遥感和GIS技术支持下的区域土壤侵蚀评价与时空变化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀已成为是全球性的环境问题之一,严重威胁着人类生存与社会可持续发展。迅速掌握大尺度范围内的土壤侵蚀状况,分析土壤侵蚀的时空变化可以为土壤侵蚀综合治理和生态恢复建设提供重要的理论依据与决策参考。本研究以土壤侵蚀学为理论基础,以遥感、GIS技术和现代信息处理手段为技术依托,以湖北省为研究对象,开展省域尺度下土壤侵蚀快速评价方法的研究,分别对研究区2000年和2005年的土壤侵蚀状况进行评价;在此基础之上,从不同角度对研究区5年问土壤侵蚀时空变化特征进行分析。本研究以期为区域土壤侵蚀研究提供新的思路。
     论文主要包括以下内容:
     1.利用遥感和GIS技术,提取用于区域土壤侵蚀评价与分析各项自然环境因素指标的空间数据图层,包括地形坡度、植被覆盖度、土地利用类型、降雨侵蚀力及土壤质地5项指标,在此基础上建立了区域土壤侵蚀评价空间数据库,为区域土壤侵蚀评价与分析提供数据准备。
     2.对区域土壤侵蚀评价进行了探索性研究,提出了一种基于模糊神经系统和GIS技术的快速评价方法。该方法主要包括以下主要步骤:通过GIS空间叠置分析划分最小图斑作为基本评价单元。借鉴快速生物评价方法的基本原理,从已有的地面监测及调查数据中选取一系列内部因子较为均一的基本评价单元作为标准参照单元,参考土壤侵蚀强度分级标准,构建不同土壤侵蚀强度等级的参照组。利用神经-模糊系统建立区域土壤侵蚀快速评价模型,提取土壤侵蚀强度模糊评价规则,以侵蚀环境因子相似性作为判别依据,将待评估单元匹配到各个参照组中,从而建立区域土壤侵蚀评价规则知识库。在此基础上结合GIS技术,实现从单元评价到区域评价的尺度转换。采用该方法对2005年土壤侵蚀强度状况评价结果的总体精度为88%,kappa系数为0.89,经验证,评价结果与实际情况具有较好的一致性。
     3.根据2000年和2005年遥感影像的解译结果,对引起区域土壤侵蚀变化的环境影响因素进行动态分析,主要包括土地利用变化和植被覆盖度变化。结果表明,研究时段内研究区土地利用/覆被变化的整体趋势表现为林地、灌草地面积增加,旱地和水田面积减少。其中,旱地减少的面积最大,减少了3230km2;林地增加的面积最大,增加了3197km2。耕地多转换成为林地和灌草地。土地利用的景观格局呈斑块减少,斑块平均面积增大的趋势,由于林地、灌草地面积扩大,景观优势度进一步升高,从而引起多样性减少、破碎度降低的变化特征。研究区植被覆盖度变化趋势表现为,中高植被覆盖度地区的面积都明显增加,而较低植被覆盖面积呈快速下降态势。其中,高覆盖度地区面积由2000年的52132km2增加到2005年的56807km2,增加面积和幅度均为最高。由于研究区耕地面积减少,林地面积增多,因此植被覆盖度也明显升高。结果表明,研究区的水土保持生态环境的修复取得明显的成效。
     4.根据2000年和2005年两期土壤侵蚀评价结果,对研究区土壤侵蚀的时空演变进行分析。结果表明,5年来研究区土壤侵蚀总面积明显减少,从2000年的60843km2减少到2005年的55873km2,减少了7.38%。从土壤侵蚀强度变化来看,中度、强度和极强度侵蚀面积明显减少,多转化为轻度和微度侵蚀;其中,中度侵蚀面积减少了3494km2;强度侵蚀面积减少了1374km2;极强度侵蚀面积减少了140km2。而轻度侵蚀和剧烈侵蚀面积稍有增多,其中轻度侵蚀强度面积增加了484km2,多由侵蚀等级高的地区转化而来;剧烈侵蚀面积也增加了70km2,多由局部地区开发建设项目引起的比较严重自然环境破坏所致。研究区的土壤侵蚀综合指数从2000年的112.05,下降到2005年的100.39,整体而言研究区侵蚀强度呈下降趋势。研究区的侵蚀景观尺度的格局特征表现为低异质性,低破碎化和规则化的变化趋势。整体上低强度的土壤侵蚀多表现为斑块数减少和平均斑块面积的增加,边缘规则化,而高强度土壤侵蚀则相反,表现为斑块数增加而平均斑块面积减少,破碎化程度提高。可以看出5年来治理取得显著成效,研究区土壤侵蚀整体状况有所好转。
     5.对2000-2005年研究区不同环境背景因素条件下和不同自然地理分区内的土壤侵蚀变化状况进行研究。将两个时间段的土壤侵蚀评价结果与不同自然环境背景因子图层进行叠加分析,分析不同自然环境背景下土壤侵蚀分异特征与规律。结果表明,150~500m的相对高程带、8~15°的坡度带、年均植被覆盖低、土质疏松、土地利用类型以坡耕旱地为主的地带的土壤侵蚀综合指数最高,因此土壤侵蚀风险高的地区主要位于这些地带。经过5年的治理,这些侵蚀严重的地带侵蚀状况明显好转,其中以坡耕地地区治理最为突出。就不同自然地理分区的土壤侵蚀状况而言,鄂西北、鄂西南高山区土壤侵蚀情况最严重,鄂东北、鄂东南低山丘陵区次之,鄂北岗地中度侵蚀面积较大,而江汉平原基本无明显侵蚀。经过5年的治理,山区、丘陵区的土壤侵蚀状况有所好转,但今后仍然是水土保持工作的重点地区。
Soil erosion has become the worldwide serious environment problem, threatening the existence and development of humankind. The sustaining development need effectively control the soil loss and protect the environment. It is important to keep on knowing the present situation and change trend of soil erosion at large scale and analyze the macro effects of soil erosion to regional eco-environmental, which is the necessary precondition for eco-construction of soil and water conservation and the establish and implement of environmental protection. In this dissertation, based on integrated on techniques and methods including GIS, Remote sensing and fast information processing means, with the theoretical support of soil erosion science, the rapid approach for soil erosion assessment at regional scales was studied. Taking the Hubei Province as a case study area, the regional soil erosion states in 2000 and 2005 were evaluated. Based on the assessment results, the spatio-temporal change features of the 5 years were analyzed. The study aimed at providing new ideas for regional soil erosion research. The main content of this dissertation are as following:
     1. Supported with GIS and remote sensing, the evaluating indicators of environment factor for regional soil erosion assessment and analyze were generated, including slope gradient, land use, vegetation cover, rainfall erosivity and soil texture. The spatial database of evaluating indicators was established, which were as the data infrastructures for the regional scales assessment and spatial-temporal analyze of soil erosion in this study.
     2. With the similar spirit as the prevailing rapid biological assessment methods for water body, the rapid assessment of regional soil erosion using neuro-fuzzy system combined with GIS was developed, which contains the main steps as following, the study area were partied into minimum polygons as proper assessment units for soil erosion assessment. The neuro-fuzzy model was adopted to extract fuzzy rules for individual units assessment from available ground truth data. According to the optimized assessment criteria generated by the neuro-fuzzy model, the soil erosion state of the entire study area was then assessed. Supported with GIS technique, it was easily to scale up erosion assessment from field-plot scale to regional scale. Application of this approach to Hubei Province, The validation indicated that an overall accuracy of the assessment result in 2005 achieved 88% and the kappa coefficient was 0.89, proving that the resulting map was in conformity with actual conditions, which indicates this assessment approach was reasonable and applicable.
     3. According to the interpretation results of remote sensing images, the changes of land use and vegetable cover were analyzed. The trend analyze of land use change shows that: from 2000 to 2005, the dry field and paddy filed decreased, and the forest, shrub and grassland increased. Obviously, the dry field areas decreased by 10.30% to 28144km2, the forest increased by 4.04% to 82252km2, and the shrub and grassland increased by 9.83% to 20696km2.The main land use shift was from farmland to natural woodland. From the index of landscape pattern, the patch number of natural woodland decrease and their size increased. Due to the expended of natural woodland, the landscape dominance increased, and the index of diversity and fragmentation decreased. As far as the vegetable coverage characteristic in the study area, the areas of the coverage degree of low level and extreme low level reduced, and the areas of other higher coverage degree increased. Obviously, the percentage of extreme high coverage increased from 28.04% to 30.55% during the period of 2000 and 2005. Analysis results show that the water and soil conservation rehabilitation and the environmental ecosystem rehabilitations have achieved marked results.
     4. Comparing the assessment results of soil erosion degree of 2000 and 2005, the total areas affected by different levels of soil erosion problem decreased obviously from 60843km2 in 2000 to 55873km2 in 2005, which decreased 7.38%. The areas affected by moderate level soil erosion decreased 3494km2, The areas affected by strong level soil erosion decreased 1374km2, the areas affected by very strong level soil erosion decreased 140km2. On the other side, the areas affected by slight level soil erosion increased from 28797km2 to 29281km2, the severe level soil erosion increased form 391km2 to 461km2. The overall states of soil erosion were going to positive tendency, as the result of effective management for soil erosion during the period from 2000 to 2005. The landscape pattern index of landscape level showed that the variation tendency became less heterogeneity, less fragmentation and more regularization. The pattern number of lower level soil erosion decreased, with the mean pattern size increasing, and the regularization of pattern edges became higher. On the contrary, the pattern number of higher level soil erosion increase, with the mean pattern size decreased, and the degree of the landscape fragment is to be rather higher. It showed that the soil erosion states became taking a turn for the better for the remarkable improvement.
     5. Based on the analysis the relationship with environment background, high soil erosion sensitivity mostly occurred at altitude from 150 to 500 meters, in the slope gradient between 8 to 25°, and land use type of dry land, especially in areas with surface material vulnerable to erosion. As far as different physical geographical districts, Western high mountains and eastern low mountains suffered from the most serious erosion damage, a strong level of soil erosion was widely observed in these mountains. Large areas of moderate level erosion occurred in the northern hills. In contrast, most of the central plains were characterized as slight level erosion effect. After 5 year of effectively treat treatment, the states of sever soil erosion areas improved markedly, but they still were the focus of the soil and water conservation work.
引文
1. 蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2002,14(2):19-24.
    2. 蔡继清,任志勇,李迎春.土壤侵蚀遥感快速调查中有关技术问题的商榷.水土保持通报,2002,22(6):45-47.
    3. 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998.
    4. 曹文洪.土壤侵蚀的坡度界限研究.水土保持通报,1993,13(4):1-5.
    5. 曹银真.土壤侵蚀过程中的地貌临界.中国水土保持,1987(10):20-24.
    6. 陈法扬.不同坡度对土壤冲刷量影响试验.中国水土保持,1985(2):24-30.
    7. 陈述彭.地学信息图谱探索研究.北京:商务印书馆,2001.
    8. 陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理.北京:科学出版社,1988.
    9. 陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究.地理学报,2001,56(3):261-268.
    10. 丁一汇.中国西部环境变化的预测.见:秦大河.中国西部环境演变评估.北京:科学出版社,2002,114-138.
    11. 顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评.遥感技术与应用,2006,21(4):391-395.
    12. 何春阳,史培军,陈晋等.北京地区土地利用/覆盖变化研究.地理研究,2001,20(6):679-687.
    13. 候喜禄,曹清玉.黄土丘陵区幼林和草地水保及经济效益研究.水土保持通报,1990,10(4):53-60.
    14. 候喜禄,曹清玉.陕北黄土丘陵沟壑区植被减沙效益研究.水土保持通报,1990,10(2):33-40.
    15. 胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):167-175.
    16. 胡良军,李锐,杨勤科,邵明安.基于GIS的区域水土流失评价模型.应用基础与工程科学学报,2000,8(7):1-8.
    17. 胡月明,薛月菊,李波等.从神经网络中抽取土地评价模糊规则.农业工程学报,2005,21(12):93-97.
    18. 黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训,科学通报,1955,(12):15-21.
    19. 黄炎和,卢程隆,付勤等.闽东南土壤流失预报研究.水土保持学报,1993,7(4): 13-18.
    20. 贾丽,基于CAESAR模型的土壤侵蚀研究.[博士学位论文].上海:华东师范大学,2008.
    21. 贾志军,王贵平,李俊义等.土壤含水率对坡耕地产流入渗影响的研究.中国水土保持,1987,(9):25-28.
    22. 江忠善,李秀英.黄上高原土壤流失预报方程中降雨侵蚀力和地形因子的研究.中国科学院西北水土保持研究所集7,1988,(7):40-45.
    23. 江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,1996,2:108-116.
    24. 蒋德麒,朱显漠.水土保持.中国农业土壤论文集,上海:上海科学技术出版社,1962.
    25. 蒋定生,黄国俊.地面坡度对降水入渗影响的模拟试验.水土保持通报,1984,(4):11-16.
    26. 颉耀文,陈怀录,徐克斌.数字遥感影像判读法在土壤侵蚀调查中的应用.兰州大学学报(自然科学版),2002,38(2):15-162.
    27. 解明曙.林木根系固坡力学机制研究.水土保持学报,1990,4(3):7-14.
    28. 景可,王万忠,郑粉莉.中国土壤侵蚀与环境.北京:科学技术出版社,2005.
    29. 孔德树.“3S”技术在水土保持工作中的应用及展望.中国水土保持,2005,(5):40-41.
    30. 冷疏影,冯仁国,李锐等.土壤侵蚀与水土保持科学重点研究领域与问题.水土保持学报,2004,18(1):1-6.
    31. 李德仁.论"GEOMATICS"的中译名.测绘学报,1998,27(2):95-99.
    32. 李广智.区域土壤侵蚀遥感定量监测技术研究.[博士学位论文].中国科学院.2001.
    33. 李锐,杨勤科.主编区域水土流失快速调查与管理信息系统研究.郑州:黄河水利出版社,2000.
    34. 李秀霞.基于最小图斑的流域土壤侵蚀快速评估模型与应用.[博士学位论文].北京:北京大学图书馆,2008.
    35. 李英奎.基于土地利用结构变化的土壤侵蚀动态评估方法研究.[博士学位论文].北京:北京大学图书馆,2001.
    36. 李月臣,刘春霞,赵纯勇等.三峡库区重庆段水土流失的时空格局特征.地理学报,2008,63(5):502-513.
    37. 刘宝元,史培军.WEPP水蚀预报流域模型. 水土保持通报,1998,18(5):6-12.
    38. 刘宝元等.中国土壤侵蚀预报模型研究.第12届国际水土保持大会,北京,2002.
    39. 刘刚,项湜伍.一种神经模糊系统在数据分类中的应用.计算机工程,2002,28(4):121-123.
    40. 刘纪远.中国资源环境遥感宏观调查与动态研究.北京:中国科学技术出版社,1996.
    41. 刘南,刘仁义.地理信息系统.北京:高等教育出版社,2002.
    42. 刘权,王忠静.GIS支持下辽河中下游流域不同土地利用的土壤侵蚀变化分析.水土保持学报,2004,18(4):105-107.
    43. 刘玉洁,杨忠.MODIS遥感信息处理原理与算法.北京:科学出版社,2001.
    44. 刘元保,唐克丽,查轩等.坡耕地不同地面覆盖的水土流失实验研究.水土保持学报,1990,4(1):25-29.
    45. 陆兆熊,蔡强国.黄土高原地区土壤侵蚀及土地管理研究进展.水土保持学报.1992,6(4):86-95.
    46. 罗杰斯,舒姆.稀疏植被覆盖对侵蚀和产沙的影响.中国水土保持,1992,(4):18-20.
    47. 罗来兴.甘肃华亭粮食沟坡面细沟侵蚀量的野外测定方法及其初步分析结果.地理学资料,1958(2):111-118.
    48. 罗伟祥,白立强.不同覆盖度林地和草地的径流量与冲刷量.水土保持学报,1990,(1):30-34.
    49. 马蔼乃.地理科学与地理信息科学论.武汉:武汉出版社,2000.
    50. 马蔼乃.中国水土流失灾害的分类分级和危险度评价方法研究.见:王劲峰等.中国自然灾害影响评价方法研究.北京:科技出版社,1993.
    51. 倪晋仁,李秀霞.基于最小图斑的土壤侵蚀快速评估方法.应用基础与工程科学学报,2007,15(4):425-434.
    52. 倪九派,魏朝富,谢德体.土壤侵蚀定量评价的空间尺度效应.生态学报,2005,25(8):2061-2067.
    53. 史德明.土壤侵蚀调查方法中的侵蚀试验研究和侵蚀量测定问题.中国水土保持,1983,(6):7-26.
    54. 史培军,刘宝元,张科利,金争平.土壤侵蚀过程与模型研究.资源科学,1999,21(5):9-18.
    55. 史志华,蔡崇法,丁树文等.基于GIS和RUSLE的小流域农地水土保持规划研究.农业工程学报,2002,18(4):172-175.
    56. 宋桂琴.黄土高原土地利用的理论与实践.北京:中国水利水电出版社,1996.
    57. 潭维炽,叶万庚.现代测控管理工程.北京:宇航出版社,1993.
    58. 汤国安,陈正江,赵牡丹等.ArcView地理信息系统空间分析方法.北京:科学出版社,2002.
    59. 唐克丽.中国水土保持.北京:科学出版社,2004.
    60. 田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,1964,12(3):286-296.
    61. 王飞,李锐,杨勤科,张晓萍.区域尺度土壤侵蚀研究方法.西北林学院学报.2003, 18(4):74-78.
    62. 王礼先,张有实,李锐等.关于我国水土保持科学技术的重点研究领域.中国水土保持科学,2005,3(1):1-6.
    63. 王万忠,焦菊英,郝小品等.中国降雨侵蚀力R值的计算与分布(Ⅰ).水土保持学报,1995,9(4):5-18.
    64. 王万忠,焦菊英,郝小品等.中国降雨侵蚀力R值的计算与分布(Ⅱ).土壤侵蚀与水土保持学报,1996,2(1):29-39.
    65. 王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究.水土保持通报,1996,16(5):1-20.
    66. 王万忠.黄土地区降雨特性与土壤流失关系的研究(Ⅰ).水土保持通报,1983,(4):7-13.
    67. 王万忠.黄土地区降雨特性与土壤流失关系的研究(Ⅱ).水土保持通报,1984,(2):62-64.
    68. 王协康,方铎.坡面侵蚀临界坡度的研究.四川水力发电,2000,19(2):11-14.
    69. 王秀兰,包玉海.土地利用动态变化研究方法探讨.地理科学展,1999,18(1):81-87.
    70. 王玉宽.黄土丘陵沟壑区坡面径流侵蚀试验研究.中国水土保持,1993,(7):22-24.
    71. 王占礼.中国土壤侵蚀影响因素及其危害分析.山西水土保持科技,2000(2):14-16.
    72. 韦红波,李锐,杨勤科.我国植被水土保持功能研究进展.植物生态学报,2002,26(4):489-496.
    73. 魏天兴,朱金兆,黄土残源沟壑区坡度和坡长对土壤侵蚀的影响分析.北京林业大学学报,2002,24(1):59-62.
    74. 温光远,刘世荣.我国主要森林生态系统类型降雨截流规律的数量分析.林业科学,1995,31(4):289-298.
    75. 吴普特.黄土丘陵沟壑区土壤抗冲性研究.水土保持学报,1993,7(3):19-36.
    76. 徐恒力,陈植华.土壤侵蚀的ETA层次结构与空间尺度效应.地球科学—中国地质大学学报,1995,204(4):459-464.
    77. 杨勤科,李锐,刘咏梅.区域土壤侵蚀普查方法的初步讨论.中国水土保持科学,2008,6(3):2-6.
    78. 杨艳生,史德明,姚宗虞,江西兴国县土壤渗透性的研究水土保持通报,1982,(6):33-39.
    79. 杨艳生,史德明,姚宗虞.侵蚀土壤地表径流和土壤渗透的研究.土壤学报,1984,21(2):203-210.
    80. 张光辉,梁一民.模拟降雨条件下人工草地产流产沙过程研究.土壤侵蚀与水土保持学报,1996,2(3):56-59.
    81. 张洪江.土壤侵蚀原理第2版.北京:中国林业出版社,2008.
    82. 张科利,蔡永明,刘宝元.黄土高原地区土壤可蚀性及其应用研究.生态学报,2001,21(10):1686-1695.
    83. 张宪奎,许靖华,卢秀琴等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9.
    84. 张翼.黄土高原丘陵沟壑区土壤侵蚀研究.水土保持研究.2000,7(2):39-47.
    85. 张云霞,李晓兵,陈云浩.草地植被覆盖度的多尺度遥感与实地测量方法综述.地球科学进展,2003,18(1):85-93.
    86. 章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析.北京师范大学学报(自然科学版),2001,37(3):402-408.
    87. 赵其国,史学正.土壤资源概论.北京:科学出版社,2007.
    88. 赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    89. 郑粉莉,唐克丽,周培华.坡耕地细沟侵蚀影响因素的研究.土壤学报,1989,26(2):109-116.
    90. 郑粉莉.发生细沟侵蚀的临界坡长与坡度.中国水土保持,1989,(8):23-24.
    91. 中国大百科全书(水利卷).北京:中国大百科全书出版社,1983.
    92. 中华人民共和国水利部.土壤侵蚀分类分级标准(SL190-2007).北京:中国水利水电出版社,2008.
    93. 钟珞,饶文碧.人工神经网络及其融合应用技术.北京:科学出版社,2007.
    94. 周国林,袁正科编.常用林业技术术语.长沙:湖南科学技术出版社,1982.
    95. 周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨.水土保持学报,1993,7(1):29-34.
    96. 周佩华,李银锄,黄义端,贾恒义,李玲.2000年中国水土流失趋势预测及其防治对策.中国科学院西北水土保持研究所集刊(7),1988,57-71.
    97. 周为峰,吴炳方.土壤侵蚀调查中的遥感应用综述.遥感技术与应用,2005,20(5):537-542.
    98. 周为峰.基于遥感和GIS的区域土壤侵蚀调查研究.[博士学位论文].北京:中国科学院.2005.
    99. 朱显谟.黄土高原水蚀的主要类型及其有关因素(二).水土保持通报,1981(4):13-18.
    100. 朱显谟.黄土高原水蚀的主要类型及其有关因素(三).水土保持通报,1982(1):25-30.
    101. 朱显谟.黄土高原水蚀的主要类型及其有关因素(四).水土保持通报,1982(3):40-44.
    102. 朱显谟.黄土区土壤侵蚀的分类.土壤学报,1956,4(2):99-115.
    103. Arnoldush M J. Methodology Used to Determine the Maximum Potential Average Soil Loss Due to Sheet and Rill Erosion in Morocco. FAO Soil Bulletin,1977,34:39-51.
    104. Asrar G F, Myneni R B, Choudhury B J. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation:a modeling study. Remote Sensing of Environment,1992,41(2):85-103.
    105. Barbour M T, Stribling J B, Karr J R. The Multimetric approach for establishing biocriteria and measuring biological condition. In:Davis W S and Simon TP (Eds.), Biological Assessment and Criteria:Tools for Water Resource Planning and Decision-making. Lewis Publishers, Chelsea, Michigan,1995.
    106. Bou Kheir R, Cerdan O, Abdllah C. Regional soil erosion risk mapping in Lebanon. Geomorphology,2006,82:347-359.
    107. Brown, C. B., "Sediment transport," Engineering Hydraulics, (H. Rouse, ed.), Wiley, New York,1950.
    108. Buecher M. Are small-scale landscape features important factors for field studies of small mammal dispersal sinks? Landscape Ecology,1989,2:191-199.
    109. Cochrane T A; Flanagan D C. Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models. Journal of Soil and Water Conservation,1999,54(4): 678-685.
    110. Chariat S, Delleur J W, Integrating a physically based hydrological model with GRASS, In: Kovar, K. (ed), Application of GIS in hydrology and watershed Resources Management IAHS. Publication.1993 211:143-150.
    111. Chen J, Jonsson P, Tamura M, et al., A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote sensing of Environment,2004,91:332-344.
    112. Choudhury B J. Relationships between vegetation indices, radiation absorption and net photosynthesis evaluated by a sensitivity analysis. Remote Sensing of Environment,1987, 22(2):209-233.
    113. Cihlar J. Land cover mapping of large areas from satellites:status and research priorities. International Journal of Remote Sensing,2000,21:1093-1113.
    114. Cook H L. The Nature and controlling variable of water erosion process Soil Sci. soc,1936.
    115. CORINE.1992. Corine Soil Erosion Risk and Important Land Resources in the Southern Regions of the European Community. Publication EUR 13233 EN:Luxembourg.
    116. De Jong S M, Paracchini M L, Bertolo F, et al., Regional assessment of soil erosion using the distributed mode SEMMED and remotely sensed data. Catena,1999,37:291-308.
    117. Doe W W, Jones D S, Warren S D. "The Soil Erosion model and guide for the military land managers:Analysis of erosion models for natural and cultural resources applications." Center for Ecological Management of Military Lands. Colorado State University, Fort Collins, CO.1999.
    118. De Roo A P J, Wesseling C G, Ritsema C J. LISEM:A single-event physically based hydrological and soil erosion model for drainage basins:Ⅰ. Theory, input and output. Hydrological Processes 1996,10(8):1107-1117.
    119. De Roo A P J. LISEM:a single event physical-based hydrologic and soil erosion model for drainage basins Ⅰ:Theory, input and output. Processes,1996,10(8):1192-1126.
    120. Desmet P J J, Govers G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation,1996, 51:427-433.
    121. Di Luzio, Srinivasan M R, Arnold J G, Neit sch S L. ArcView Interface For SWAT2000 User's Guide. Texas:Texas Water Resources Institute, College Station,2002.
    122. Duchemin B, Goubier J, Courtier G Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environment,1999,67:68-82.
    123. Dumitrescu D. Fuzzy sets and their application to clustering and training, CRC Press, New York,2000
    124. Dwivedi R S, Kandrika S, Ramana K V. Comparison of Classifiers of Remote Sensing Data for Land-use/land-cover Mapping. Current Science,2004,86(2):329-330.
    125. Dwyer J, Schmidt G The MODIS Reprojection Tool. In:Qu J J, Gao W, Kafatos M, Murphy R E, Salomonson V V. (Eds.), Earth Science Satellite Remote Sensing Vol.Ⅱ:Data, Computational Processing, and Tools, Springer-Verlag,& Tsinghua University Press,2007.
    126. Forman R T T, Godron M. Landscape ecology. New York:John Wiley & Sons,1986.
    127. Fu B J, Zhao W W, Chen L D, et al., Assessment of soil erosion at large watershed scale using RUSLE and GIS:a case study in the Loess Plateau of China. Land Degradation & Development,2005,16(1):73-85.
    128. Fu B J, Gulinck H. Land evaluation in area of severe erosion:the loess plateau of China. Land Degradation and Rehabilitation,1994,5(1):33-40.
    129. Fu B J. Soil erosion risk and its control in the loess plateau of China. Soil Use and Management,1989,5:76-82.
    130. Fu B J. Blue skies for China. Science,2008,321:611.
    131. Gillies R R, Kustas W P, Humes K S. A verification of the "triangle" method for obtaining surface soil water content and energy fluxes from remote measurementsof the Normalized difference vegetation Index (NDVI) and surface. International Journal of Remote Sensing, 1997, (18):3145-3166.
    132. Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment,2002,80(1):76-87.
    133. Gower S T, Kucharik C J, Norman J M. Direct and indirect estimation of leaf area index, fAPAR and net primary production of terrestrial ecosystems. Remote Sensing of Environment,1999, (70):29-51.
    134. Hairsine P B, Rose C W. Rainfall detachment and deposition:sediment transport in the absence of flow-driven processes, Soil Science Society of America Journal 1991, 55(2):320-324.
    135. Han J, Kamber M. Data Mining Concepts and Techniques. Beijing:Higher Education Press. 2001.
    136. Hardt R T, Forman R T T. Boundary from effects on woody colonization of reclaimed mines. Ecology,1989,70:1252-1260.
    137. Hickey R. Slope angle and slope length solutions for GIS, Cartography,2000,29:1-8.
    138. Holben B N. Characteristic of Maximum Value Composite Images for Temporal AVHRR Data. International Journal of Remote Sensing,1986,7(11):1417-1434.
    139. Holben B N. Characteristic of maximum value composite images for temporal AVHRR Data. International Journal of Remote Sensing,1986,7(11):1417-1434.
    140. Hudson N. Soil Conservation. Cornell University Press, Ithaca, New York,1972.
    141. Hudson N W. Soil Conservation. B.T. Batsford Limited, London,1995.
    142. Ingram J S I, Lee J J, Valentin, C. The GCTE soil erosion network:a multi-participatory research program. Journal of Soil and Water Conservation,1996,51(5):377-380.
    143. Jensen J R. Introductory Digital Image Processing:A Remote Sensing Perspective. Prentice Hall, Upper Saddle River, N J.2005.
    144. Joao E M, Walsh S J. GIS implications for hydrologic modeling:simulation of nonpoint pollution generated as a consequence of watershed development scenarios, Computer. Environment Urban System.1992 16:43-63.
    145. Jonsson P, Eklundh L. TMESAT—a program for analysing time-series of satellite sensor data. Computers and Geosciences,2004,30:833-845.
    146. Jonsson P, Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote sensing,2002,40(8):1824-1832.
    147. Kaden S O. GIS in Water-Related Environmental Planning and Management:Problems and Solution. Application of Geographic Information Systems in Hydrology and Water Resources Management, IAHS-AISH Publication 1993,211:385-397.
    148. Kirkby M J, Chorley R J. Erosion by water on hillslopes. In:Water, Earth and Man, ed. Chorley, R.J., Methuen, London,1969.
    149. Kirkby M J, Imeson A C, Bergkamp G, Cammeraat L H. Scaling up processes and models from the field plot to the watershed and regional areas. Journal of Soil and Water Conservation,1996,51(5):391-396.
    150. Kirkby M J, Morgan R P C. Soil Erosion, Wiley, Chichester, UK 1980.
    151. Kirkby M, Gobin A, Irvine B. Technical Report Deliverable 05:PESERA Model strategy, land use and vegetation growth. PESERA, European Commission funded fifth framework project -contract QLKS-CT- 1999-01323,2003:46.
    152. Laffen J M, Lwonard J L, Foster G R. WEEP:a new generation of erosion prediction technology. Journal of Soil and Water Conservation,1991,46 (1):34-38.
    153. Lal R. Physical management of soils of the tropics:Priorities for the 21st century. Soil Science,2000,165:191-207.
    154. Lal R. Soil Erosion Research Methods (2nd edition), Soil and Water Conservation Society, St. Lucie Press, Delray Beach,1994:1-10.
    155. Landis J R, Koch G G. The measurement of observer agreement for categorical data. Biometrics,1977,33(1):159-174.
    156. Le Bissonnais Y, Montier C, Jamagne M, Daroussin J, King D. Mapping erosion risk for cultivated soil in France. Catena,2002,46:207-220.
    157. Lenat, D R, Barbour M T. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring:Rapid bioassessment. In:Loeb, SL and Spacie, A. (Eds.), Biological Monitoring of Aquatic System. Lewis Publishers, Ann Arbor, MI,1994.
    158. Los S O, Collatz G J, Sellers P J, Malmstrom CM, Pollack N H, DeFries R S, Bounoua L, Parris M T, Tueker C J, Dazlieh D A. A global 9-year biophysical land-surface data set from NOAAAVHRR data. Journal of Hydrometeorology,2000(1):183-199.
    159. Lu H, Prosser I P, Moran C J, Gallant J C, Priestley G, Stevenson J G. Predicting sheetwash and rill erosion over the Australian continent. Australian Journal of Soil Research,2003,41: 1037-1062.
    160. Ma A N, A Geo-code model for the use of GIS. In:International Archives of Photogrammetry and Remote Sensing, Japan:ISPRS,1988,27(4):585-591.
    161. Ma J, Xue Y, Ma C F, Wang Z G. A data fusion approach for soil erosion monitoring in the Upper Yangtze River Basin of China based on Universal Soil Loss Equation (USLE) model. International Journal of Remote Sensing.2003,24:4777-4789.
    162. McGarigal R, Marks B. FRAGSTATS:Spatial Pattern Analysis Program for Quantifying Landscape Structure.Reference manual, Forest Science Department, Oregon State University, Corvallis Oregon,1994:62.
    163. Metternicht G I, Zinck J A. Evaluating the information contents of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features. ISPRS Journal of Photogrammetry & Remote sensing,1998,53:143-153.
    164. Meyer L D. Evolution of the Universal Soil Loss Equation, Journal of Soil and Water Conservation,1984,39:99-104.
    165. Misra R K, Rose C W. Application and sensitivity analysis of process-based erosion model GUEST. European Journal of Soil Science,1996,47:593-604.
    166. Morgan, R P C, Quinton J N, Smith R E, Govers G, Poesen J W A, Auerswald, K., Chisci, G., Torri, D., Styczen, M.E. The European Soil Erosion Model (EUROSEM):A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms,1998,23(6):527-544.
    167. Musgrave G W. The quantitative evaluation of factors in water erosion-A first approximation. Journal of Soil and Water Conservation,1947,2:133-138.
    168. Nauck D, Kruse R, NEFCLASS—A Neuro-fuzzy Approach for the Classification of Data. In George K, Carrol J H, editors, Ptoc of the 1995 ACM Symposium on Applied Computing, New York:ACM Press,1995:461-465.
    169. Nauck D. A fuzzy perceptron as a generic model for neuro-fuzzy approaches. Proc. Fuzzy-Systeme'94, Miinchen,1994.
    170. Nauck U, Kruse R. Design and Implementation of a Neuro-Fuzzy Data Analysis Tool in JAVA. Technical University of Braunschweig:Braunschweig, Germany,1999.
    171. Ni J R, Li K, Approach to Soil Erosion Assessment in terms of Land-use Structure Changes. Journal of Soil and Water Conservation,2003,58:158-169.
    172. NRCS. National resources inventory 2003 annual NRI:USDA,2003.
    173. Nusser S M, Goebel J J. The national resources inventory:A long-term multi-resource monitoring prgramme. Environmental and Ecological Statistics,1997,4(3):181-204.
    174. Olson T C, Wischmeier W H. Soil erodibility evaluation for soils on the runoff and erosion stations. Soil Science Society of America Proceedings,1963 27:589-592.
    175. Pal S K. Mitra S, Fuzzy self organization, inferencing and rule generation, IEEE Transactions on Systemstem and Cybernetics,1996,26:608-620.
    176. Paulsen S G, Larsen D P, Kaufmann P R. et al., EMAP-Surface Waters Monitoring and Research Strategy-EPA/600/3-91/002. US EPA, Office of Research and Development, Washington DC.,1990.
    177. Pech R P, Graetz R D, Davis A W. Reflectance modelling and the derivation of vegetation indices for an Australian semi-arid shrubland. International Journal of Remote Sensing,1986 (7):389-03.
    178. Plafkin J L, Barbour M T, Porter K D, Gross S K, Hughes R M. Rapid bioassessment protocols for use in streams and rivers. Benthic macroinvertebrates and fish, EPA/440/4-89/001, Office of Water Regulations and Standards, US Environmental Protection Agency, Washington, DC.,1989.
    179. Poesen J W, Boardman J, Wilcox B, Valentin C. Water erosion monitoring and experimentation for global change studies. Journal of Soil and Water Conservation,1996,51 (5):386-390.
    180. Pullar D, Springer D. "Towards integrating GIS and catchment models." Environmental modeling & software 2000 15:451-459.
    181. Purevdor J T S, Tateishi R, Ishiyama T, et al.. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing,1998,19(18): 3519-3535.
    182. Qi J, Marsett R C, Moran M S, et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agricultural and Forest Meteorology,2000, (105):55-68.
    183. Renard K G, Foster G R, Weenies G A, Porter J P. RUSLE-revised universal soil loss equation. Journal of Soil and Water Conservation,1991,46 (1):30-33.
    184. Renard K G RUSLE-A guide to conservation planning with the revised universal soil loss equation. USDA Agricultural Handbook No.703. Washington DC:USDA,1995.
    185. Renard K G, Foreste G D, Wessies G A. Predicting soil erosion by water:A guide to conservation planning with the Revised Universal Soil Loss Equation. USDA Agricultural Handbook No.703,1997.
    186. Renschler C S. Designing geo-spatial interfaces to scale process models:The Geo-WEPP approach. Hydrological Processes,2003,17:1005-1017.
    187. Resh V H, Norris R H, Barbour M T, Design and implementation of rapid assessment approaches for water resource monitoring using benthic macro-invertebrates. Australian Journal of Ecology,1995,20:108-121.
    188. Rose C W. Developments in soil erosion and deposition models. Advance in Soil Science, 1985,2:1-63.
    189. Rose C W, Hogarth W L., Sander G, Lisle I, Hairsine P, Parlange J Y. Modeling processes of soil erosion by water. Trends in Hydrology,1994,1:443-451.
    190. Richard O D, Peter E H, David GS. Pattern Classification. Second Edition. Beijing:China Machine Press,2004.2:192-195.
    191. Savabi M R, Flangan D C, Hebel B, Engel B A. Application of WEPP and GIS-GRASS to asmall watershed in Indiana. Journal of Soil and Water Conservation,1995,50(5):477-483.
    192. Santiago Saura. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecology,2004,19:197-209.
    193. Savitzky A, Golay M J E. Smoothing and differentiation of Data by Simplified Least Squares Procedures. Aanlytical Chemistry,1964,36:1627-1639.
    194. Sellers P J, Tucker C J, Collatz G J, Los S O, Justice C O, Dazlich D A, Randall D A. A global 1° by 10 NDVI data set for climate studies:The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 1994,15 (17):3519-3545.
    195. Servenay A, Prat C. Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis. Geoderma,2003,117:367-375.
    196. Settle J J, Drake N A. Linear mixing and the estimation of ground cover porportions. International Journal of Remote Sensing,1993 (14):1159-1177.
    197. Shannon C, Weacer W. The mathematical theory of excommunication. Urbana:University Illinois Press,1949.
    198. Shi Z H, Cai C F, Ding S W, et al., Soil conservation planning at the small watershed level using RUSLE with GIS:A case study in Three Gorges Area of China. Catena,2004,55(1): 33-48.
    199. Tim U S, Jolly R. Evaluating agricultural nonpoint source pollution using integrated GIS and Hydrologic Water Quality Model. Journal of Environment Quality,1994,23 (1):23-25.
    200. Valentin C. Towards an improved predictive capability for soil erosion under global change. In:Boardman J, Favis-Mortlock D T (Eds). Modelling Soil Erosion by Water. NATO-ASI Series 1-55, Springer, Berlin,1998:7-17.
    201. Vrieling A, Sterk G, Beaulieu N. Erosion risk mapping:A methodological case study in the Colombian Eastern Plains. Journal of Soil and Water Conservation,2002,57:158-163.
    202. Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss. Transaction of American Geophysical Union,1958, (39):285-291.
    203. WischIneier W H, Smith D D. A universal soil loss equation to guide consewation farm planning. Transaction of the 7th Intemational Congress Soil Science.1960,1:418-425.
    204. Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains. Agricultural Handbook No.282. Washington DC:USD A,1965.
    205. WischMeier W H. Use and misused of the universal soil loss equation. Journal of soil and water conservation,1976,31(1):5-9.
    206. Wischmeier W H, Smith D D. Predicting rainfall erosion losses. US Department of Agriculture, Agricultural Research Service Handbook No.537,1978:58.
    207. Wright J F, Moss D, Amitage P D, Furse M T. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community using environmental data. Freshwater Biology,1984,14 (3):221-256.
    208. Wright J F. Development and use of a system for predicting macro-invertebrates in flowing waters. Australian Journal of Ecology,1995,20 (1):181-197.
    209. Wu W Z, Zhang W X. Neighborhood operator between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems,2002,31 (4): 405-430.
    210. Yang D W, Taikan Oki S K, Koike T, Musiake K. Global potential soil erosion with reference to land use and climate changes. Hydrological Process,2003,17 (14):2913-2928.
    211. Zadeh LA. Fuzzy sets. Information and control,1965,8 (3):338-353.
    212. Zadeh LA. Fuzzy Logic. IEEE Computer,1998,21 (4):83-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700