基于3S技术的山东省森林调节温度的生态服务功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气候变化、环境恶化等问题等日益严峻的情况下,森林的生态价值凸现。近年来人们日益认识到,只有深入地、定量化地研究森林生态服务,量化其价值,才能充分反映和“显化”生态系统为人类所提供的巨大经济价值,才能指导自然资源的合理开发和有效保护,有利于生态系统的保护并最终有利于人类自身的可持续发展。森林生态系统服务的量化研究还需要新的技术、手段和方法。随着现代多学科技术的综合发展,森林生态系统服务的量化研究的技术、手段与方法也逐步得以更新和完善,以3S(GPS、GIS、RS)技术为基础开发出来的森林资源监测与管理的新工具、方法、技术和手段不断应用于森林生态服务的研究中来。
     本论文以山东省的森林资源为研究对象,以3S技术为支撑,立足于统计,对森林生态系统服务功能之一的调节温度进行了研究。利用TM数据、MODIS温度产品、植被指数产品、实际采集的外业数据、山东气象数据等数据,结合GIS技术,对2000-2006年山东省森林不同时间的温度数据进行了量化分析,得出了森林调节温度的相关规律;并以遥感反演的大气水汽含量为基础,对森林区大气水汽的变化特征进行了探索性分析。主要目的是研究森林调节温度的规律,为科学的评估森林生态系统调节温度的生态服务提供新的技术手段和科学的数据支持,为山东省森林资源的造林规划、经营管理、动态更新提供理论基础,促进山东省森林可持续经营和林业可持续发展。
     本文通过研究得出如下结论:
     (1)森林夏季具有降温作用,主要体现在5-9月份;冬季具有保温作用,主要表现在11-2月份,保温效果不如降温效果明显。(2)森林白天的地表温度(LST)和归一化植被指数(NDVI)是负相关的关系,夜间的LST与NDVI几乎不存在相关性;夏季LST与NDVI是负相关的关系,冬季是正相关的关系,即夏季森林起降温的作用,冬季起保温的作用;区域范围越小,LST与NDVI的相关性越强。(3)森林温度变化的振幅比农田、城镇都小,森林对温度的调节作用比农田大;夏季森林温度越高时降温效果越明显,冬季温度越低时保温效果越明显,森林对气候变化缓解能力比农田强。(4)不同的林种,不同的时间降温效果不同,针叶林类样点在2、3月份,即冬末春初,LST与NDVI出现明显的低谷。(5)LST变化与NDVI变化的相关性比LST变化于降水的变化的相关性强。(6)林区分布的对大气水汽含量的日变化影响不显著。
     本研究的主要创新点有以下3个方面:(1)在山东省省域尺度上,利用遥感反演的温度数据对山东省森林调节温度的生态服务功能进行了分析研究,为森林生态服务功能的评估研究提供了新的技术手段;(2)对不同时间森林调节温度的数据进行了量化分析,以统计数据位基础,得出了森林调节温度的相关规律;(3)对比分析了森林和农田在调节温度、响应气候变化等方面的异同
Increasingly serious global climate change and environmental problems protrude the forest ecological value, making people recognize day by day that ecological system can provide tremendous economic value to mankind on condition that the forest ecological service is deeply and quantitatively studied. Hence, the task can help to promote reasonable exploitation of natural resources and be beneficial to ecosystem protection and, ultimately, to human self sustainable development. With the development of the modern science technology, tools, methods and technical means in forest resources monitoring and management represented by 3S(GPS, GIS& RS)are getting wide application in the study on forest ecological service.
     The paper takes Shandong Province's forest resources as the object of study , with the support of 3S technology and statistics data, studies on the air temperature regulation of forest resource ecological service. The ecological services of air temperature regulation for different tree species and different seasons during 2000-2006 in Shandong province are quantitatively studied by using TM data, MODIS temperature, vegetation index, the field surveying data and the meteorological data in Shandong, combining with GIS. This study provides theoretical basis for afforestation planning and management and dynamic update of forest resource, it also provides new technological means for the study on forest ecological service and promotes forestry sustainable management and development in Shandong .
     The conclusions of the paper are as followed:
     1)In summer forest has temperature decrease function, mainly manifests in May to September; In winter it has heat preservation function, mainly displays in November to February, the heat preservation effect is inferior than decreasing temperature effect does.2) LST (Land Surface Temperature) has negative correlation with the NDVI in the day, however, in the evening, LST has no correlation with NDVI at all. In Summer LST and NDVI are the inverse correlation relations, but in the winter they are positive correlation , that is in summer forest plays the temperature decrease role, in the winter it funtions as heat preservation. The smaller the area coverage is, the stronger LST and the NDVI relevance is. 3) The temperature change in forest is less than that in farmlands and cities, forest functions more temperature control than farmland; decreasing temperatuer effect is more obvious when the forest temperature is higher in summer, the effect of keeping warmth is rather obvious when the temperature is lower in the winter. Compared to farmand, forest is more powerful for climatic change and extreme value weather alleviation. 4) Decrease effect is different from various species and different time , the coniferous forest class in late winter and early spring is pretter lower. 5) LST and NDVI change has stronger relevance than LST and precipitation's change. 6) Forest region distribution is not remarkable to atmospheric water vapor diurnal variation.
     The main innovations are as follows: (1)Among Shandong territory criterion, an analytical study on ecological service function on forest attenperaton has been conducted by using the remote sensing inversion's temperature data. The study provided the new technological means for appraisal research on forest ecological service function. 2) has carried on the quantification analysis to forest attemperation's data at different time, based on statistical data, has obtained regularity of forest attemperation; (3) A contrastive analysis for similarities and differences between forest and farmland has been done in aspect on attemperation and climatic change.
引文
[1] 国家林业局课题组,论林业在应对气候变暖中的重大作用,林业经济,2007,3:35-37
    [2] 侯元兆,张佩昌,王琦等,中国森林资源核算研究,北京:中国林业出版社,1995
    [3] 李文华,李芬,李世东等,森林生态效益补偿的研究现状与展望,自然资源学报,2006,21(5),677-688
    [4]侯元兆,吴水荣,森林生态服务价值评价与补偿研究综述[J],世界林业研究,2005,18(3):1-5
    [5] 侯元兆,张佩昌,王琦等,中国森林资源核算研究,北京:中国林业出版社,1995
    [6] 余新晓,鲁绍伟,靳芳等,中国森林生态系统服务功能价值评估,生态学报,2005,25(8):2096-2101 [7 ] 赵同谦,欧阳志云,郑华,等,中国森林生态系统服务功能及其价值评价,自然资源学报, 2004,19(4):480-491
    [8] 欧阳志云,王效科,苗鸿,中国陆地生态系统服务功能及其生态经济价值的初步研究,生态学报,1999,19(5):607-613
    [9] 吴水荣,水源涵养林环境效益经济补偿研究:[博士学位论文],中国农业大学,2003
    [10] 张颖,黑龙江大兴安岭森林绿色核算研究,自然资源学报,2006,21(5):727-737
    [11] 李京,陈云浩,潘耀忠等,生态资产定量遥感测量技术体系研究—生态资产定量遥感评估模型,遥感信息,2003,3:8-11
    [12] 李文华,系统服务研究是生态系统评估的核心,资源科学,2006,28(4):4
    [13] 刘纪远,岳天祥,张仁华等,系统评估的信息技术支撑资源科学, 2006,28(4):6-7
    [14] 许志晖,丁登山,南昆山国家自然保护区生态系统服务功能价值评估,经济地理,2006,26(4):677-680
    [15] 朱怀松,刘晓锰,裴欢,热红外遥感反演地表温度研究现状,干旱气象,2007,25(2):18-21
    [16] 覃志豪,M, Zhang, A, Karnieli and P, Berliner, 用陆地卫星 TM6 数据演算地表温度的单窗算法,地理学报,2001,56 (4):456-466, [17 徐希孺,陈良富,庄家礼,基于多角度热红外遥感的混合像元组分温度演化反演方法,中国科学 D 辑,2002,31(1):81-88
    [18] 刘玉洁,杨中东,MODIS 遥感信息处理原理与算法,北京:科学出版社,2001
    [19] 覃志豪,高懋芳,秦晓敏等,农业旱灾监测中的地表温度遥感反演方法—以 MODIS 数据为例[J],自然灾害学报,2005,14(4):64-71
    [20] 高志强,刘纪远,基于陆面模式和遥感技术的地表温度比较[J],地理学报,2003,58(04):494-501
    [21] 徐希孺,遥感物理[M], 北京大学出版社,2005
    [22] 赵英时等,2003,遥感应用分析原理与方法,科学出版社,
    [23] 李小文,汪骏发,王锦地,2001,多角度与热红外对地遥感,科学出版社,
    [24] 李小文,王锦地,地表非同温像元发射率的定义问题,科学通报,1999, 44(15):1612-1617,
    [25] 苏理宏,热红外辐射方向性与尺度效用研究,2000,博士学位论文:中国科学院遥感应用研究所
    [26] 徐希孺,陈良富,关于热红外多角度遥感扫描方向的问题,北京大学学报(自然科学版),2002,38(1):98-103
    [27] 徐希孺,庄家礼, 陈良富,热红外多角度遥感和反演混合像元组分温度,北京大学学报(自然科学版),2000,36(4):555-560
    [28] 李召良,F,Petitcolin,张仁华,一种从中红外和热红外数据中反演地表比辐射率的物理算法, 中国科学E辑, 2000, 3018-26
    [29] 覃志豪,W, Li,M, Zhang,A, Karnieli and P, Berliner,单窗算法的基本大气参数估计方法,国土资源遥感,2003,2(56):37-43
    [30]覃志豪, Zhang Minghua,Arnon Karnieli,用NOAA-AVHRR热通道数据演算地表温度的劈窗算法,国土资源遥感, 2001, 2(48):33-41
    [31] 毛克彪,覃志豪,刘伟,用MODIS影像和单窗算法反演环渤海地区的地表温度,空间与测绘, 2004,6:23-25
    [32] 毛克彪,覃志豪,施建成,宫鹏,针对MODIS数据的劈窗算法研究,武汉大学学报(信息科学版),2005,8:703-708
    [33] 毛克彪,覃志豪,施建成,用MODIS影像和劈窗算法反演山东半岛的地表温度,中国矿业大学学报(自然科学版),2005,1:46-50
    [34]毛克彪,针对热红外和微波数据的地表温度和土壤水分反演算法研究,博士论文,中科院遥感所,2007
    [35] 毛克彪,针对MODIS数据的地表温度反演方法研究,硕士学位论文,南京大学,2004,5
    [36] 刘闯,葛成辉,美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点和应用[J ],遥感信息,2000,(3):45~48
    [37] 毛克彪,覃志豪,王建明,武胜利,针对MODIS数据的大气水汽含量及31和32波段透过率计算,国土资源遥感,2005,1:26-30
    [38] 毛克彪,覃志豪,用MODIS影像反演环渤海地区的大气水汽含量,遥感信息,2004,4:47-49
    [39] 姚星期,温亚利,《热带雨林破坏与全球气候变化的关系研究》,林业经济,2007,5:33-36
    [40] 许中旗,王立军,刘文忠等,森林植被影响气候变化的机制,河北林果研究,2005,20(1):7-11
    [41] 李德志,臧润国,森林冠层结构与功能及其时空变化研究进展,世界林业研究,2004,17(3):12-16
    [42] 彭少麟,任海,通过森林冠层研究促进林业可持续发展—第 3 届国际冠层大会介绍,生态学报,2002,22(8):1371-1372
    [43] 杜颖,关德新,殷红,吴家兵,长白山阔叶红松林的温度效应,生态学杂志,2007,26(6):787-792
    [44] 吴家兵,关德新,代力民等,长白山阔叶红松林夏季温度特征研究,生态学杂志,2002,21(5):14-17
    [45] 郭清和,康文星,杉木人工林的温湿效应,中南林学院学报,2005,25(3):12-17
    [46] 程胜龙,城市化对兰州气温变化影响的定量分析,气象,31(6):29-34
    [47] 江东,王乃斌,杨小唤等,植被指数—地面温度特征空间的生态学内涵及其应用[J],地理科学进展,2001,20(2):146-152
    [48] 韩丽娟,王鹏新,王锦地等,植被指数—地表温度构成的特征空间研究[J],中国科学(D辑),2005,35(4)371-377
    [49] 齐述华,王长耀,牛铮,利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J],遥感学报,2003,7(5):420-427
    [50] 孙威,王鹏新,韩丽娟等,条件植被温度指数干旱监测方法的完善[J],农业工程学报,2006,22(2):22-26
    [51] 徐德应,郭泉水,阎红,气候变化对中国森林影响研究,1997,北京:中国科学技术出版社,1997:26一42
    [52] 徐文铎,中国东北主要植被类型的分布与气候的关系,植物生态学与地植物学学报,1986 10(4):254一262
    [53] 徐振邦等,长白山阔叶红松林生物生产量的研究,森林生态系统研究,1985,(5):33-46
    [54] 延晓冬,赵士洞,符涂斌,气候变化背景下小兴安岭天然林的模拟研究,,自然资源学报,1999,14(4):57一62
    [55] 卢丽萍,赵成义,基于MODIS数据不同荒漠植被指数的空间变化研究—以新疆三工河流域为例[J],干旱区地理,2005,28(3):381-385
    [56] 盛昊,李均力,杨辽,等,MODIS-NDVI时序数据分析方法研究—以塔里木河下游第七次秋季输水为例[J],干旱区地理,2007,30(2):251-256,
    [57] 张军,葛剑平,国庆喜,中国东北地区主要植被类型 NDVI变化与气候因子的关系[J],生态学报,2001,21(4):522-527,
    [58] 汪权方,李家永,基于时序NDVI数据的中国红壤丘陵区土地覆被分类研究[J],农业工程学报,2005,21(2):72-77
    [59] 王长耀,骆成凤,齐述华,等, NDVI-Ts 空间全国土地覆盖分类方法研究[J],遥感学报,2005,9(1):93-99
    [60] 陈云浩,杜培军,李晓兵,,基于卫星遥感数据的地表信息特征——NDVI-Ts 空间描述[J],武汉大学学报(信息科学版),2005,30(1):11-18
    [61] 齐述华,骆成凤,王长耀,牛 铮,气温与陆地表面温度和光谱植被指关系的研究,遥感技术与应用,2006,21:(2):130-135
    [62]齐述华,王军邦,张庆员,利用 MODIS 遥感影像获取近地层气温的方法研究,遥感学报,2005,9(5):570-575
    [63]卢士庆,陈渭民,高庆先,使用 6S 模型由 GMS5 卫星资料反演陆地大气气溶胶光学厚度, 2006,29(5):671-675
    [64] 陈新芳,安树青,陈镜明,刘玉虹,徐驰,杨海波, 森林生态系统生物物理参数遥感反演研究进展[J], 生态学杂志,2005,24(9):1074-1079
    [65] 徐文铎,何兴元,陈玮,沈阳城市森林主要树种物候对气候变暖的响应,应用生态学报,2006,17(10):1777~1781
    [66] 王伟民,地物反射光谱对MODIS近红外波段水汽反演影响的模拟分析[J],遥感学报,2005,9(1):8-15,
    [67] 孙志刚,MODIS水汽通量估算方法在华北平原农田的适应性验证,地理学报,2004,59(1): 49-55,
    [68] 梁宏,青藏高原及周边地区大气水汽资源分布和季节变化特征分析,自然资源学报,2006:526-533,
    [69] 胡秀清,张里阳,国家气象信息中心,MODIS近红外大气水汽总量反演算法,技术报告,2006年4月,第四版,
    [70] 赵茂盛等,应用遥感数据研究中国植被生态系统与气候的关系[J],地理学报,2001,56(3):287-295
    [71] 周锁锉,长江流域地气系统水份循环及其对区域气候影响的研究,博士论文1,南京气象学院,2001,
    [72]龚道溢,史培军,何学兆,北半球春季植被NDVIl对温度变化响应的区域差异,地理学报,2002,57(5):505-513
    [78] 戴永久,陆面过程模式及其与以藕合模拟研究,博士论文,北京:中国科学院大气物理研究所,1995,287,
    [79] 蒋延玲,周广胜,2001,兴安落叶松林碳平衡和全球变化影响研究,应用生态学报,12(4):663-669
    [80] 蒋有绪,1992,全球气候变化与中国森林的预测问题,林业科学,28(5):431-438
    [81] 蒋有绪,1996,世界森林生态系统结构与功能研究简述,见:蒋有绪,中国森林生态系统结构与功能规律研究一国家自然科学基金重大项目期中论文集,北京:中国林业出版社,3-15
    [82] 周广胜,张新时,1996,中国气候一植被关系初探,植物生态学报,20(2):113-119 [83 ] 周广胜,气候变化对生态脆弱地区农牧业生产力影响机制与模拟,资源科学,1999,(5)46一52
    [84] 周玉荣,于振良,赵士洞,2000,我国主要森林生态系统碳贮量和碳平衡,植物生态学报,24(5):518~522,
    [85] 吴正方,邓慧平,东北阔叶红松林全球气候变化响应研究,地理学报,1996,51(增刊):45-51
    [86] 徐德应,郭泉水,阎红,气候变化对中国森林影响研究,1997,北京:中国科学技术出版社
    [86] 徐文铎,中国东北主要植被类型的分布与气候的关系,植物生态学与地植物学学报,1986 10(4):254一262
    [87] 周广胜,张新时,高素华,白克智,延晓东,郑元润,中国植被对全球变化反应的研究,植物学报,1997,39(9):879一888
    [88] 周华坤,周兴民,赵新全,模拟增温效应对矮篙草草甸影响的初步研究,植物生态学报,2000,24:547一553
    [89] 许振柱,周广胜,陆生植物对全球变化的适应性研究进展,自然科学进展,2003,13:113-119
    [90] 白永飞,陈佐忠,锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响,植物生态学报,2000,24(6):641一647
    [91] 李杏朝,微波遥感监测土壤水分的研究初探,遥感技术与应用,1995,10(4):1-8
    [92] 李震,郭东华等,综合主动和被动微波数据监测土壤水分变化,遥感学报,2002,6(6):481-484
    [93] 刘良云,张兵,郑兰芬,利用温度和植被指数进行地物分类和土壤水分反演,红外与毫米波报,2002,21(4):269 一 273
    [94] 杨邦杰,裴志远,农作物长势的定义与遥感监测,农业工程学报,1999,15(3):214-218
    [95] 杨虎,植被覆盖地表土壤水分变化雷达探测模型和应用研究,中国科学院研究生院博士学位论文,2003
    [96] 郭广猛,关于 MODIS 卫星数据的几何校正方法,遥感信息,2002,3,26-28
    [97] 何善炜、季东、刘晓峰,EOS 卫星 Aqua 星载设备及其用途简介,气象水文装备,2005,16(6): 30-31
    [98] 黄妙芬,刘绍民,刘素红,朱启疆,地表温度和地表辐射温度差值分析,地球科学进展,2005,2(10):1075-1082
    [99] 黄妙芬,邢旭峰,刘素红,刘绍民,反演地表温度三要素获取途径研究及其应用价值,干旱区地理,2005,28(4):541-547
    [100] 王正兴、刘闯、Huete,植被指数研究进展:从 AVHRR-NDVI 到 MODIS-EVI,生态学报,2003,23(5):978·987
    [101] 唐华俊,周清波,资源遥感与数字农业一 3S 技术与农业应用,北京:中国农业科学技术出版社,2005 [102」田庆九,宫鹏,地物波谱数据库研究现状与发展趋势[J],遥感信息,2002,3,2-6
    [103] 王长越,林文腆,基于 MODIS EVI 的冬小麦产量遥感预测研究[J],农业工程学报,2005, 22(10):90-94
    [104] 王建,潘竟虎等,基于遥感卫星图像的 ATCOR2 快速大气纠正模型及应用,遥感技术应用,2002,17(4),193-197
    [105] 阿布都瓦斯提吾拉木,秦其明等,基于 S6 模型的可见光、近红外遥感数据的人气校正,北京人学学报(自然科学版),2004,40(4),611-618
    [106] 田庆久,郑兰芬,童庆禧,基于遥感影像的人气辐射校正和反射率反演方法,应用气象学报,1998,9(4),456-461
    [107] Wan Z,and Dozier J, A generalized split-window algorithm for retrieving land surface temperature measurement from space,IEEE Trans,Geosci,Remote Sens,1996,34:892-905
    [108] Wan Z, M, Li, A Physics-Based Algorithm for Retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans, Geosci, Remote Sens,,1997, 35:980-996
    [109] Wan Z, M, Zhang Y, L,Zhang Q, C,Li Z, L,Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data, Remote Sens, Environ,2002, 83:163–180
    [110] Wan Z,Zhang Y,Zhang Q,LI Z,-L,Quality assessment and validation of the MODIS global land surface temperature, Int, J, Remote Sens,2004, 25:261–274
    [111]Wan Z M, MODIS Land-Surface Temperature Algorithm Theoretical Basis Document(LST ATBD)〔R〕,Version 3,3, Contact Number:NAS 5-31370, 1999
    [112] Tucker C J,Townshend J R G, African land cover classification using satellitedata[ J ], Science, 1985,227 (2):369-375
    [113] Townshend J R G, Global data sets for land applications from the advanced very high resolution radiometer:an introduction [ J ], Remote Sensing, 1994, 15(17);3319-3332
    [114] Wang Quan fang, Tenhunen, John , Dinh ,et , al , Similarities in ground-and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland[J ] , Remote Sensing of Environment ,2004 ,93(1):225-237
    [115] Hanneman A, Construction of a lightweight canopy wailkway in a Chocócloud forest, Ecuador, Selbyana,2000, 21(1,2):156-164
    [116] Krueger A P, The biological effect s of air ions[J ] , Biometeorology, 1985, 29(3):205
    [117] Ryushi T, Kita I, Saurai T, et al, The effect of exposure to negative air ions on t he recovery of physiological responses after moder2 ate endurance exercise [J], Int J Biometeorology, 1998, 41 :132 - 136
    [118] Krueger A P, Reed E J, Biological impact of small air ions [J], Science, 1976, 193 :1209 - 1213
    [119] Le J,Shafiqul I, A methodology for estimation of surfaceevaporaton over large areas using remote sensing observa-tions[J], Geopgysical Research Letters,1999,26(17):2773-2776
    [120] Le J,Shafiqul I, Estimation of suface evaporation mapover southern Great Plain using remote sensing data[J],Water Resources Research,2001,37(2):329-340
    [121] Carlson T N,Gillies R R,Perry E M, A method to make use of thermal infrared temperature and NDVI measure-ments to infer surface soil water content and fraction vegetation cover[J], Remote Sensing Review,1994,9:161-173
    [122] Sandholt I, Rasmussen K, Andersen J, A Simple Inter-pretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status [J], Remote Sens Environ,2002,79(2):2l3-224
    [123] Mao K,Qin Z,Shi J,Gong P,A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from MODIS Data, Int, J, Remote Sens,2005,26:3181-3204
    [124] Becker F,and Li Z, L,Towards a local split window method over land surface, Int, J, Remote Sens,1990, 3:369-393
    [125] Vidal A, Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data, Int, J, Remote Sens,1991, 12:2449-2460
    [126] Sobrino J, A,Coll C,and Caselles V,Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5, Remote Sens, Environ,1991, 38:19-34
    [127] Kerr Y, H, Lagouarde J, P,and Imbernon J,Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm, Remote Sens, Environ,1992, 41:197-209
    [128] Harris A, R, and Mason I, M,An extension to the split-window technique giving improved atmospheric correction and total water vapour, Int, J, Remote Sens,1992, 13:881-892
    [129] Prata A, J,Land surface temperature derived from the Advanced Very High Resolution Radiometer and the Along-Track Scanning Radiometer 1, Theory, J, Geophys, Res,1993, 98:16689-16702,
    [130] Coll C,Caselles V,Sobrino A,and Valor E,On the atmospheric dependence of the split-window equation for land surface temperature, Int, J, Remote Sens,1994, 15:105-122
    [131] Kealy P, S, and Hook S,Separating temperature and emissivity in thermal infrared multispectral scanner data:Implication for recovering land surface temperatures, IEEE Trans, Geosci, Remote Sens,1993, 31:1155–1164
    [132] Schmugge T,Hook S,J,Coll C,Recovering surface temperature and emissivity from thermal infrared multispectral data, Remote Sens, Environ,1998, 65(2):121-131
    [133] Schmugge T,French A,Ritchie J,C,Rango A,Pelgrum H,Temperature and emissivity separation from multispectral thermal infrared observations, Remote Sens, Environ,2002, 79(2-3):189-198
    [134] Li Z, L, and Becker F,Feasibility of land surface temperature and emissivity determination from AVHRR data, Remote Sens, Environ,1993, 43:67-85
    [135] Gillespie A, R,Rokugawa S,Matsunaga, A Temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans, Geosci, Remote Sens,1998, 36:1113-1126
    [136] Liang Shunlin, An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery, IEEE Trans, Geosci, Remote Sens,2001, 39:264-274
    [137] Wan Z, M,and Li Z, L,A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans, Geosci, Remote Sens,1997, 35(4):980-996,
    [138] Susskind J,Rosenfield J,Reuter D,and Cahine M,T,Remote sensing of weather and climate parameters from HIRS2/MUS on Tiros-N, J, Geophys, Res,1984, 89, D3:4677-4697
    [139] McFarland M, J,Miller R, L,and Neale C, M, U,Land surface temperature derived from the SSM/I passive microwave brightness temperatures, IEEE Trans, Geosci, Remote Sens,1990, 28(5):839–845
    [140] Aires F,Prigent C,Rossow W,and Rothstein M,A new neural network approach including first guess for retrieval of atmospheric watervapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwaves observations, J, Geophys, Res,2001, 106, D14:14887- 14907
    [141] Njoku E, G,,Jackson T, J,Venkataraman Lakshmi, Chan T,K,and Nghiem S, V,Soil moisture retrieval from AMSR-E, IEEE Trans, Geosci, Remote Sens,2003, 41(2):215–229
    [142] Pulliainen J, T,Grandell J,and Hallikainen M, T,Retrieval of surface temperature in Boreal Forest Zone from SSM/I data, IEEE Trans, Geosci, Remote Sens,1997, 35(5):1188-1200
    [143] Morland J, C,David, I, F Grimes, and T, J, Hewison, Satellite observations of the microwave emissivity of a semi-arid land surface, Remote Sens, Environ,2001, 77:149-164
    [144] Dash P,G?ttsche F, M,Olesen F, S,and Fischer H,Land surface temperature and emissivity estimation from passive sensor data :theory and practise-current trends, Int, J, Remote Sens,2002, 23:2563-2594
    [145] Fily M,Royer A, , Go?a, and Prigent C,A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness tempeatures in sub-arctic areas, Remote Sens, Environ,2003, 41:328-338
    [146] Prigent C, , Aires F,Rossow W, B,Land surface skin temperature from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures, J, Geophys, Res,2003, 108, D10:4310, doi:10,1029/2002JD002301
    [147] Mao K, B,Shi J, C,Li Z, L,Qin Z, H,and Jia Y, Y,Land Surface Temperature and Emissivity Retrieved From the AMSR Passive Microwave Data, IGARSS05, 25-29 July COEX, Seoul, Korea,2005
    [148] Wang J, R,O’Neill P, E,Jackson T, J,and Engman E, T, Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness, IEEE Trans, Geosci, Remote Sens,1983, 21:44– 51
    [149] Jackson T, J,Le Vine D, M,Hsu A, Y,Oldak A,Starks P, J,Swift C, T,Isham J, D,and Haken M, Soil moisture mapping at regional scales using microwave radiometry:The southern great plains hydrology experiment, IEEE Trans, Geosci, Remote Sens,1999, 37(5):2136–2151
    [150] Schmugge T, J, O'Neill P, E, Wang J, R,Passive Microwave Soil Moisture Research, IEEE Trans, Geosci, Remote Sens,1986, GE-24(1):12-20
    [151] Ahmed, N, U, Estimating soil moisture from 6,6 GHz dual polarization, and/or satellite derived vegetation index, Int, J, Remote Sens,1995, 16(4):687– 708
    [152] Paloscia S,Giovanni Macelloni, Emanuele Santi, and Toshio Koike, A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites, IEEE Trans, Geosci, Remote Sens,2001, 39:1655–1661
    [153] Paloscia S,Pampaloni P,Microwave polarization index for monitoring vegetation growth, IEEE Trans, Geosci, Remote Sens,1988,26:617-621
    [154] Paloscia S,Pampaloni P,Microwave vegetation indexes for detecting biomass and water conditions of agriculture crops, Remote Sens, Environ, 1992,1:15-26
    [155] Jackson T, J,Schmugge T,and Wang J,Passive microwave remote sensing of soil moisture under vegetation canopies, water resources Res,1982, 18:1137-1142 [95] CmailloP,T, and Schmugge T, S,Estimating soil moisture storage in the root zone from surface measurements, Soil Science, 1983, 135:245
    [156] Njoku E, G,and Li L,Retrieval of land surface parameters using passive microwave measurements at 6 –18 GHz, IEEE Trans, Geosci, Remote Sens,1999, 37(1):79–93
    [157] Wigneron J,-P, Calvet J,-C,T, Pellarin, A,A, Van de Griend, M, Berger, P, Ferrazzoli, Retrieving near-surface soil moisture from microwave radiometric observations:current status and future plans, Remote Sens, Environ, 2003, 85:489–506,
    [158] Liou, Y, -A,Tzeng, Y, C,Chen, K, S, A neural-network approach to radiometric sensing of land-surface parameters, IEEE Trans, Geosci, Remote Sens,1999, 37:2718– 2724
    [159] Wang J, R,Shiue J, C,Schmugge T, J,and Engman E, T,The L band PBMR measurements of surface soil moisture in FIFE, IEEE Trans, Geosci, Remote Sens,1990, GE-28:906– 913
    [160] Kustas W, P,Goodrich D, C,Moran M, S, et al,An interdisciplinary study of the energy and water fluxes in the atmosphere-biosphere system over semiarid rangelands:description and some preliminary results, Bull Am Meteorol Soc, 1991, 72:1683–1705
    [161] Kustas W, P,Goodrich D,C,Preface to the special section on MONSOON ‘90, Water Resources Research, 1994, 30:1211– 1225
    [162] Jackson T, J,Le Vine D, M,Swift C, T,Schmugge T, J,and Schiebe F, R,Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita ’92, Remote Sens, Environ,1995, 53:27– 37
    [163] Goutorbe J-P,et al,HAPEX-Sahel:A large scale observational study of land atmosphere interactions in the semi-arid tropics, Analysis Geophysical, 1993, 12:53–64
    [164] Prince S,D,Y,H, Kerr, J,P, Goutorbe, T, Lebel, A, Tinga, J, Brouwer, A,J, Dolman, E,T, Engman, J,H,C, Gash, M, Hoepffner, P, Kabat, B, Molteny, F, Said, P, Sellers, and J, Wallace, Geographical Biological and Remote Sensing aspects of the Hydrologic Atmosphere Pilot Experiment in the Sahel (HAPEX-Sahel), Remote Sens, Environ,1995, 51,215-234
    [165] Le J,Shafiqul I. A methodology for estimation of surfaceevaporaton over large areas using remote sensing observa-tions[J], Geopgysical Research Letters,1999,26(17):2773-2776
    [166] Le J,Shafiqul I. Estimation of suface evaporation mapover southern Great Plain using remote sensing data[J],Water Resources Research,2001,37(2):329-340
    [167] H.wakabayashi, K.Arai, a method of speckle noise reduction for SAR data, INT.J.REMOTE SE3NSING, 1996, 17(10):1837-1849
    [168] Hua Xie, Leland E.Pierce, Fawwaz T.Ulaby, SAR speckle reduction using wavelet denoising and markov random field modeling, IEEE Trans.Geosci.and Remote Sensing, 2002,
    [169] Faure T, Isaka H., Guillemet B., Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds feasibility study, Remote Sens. Environ., 2001, 77: 123-138
    [170] Tedesco M., Pulliainen J, Takala M., Hallikainen M., Pampaloni P., Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data, Remote Sens. Environ., 2004, 90: 76-85
    [171] Blackwell W. J., A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high specrtral resolution sounding data, IEEE Trans. Geosci. Remote Sens., 2005, 43(11): 2535-2546
    [172] Tang L., Chen Z., Oh S., R. J. Marks II, and A. T. C. Chang, Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model, IEEE Trans. Geosci. Remote Sens., 1992, 30(5): 1015-1024
    [173] Goward S N,Huemmrich K F.Vegetation canopy PAR absorptanee and the normalized diference vegetation index:An assessment using the SAIL model[J].Remote Sensing of Enviroment, 1992,39:l19-140.
    [174] CHEN Li-Jun, LIU Gao-Huan , FENG Xian- Feng.Estimation of Net Primary Productivity of TerrestrialVegetation in China by Remote Sensing, Acta Botanica Sinica, 2001 , 43 (11) :1191 - 1198
    [175] Hatfield J L. Canopy Temperatures:The Usefulness and Reliability of Remote Measurements [J],Agron J, 1979, 71:889-892
    [176] Smith G A, Ranson K L, Nguyen D,et al. Thermal Vegetation Canopy Model Studies[J], Remote Sensing of Environment, 1985, 11:2113-2120
    [177] Carlson T N, Gillies R R, Perry E M. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Soil Water Content and Fractional Vegetation Cover[J], Remote Sens Rev, 1994, 52:45-59
    [178] Prihodko L, Goward S N. Estimation of Air Temperature from Remotely Sensed Surface Observations[J], Remote Sens. Environ, 1997, 60(3):335-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700