Field Crops Research, 68(2000)21~29
    [24] Nakao S, et al. Robot and its application to weed control in bill space[J]. Joural or the Japaness Society or Agriculture Machinery, 1993, 55 (6),77~84
    [25] Penning de Vries F W T, Jansen D M, H F Mten Bergeetal. Simulation of ecophysiologieal processes of growth in several annual crops. Wageningen, the Netherlands: Pudoc, 1989.1~24
    [26] Rehkugler-Volune, Throop J A. Apple sorting with machine vision[J]. Trans of the ASAE,1986,29(5): 1388~1397
    [27] Rigney M P, Brusewitz G H, Kranzler G A. Asparagus defect inspection with machine vision [J]. Trans of the ASAE, 1992, 35 (6):1873~1878
    [28] Rigney M P, Kranzler G A. Machine vision for grading southern pine seedlings [J]. Trans of the ASAE, 1988,31(2):642~646
    [29] Sarkar N, Wolfe R R, Computer vision based system for quality separation of fresh marker tomatoes [J]. Trans of the ASAE, 1985, 28(5): 1714~1718
    [30] Sarkar N, Wolfe R R. Image prossing for tomato grading [J]. Trans of the ASAE, 1990, 33(4):564~572
    [31] Shearer S A, Payne F A. Color and defect sorting of bell peppers using machine vision [J]. Trans of the ASAE, 1990, 33 (6):2045~2050
    [32] Singh N, Casady W W, Costello T A. Machine vision based nitrogen management models for rice. Trans of the ASAE[J], 1996,39(5): 1899~1904
    [33] Singh N, Delwiche M J. Machine vision methods for defect sorting stonefruit [J]. Trans of the ASAE, 1994, 37 (6): 1989~1997
    [34] Meyer G. E., Kocher T. E, Mortensen D A, et al, Textural imaging and discriminant analysis for distinguishing weeds for spot spraying [J]. Trans of the ASAE, 1998, 41(4):1189~1197
    [35] Tao Y, Hernemann P H, Varghese Z, et al. Machine vision for color inspection of potatoes and apples[J]. Trans of the ASAE, 1995,38(5):199~203
    [36] Thom as J R, Oerther G F. Estimation nitrogen content of sweet pepper leaves by reflectance measurements [J].AgronJ, 1972, 69(1):11~13.
    
    
    [37] Tian L., J. F. Reid, and J. W. Hummel. Development of a precision sprayer for site-specific weed management [J]. Trans of the ASAE,1999.42(4):893~900
    [38] Woebbecke D M, Meyer G E, Von Bargen K, et al. Shape features for identifying young weeds using image analysis[J]. Trans of the ASAE, 1995b, 38(1): 271~281
    [39] Woebbecke. D. M., G. E. Meyer, K. Von-Bargen, and D. A. Mortensen. Shape features for identifying young weeds using image analysis. Trans of the A SAE [J], 1995, 38(1):271~281
    [40] Woebbecks D M, Meyer G E, Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Trans of the ASAE, 1995a, 38(1): 259~269
    [41] Zayas I, Converse H Steele J. Discrimination of whole from broken corn kernels with image analysis [J]. Trans of the ASA E, 1990, 33(5): 1642~1646
    [42] Zhang N, Chaisattapagon C. Effective Criteria for weed identification in wheat fields using machine vision [J]. Trans of the ASAE, 1995, 38(3):965~974
    [43] Zhang N, Chaisattapagon C. Effective criteria for weed identification in wheat fields using machine vision[J]. Trans of the ASAE, 1995,38(3): 965~974
    [44] Abbas A H, BarrR, HallSDetal. Spectra of normal and nutrient-deficient maize leaves[J]. AgronJ,1974,66(1):16~20.
    [45] B.Basso, J.T.Ritchie. Spatial validation of crop models for precision agriculture. Agricultural Systems ,68 (2001) 97~112
    [46] Berlage A G, Cooper T M, Aristazabal J F. Machine vision identification of diploid and tetraploid ryegrass seed [J]. Trans of the ASAE, 1988, 31(1):24~27
    [47] Brivot. R, and J. A. Machant.Segmentation of plants and weeds for precision crop protection robot using infrared images [J]. 1996, IEEE Proceedings: Image signal processing, 143(2):118~124
    [48] Buhler DD, Maxwell BD, Seed separation and enumeration from soil using k2co3-centrifugation and image-analysis[J], weed science, 1993, 41(2):298~302
    [49] 艾天成,周治安,李方敏等,小麦等作物叶绿素速测方法研究[J],甘肃农业科技,2001(4),16~18
    [50] 曹宏鑫,刘世军,张立民等,小麦群体叶面积的动态模型[J],沈阳农业大学学报,2000-06,31(3):246~248
    [51] 曹宏鑫,刘世军,张立民等,小麦群体叶面积动态模型,沈阳农业大学学报,2000-06,31(3):246~248
    [52] 曹宏鑫,刘世军,张立民等,作物生态平衡施肥决策系统的研究[J],计算机与农业,2000(11):8~12
    [53] 崔党群,董中东,陆旺,小麦冠层叶片性状的遗传模型研究,麦类作物学报,2002,22(4):6~9
    [54] 高亮之,金之庆,黄耀等。水稻计算机模拟模型及其应用之一:水稻钟模型——水稻发育动态的计算机模型。中国农业气象,1989,(2);3~10
    [55] 高文,陈熙霖,计算机视觉——算法与系统原理[M],清华大学出版,1999
    [56] 纪寿文,王荣本等,应用计算机图像处理技术识别玉米苗期田间杂草的研究,农业工程学报[J],2001,(3):154~156
    
    
    [57] 姜东,于振文,苏波等,不同施氮时期对冬小麦根系衰老的影响[J],作物学报,1997,23(2):181~190
    [58] 李写,王立祥,邵明安等,黄土高原地区小麦生产潜力模拟研究[J],自然资源学报,2001,16(2):161~165
    [59] 李郁竹,肖乾广,刘国祥,冬小麦气象卫星遥感综合测产技术研究与实验[M],冬小麦气象卫星遥感动态监测预估产,1~6
    [60] 刘铁梅,曹卫星,罗卫红等,小麦物质生产与积累的模拟模型,麦类作物学报,2001,21(3):26~31
    [61] 刘铁梅,曹卫星,罗卫红等,小麦叶面积指数的模拟模型研究,类作物学报,2001,21(2):38~41
    [62] 戚昌瀚,殷新佑,谢华蔼,水稻产量形成的生长日历模拟模型的初步研究,江西农业大学学报(作物模拟模型专刊(2))1991,39~43
    [63] 盛承发,棉花作物模拟模型的研究进展,生态学进展[J],1989,6(1):19~25
    [64] 谭凯琰,李郁竹,遥感植被指数与冬小麦绿叶面积系数和麦土比的关系[J],遥感信息,1,1989
    [65] 田奇卓,亓新华,陈茂学,小麦产量与氮、磷、密度三因素数学模型的优化解析,山东农业大学学报,1997(9):281~288
    [66] 王余龙,姚友礼,刘宝玉等,不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J],作物学报,1997,23(6):699~706
    [67] 吴良欢,陶勤南,水稻叶绿素计诊断追氮法研究[J],浙江农业大学学报,1999,25(2):135~138
    [68] 相阿荣,王一鸣,利用色度法识别杂草和背景物[J],中国农业大学学报,2000,5(4):98~100
    [69] 肖乾广等,用气象卫星数据对小麦进行估产试验[J],环境遥感,1984,1(4):261~269
    [70] 振文,岳寿松,沈成国等,不同密度对冬小麦开花后叶片衰老和粒重的影响[J],作物学报,1995,21(4):412~418
    [71] 宇振荣,土地生产力模拟模型与土地可持续利用,见:胡涛,陈同斌主编,中国的可持续发展研究——从概念到行动,北京:中国环境科学出版社,1995.175~182
    [72] 岳寿松,于振文,余松烈,不同生育时期施氮对冬小麦氮素分配及叶片代谢的影响[J],作物学报,1998,24(6):811~815
    [73] 张宏名,遥感技术在农业气象预报上的应用[M],气象,1986,12(9):39~42
    [74] 张庆江,张立言,毕桓武,春小麦品种氮的吸收积累和转运特征及与籽粒蛋白质的关系[J],作物学报,1997,23(6):712~718
    [75] 张庆江,张立言,毕桓武,普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系[J],华北农学报 1996,11(3):57~62
    [76] 张弦,严衍录,用图形图像技术处理作物图像提取作物形态信息[J],中国农业科学 1996,29(5):89~93
    [77] 赵春江,陈立平,小麦形态诊断计算机图像明化识别系统[J],北京农业科学.2000,18(2):2~4
    [78] 朱星陶,汪卫红,龙喜燕,小麦丰产栽培措施的数学模型研究,贵州农业科学,1998
    [79] 邹炎宏,胡良清,小麦分蘖模型及其在栽培中的应用,湖北农业科学,2002,1:24~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700