基于光纤传感技术的高压输电线路覆冰状态监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“西电东送”工程中长距离的高压架空输电线路大多需要穿越高海拔、多积雪、重覆冰的地区。这些地区的地形地况复杂,给线路巡视带来了极大困难,耗费大量的人力物力进行检测,也难以及时准确地获得监测数据。采用可靠、有效的方法对长距离高压架空输电线路进行监测,是实现电力系统安全、稳定运行的重要措施。
     近年来,国内外高校、研究机构越来越重视输电线路状态监测设备的研发。现有的监测装置多采用电子式传感器,存在使用寿命短、恶劣环境下性能劣化,需要采取额外的取能和通讯装置的问题;电子式传感器易受高压输电线路强电磁场干扰,长期运行存在诸多不稳定因素。因此,急需研究新型的监测的方法和装置,满足电力系统对于输电线路实时状态监测的需求。
     随着光纤传感技术的发展,测量性能的提高,光纤传感器相对传统电子式传感器的优势日益显现。电力系统中光纤通信的广泛使用,有利于光纤传感技术应用于电力设备的状态监测。为此,本论文针对光纤传感技术应用于输电线路状态监测以及其应用进行了科学性的探索,依托中国科学院上海光机所与华南理工大学光通信材料研究所,研制了适用于输电线路状态监测的光纤传感设备,主要研究工作和成果如下:
     1.研究了光纤光栅传感器测量输电线路荷载的方法。分析了输电线路荷载变化时,绝缘子金具受力产生的微应变;研制了应用于输电线路荷载的光纤光栅传感器及其配套金具;研究了传感器金具与光纤光栅传感器的应力传感系数;采取温度补偿的措施以消除温度变化对光纤光栅传感器测量的影响;并进行了应力的校准试验,拟合出测量精度与测量量程之间的关系。
     2.试验研究了光纤光栅传感器测量高压架空输电线路荷载。在南方电网特高压工程技术国家工程试验室的±800kV直流输电试验线段上进行了光纤光栅传感器测量输电线路模拟覆冰真型试验;采用小波分析对试验数据进行处理,确定输电线路荷载变化的时间点;提出了可变时间窗口算法对输电线路荷载的变化进行分析和预警;验证了光纤光栅传感器测量输电线路荷载变化的可行性。
     3.提出了高压架空输电线路状态监测分布式布里渊光纤传感技术。研制了适用于高压架空输电线路状态监测的分布式布里渊光纤传感装置;采用CUDA(Compute UnifiedDevice Architecture),通过GPU对分布式布里渊光纤传感装置采集得到的高频数据进行FFT频谱分析,大大提高了计算速度,减小了测量的响应时间;理论研究了分布式布里渊光纤传感装置测量输电线路温度和应力的可行性。
     4.试验研究了分布式布里渊光纤传感装置测量光纤复合相线(OPPC)、光纤复合地线(OPGW)温度和应力。在人工气候室内,模拟不同温度以及覆冰条件下,采用分布式布里渊光纤传感装置测量OPPC/OPGW温度;模拟OPPC/OPGW受不同外力时,采用分布式布里渊光纤传感装置测量OPPC/OPGW所受应力的变化。
     5.研究了输电线路光纤传感技术的应用。建立了输电线路舞动的三维模型,模拟了线路舞动时各个位置的力学关系;提出了采用分布式布里渊光纤传感器测量输电线路分布应力变化,通过光纤光栅传感器测量和记录输电线路荷载变化,实现舞动的测量;提出了采用分布式布里渊光纤传感器测量输电线路分布温度,实现弧垂监测、覆冰预警以及动态增容。
In the West-East electricity transmission project, most of the long-distance overheadtransmission lines need to cross high altitude, snow cover, and ice coating areas. These areasare generally coupled with complex topographical conditions, which bring great difficulties totransmission line patrol and maintenance. Even a lot of manpower and material resourceswere costed to detect the overhead lines, it is difficult to obtain and feedback accuratemonitoring data in time. Hence, reliable and effective method for on-line monitoring of thestatus of the long-distance transmission lines is an important measure for power systemsecurity, stability, reliability and other operational targets.
     In recent years, domestic and all over the world universities, research institutions, andcompanies have paid more and more attention to research and development the monitoring ofoverhead transmission line. Electronic sensors are used in most of the existing transmissionline monitoring devices. However, electronic sensor will bring a lot of problem, such as shortlife, deterioration of performance in harsh environments. In addition, the electronic sensor issusceptible to strong electromagnetic interference of high-voltage transmission lines, andadditional energy supply and communication devices were needed to install, which may causemany factors of instability to affect the long-term reliability of existing transmission linemonitoring device. Therefore, there is an urgent need to study the new transmission linecondition monitoring method and device to meet the requirments of the real-time monitoringof the transmission line.
     With the development of optical fiber sensing technology, the measuring performance ofoptical fiber sensor is improved rapidly. Compared with the traditional electronic sensors,optical fiber sensor’s advantage is increasingly emerging. Optical fiber communication hasbeen widely used in power system, which is very convenient for the optical fiber sensingtechnology used in the on-line monitoring of transimission line. Therefore, this paper makescientific exploration of optical fiber sensing technology and its application used intransmission lines online monitoring, the research work and achievements are as follows:
     1. A fiber grating sensor measure the overhead transmission line load was researched.The overhead transmission line load change and the insulator fittings micro-strain generatedby the load were analysed; The FBG (fiber Bragg grating) sensors and its ancillary fittingsused in overhead transmission line load were developed; The transfer coefficient between thesensor fittings and FBG stress sensors was researched; Temperature compensation was taken to eliminate the influence of temperature change in the measurement of the FBG sensors; andthe stress calibration experiment was carried on, the relationship between the measurementaccuracy and measurement range was fitted.
     2. Experimental Study of the FBG sensors measure the overhead transmission line load.The prototype experiment of FBG sensors measuring transmission line simulation ice coatingwas carried on at the±800kV DC transmission test line in the Southern Power Grid UHVEngineering Technology National Engineering Laboratory; wavelet was used to analyse theexperimental data to determine the time point of the transmission line load changes; variabletime window difference algorithm was presented to analyse and early warning the loadchanges of the transmission line; the feasibility of fiber grating sensors measure thetransmission line load change was verified.
     3. The online monitoring of the distributed Brillouin optical fiber sensing technologyused in overhead transmission lines was presented. Distributed Brillouin optical fiber sensingsystem for the online monitoring of the transmission line was developed; GPU was used toaccelerate the FFT spectrum analysis of the Brillouin distributed optical fiber sensing systemthough CUDA (Compute Unified Device Architecture), which greatly improved thecomputation speed and response time of the measurement; Theoretical discuss the feasibilityof the distributed Brillouin optical fiber sensing system measuring the transmission linetemperature and stress.
     4. Experimental research of distributed Brillouin optical fiber sensing system measuredtemperature and stress of OPPC (optical fiber composite phase line) and OPGW (fibercomposite ground wire). In in artificial climate room, different temperature and icingconditions were simulated, the distributed Brillouin optical fiber sensing device was used tomeasured OPPC/OPGW temperature; OPPC with different external force was simulated, thedistributed Brillouin optical fiber sensing device was used to measure the stress change ofOPPC/OPGW.
     5. The application of optical fiber sensing technology for transmission line was discussed.Established a3D model of conductor galloping, simulate the mechanical relationship ofvarious locations when the conductor galloping. Theoretical Study on stress distributionmeasurment of conductor galloping, which was monitored by overhead transmission linedistributed Brillouin fiber sensor; FBG sensors measure and record the overhead transmissionline load changes wrere used to estimate the frequency and amplitude of conductor galloping.The sag, the icing warning, dynamic capacity increase was proposed by using overheadtransmission line distributed Brillouin fiber sensor temperature distribution measurement.
引文
[1]周小谦.我国“西电东送”的发展历史、规划和实施[J].电网技术,2003,27(5):1-5
    [2]陈海波,王成,李俊峰,王常飞,徐国庆.特高压输电线路状态监测技术的应用[J].电网技术,2009,33(10):55-58
    [3]黄新波,张国威.输电线路在线监测技术现状分析[J].广东电力,2009,22(1):13-20
    [4]王晓希.特高压输电线路状态监测技术的应用[J].电网技术,2007,31(22):7-11
    [5]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219
    [6]胡毅.输电线路大范围冰害事故分析及对策[J].高电压技术,2005,31(04):4-15
    [7]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22
    [8] Masoud Farzaneh.黄新波等译.电网的大气覆冰[M].中国电力出版社,2010
    [9]李再华,白晓民,周子冠,等.电网覆冰防治方法和研究进展[J].电网技术,2008,32(4):7-14
    [10]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社,2010
    [11]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001
    [12]苑吉河,蒋兴良,易辉,等.输电线路导线覆冰的国内外研究现状[J].高电压技术,2004,30(1):6-9
    [13]黄新波,刘家兵,蔡伟,等.电力输电线路覆冰雪的国内外研究现状[J].电网技术,2008,32(4):23-28
    [14]黄新波,孙钦东,程荣贵,等.导线覆冰的力学分析与覆冰在线监测系统[J].电力系统自动化,2007,31(14):98-101
    [15] M. Chen-ping and C. Yang-chun. A New Ice Covering Model[C]. High VoltageEngineering and Application,2008. ICHVE2008. International Conference on,2008:140-143
    [16] H. Xinbo, S. Qindong, and D. Jianguo. An On-line Monitoring System ofTransmission Line Conductor De-icing [C]. Industrial Electronics and Applications,2008. ICIEA2008.3rd IEEE Conference on,2008:891-896
    [17]曹敏,罗学礼,石少勇,等.基于覆冰增长速度的覆冰在线监测系统动态预警方案研究与探讨[J].南方电网技术,2009,3(增刊):187-189
    [18]吕玉祥,占子飞,马维青,等.输电线路覆冰在线监测系统的设计和应用[J].电网技术,2010,34(10):196-200
    [19]邵瑰玮,胡毅,王力农,等.输电线路覆冰监测系统应用现状及效果[J].电力设备,2008,9(6):13-15
    [20]孟毅,陈继东,胡丹晖.输电线路覆冰在线监测系统的运行[J].中国电力,2011,44(5):38-40
    [21]黄新波,孙钦东,丁建国,等.基于GSM/SMS的输电线路覆冰在线监测系统[J].电力自动化设备,2008,28(5):72-76
    [22]邢毅,曾奕,盛戈皞,等.基于力学测量的输电线路覆冰监测系统[J].电力系统自动化,2008,32(23):81-85
    [23]徐青松,季洪献,王孟龙.输电线路弧垂的实时监测[J].高电压技术,2007,33(7):206-209
    [24]徐青松,侯炜,王孟龙.输电线路覆冰实时监测方案探讨[J].浙江电力,2007,45(3):9-12
    [25]王小朋,胡建林,孙才新,杜林.应用图像边缘检测方法在线监测输电线路覆冰厚度研究[J].高压电器,2009,45(6):69-73
    [26]张成,盛戈嗥,江秀臣,曾奕,朱诚实.基于图像处理技术的绝缘子覆冰自动识别[J].华东电力,2009,37(1):146-149
    [27]冯玲,黄新波,朱永灿.基于图像处理的输电线路覆冰厚度测量[J].电力自动化设备,2011,31(10):76-80
    [28]李立浧,阳林,郝艳捧.架空输电线路覆冰在线监测技术评述[J].电网技术,2012,36(2):237-243
    [29]赵勇.光纤传感器原理与应用技术[M].清华大学出版社,2007
    [30]王延恒,贺家礼,徐刚.光纤通信技术及其在电力系统中的应用[M].中国电力出版社,2006
    [31]李杰,孙德栋. OPGW应用中雷击问题的探讨[J].电力系统通信,2005,26(154):1-8
    [32] DL/T832-2003.光纤复合架空地线[S].2003
    [33]邹林森.光纤与光缆[M].武汉:武汉工业大学出版社,2000
    [34] IEEE Standard for Testing and Performance for Optical Ground Wire (OPGW) forUse on Electric Utility Power Lines–Redline[S].1138-2009
    [35]曹佩荣,孟涛,宋爱成,曹锦.对我国特高压电网中OPGW应用问题的探讨[J].电力建设,2007,28(6):1-9
    [36] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C.G. Askins, M. A.Putnam, and E. J. Friebele. Fiber grating sensors [J]. Journal of LightwaveTechnology,1997,15(8):1442–1463
    [37] Ogawa Y, Iwasaki J, Nakamura K. A Multiplexing Load Monitoring System ofPower Transmission Lines Using Fiber Bragg Grating[C]. Proc. of the Optical FiberSensors Conf.(OFS212), Williamsburg, USA: Optical Society of American,1997:468-471
    [38] Bjerkan L. Application Of Fiber-Optic Bragg Grating Sensors in MonitoringEnvironmental Loads of Overhead Power Transmission Lines [J]. Applied Optics,2000,39(4):554-560
    [39] L. Bjerkan. Application of Fiber-Optic Bragg Grating Sensors in Monitoring OfEnvironmental Loads of Overhead Transmission Lines [J]. Applied Optics,2000,(39),554-560
    [40] Tarun K. Gangopadhyay, Mukul C. Paul, Leif Bjerkan. Fiber-optic sensor forreal-time monitoring of temperature on high voltage (400KV) power transmissionlines [C].20th International Conference on Optical Fiber Sensors, Kolkata, India,2009
    [41]高玉珍,郝旭东.光纤测温系统在OPPC中的应用[J].电信科学,201012A:162-165
    [42]马国明,李成榕,全江涛,等,输电线路覆冰监测光纤光栅拉力倾角传感器的研制[J].中国电机工程学报,2010.30(34):132-138
    [43]马国明,全江涛,李成榕,等,输电线路覆冰荷载监测川光纤光栅称垂传感器的设计与试验[J].高电压技术,2010,36(7):121-126
    [44] Guo-ming Ma, Cheng-rong Li, Jiang-tao Quan, Jian Jiang, Yang-chun Cheng. AFiber Bragg Grating Tension and Tilt Sensor Applied to Icing Monitoring onOverhead Transmission Lines [J]. IEEE Transactions on Power Delivery,2011,26(4):2163-2170
    [45]天津爱天光电子科技有限公司.改进的光纤绝缘子[P].中国:CN2914115,2007.06.20
    [46]蔡炜,罗兵,邓鹤鸣,范欣来,熊鹏.光纤布拉格光栅复合绝缘子的应力分布分析[J].高电压技术,2011,37(5):1106-1114
    [47] Krishnan R S. Fine structure of the Rayleigh line in amorphous substances, Nature,1950,165,933-934
    [48] Farahani. M.A., Gogolla. T.. Spontaneous Raman scattering in optical fibers withmodulated probe light for distributed temperature Raman remote sensing [J]. Journalof Lightwave Technology,1999,17(8):1379-1391
    [49]张在宣,金尚忠,王剑锋,等.分布式光纤拉曼光子温度传感器的研究进展[J].中国激光,2010,37(11):2749-2761
    [50] Alahbabi M. N., Cho Y. T., Newson T. P..100Km Distributed Temperature SensorBased on Coherent Detection of Spontaneous Brillouin Backscatter [J]. Meas. Sci.Technol.,2004,15(8):1544-1547
    [51]耿军平,许家栋,韦高,郭陈江,李焱.基于布里渊散射的分布式光纤传感器的进展[J].测试技术学报,2002,16(2):87-91
    [52]张耀,谭跃虎,陶西贵,王泓,梁源.光纤传感器FBG和BOTDR应用于结构监测的若干比较研究[J].防灾减灾工程学报,2006,24(4):465-470
    [53] Maughan S M, Kee H H, Newson T P. Simultaneous Distributed Fiber TemperatureAnd Strain Sensor Using Micro Wave Coherent Detection of Spontaneous BrillouinBackscatter [J]. Meas Sci Technol,2001(12):834-842
    [54] Mark S. Kemper, Christian Philippczyk, Robert J. Rayzak, Volker Waschk. A NewMethod for the Detection and Quantification of Residual Volatiles in XLPEElectrical Cable Using Large-Spot Raman Spectroscopy [J]. IEEE Transactions onPower Delivery,2011,26(1):3-10
    [55]彭超,赵健康,苗付贵.分布式光纤测温技术在线监测电缆温度[J].高电压技术,2006,32(8):43-45
    [56]张吉生,徐涛.光纤布里渊传感系统在高压电缆检测中的应用[J].电力系统通信,2008,29(194):55-58
    [57] Abhisek Ukil, Hubert Braendle, Peter Krippner. Distributed Temperature Sensing:Review of Technology and Applications [J]. IEEE Sensors Journal,2012,12(5),885-892
    [58]李成宾,杨志,黄春林.光纤布里渊传感在输电线路覆冰监测中的应用[J].电力系统通信,2009,30(200):37-41
    [59]张伟刚,梁龙彬,赵启大,开桂云,刘志国,董孝义,王述祖,张大煦,李欣,叶锦亭.光纤光栅与电阻应变片应变测量的对比分析[J].传感技术学报,2001,3:200-205
    [60] A.D.Kersey, T.A.Berkoff, W.W.Morey, Multiplexed fiber Bragg grating strain-sensorsystem with a fiber Fabry-Perot wavelength filter, Opt. Lett.,1993,18(16):1370-1372
    [61] RS Weis, AD Kersey, T.A.Berkoff, A four-element fiber grating sensor array withphase-sensitive detection, IEEE Photo. Technol. Lett.,1994,6(12):1469-1472
    [62] H. Y. Fu, H. L. Liu, W. H. Chung, H. Y. Tam. A Novel Fiber Bragg Grating SensorConfiguration for Long-Distance Quasi-Distributed Measurement [J]. IEEE SensorsJournal,2008,8(9):1598-1602
    [63] IEC61284-1997Overhead lines-Requirements and tests for fitting [S].2009
    [64]梁磊,王艳妮,刘德力.粘贴式光纤光栅应变传感器的应变传递分析[J].武汉理工大学学报,2008,30(10):144-146
    [65]薛泽利,吕国辉.光纤光栅应变传感器表面粘贴工艺研究[J].哈尔滨师范大学自然科学报,2011,27(1):29-32
    [66] K. Abe, K. Yoshida, O. Daneshvar, and J. J. Carr. Photo-Elastic Correction Factor forFiber Strain Measurements in a Cable under Tensile Load [J]. Journal of LightwaveTechnology,1995,13(2):109-114
    [67]鲍吉龙,陈莹,赵洪霞.嵌入式光纤光栅传感器应力传递规律研究[J].传感技术学报,2005,18(4):871-875
    [68]赵启林,杨洪,陈浩森.光纤光栅应变传感器的温度补偿[J].东南大学学报(自然科学版),2007,37(2):310-314
    [69]万里冰,王殿富.基于参考光栅的光纤光栅应变传感器温度补偿[J].光电子激光,2006,17(1):50-53
    [70]刘云启,郭转运,张颖,刘志国,董孝义,谭华耀.单个光纤光栅压力和温度的同时测量[J].中国激光,2000,27(11):1002-1006
    [71] Kersey A, Araujo F. Simultaneous Measurement of Strain and Temperature UsingInterferometrically Interrogated Fiber Bragg Grating Sensors [J]. OpticalEngineering,2000,39(8):2-26
    [72]邵天晓.架空送电线路的电线力学计算[M].中国电力出版社,2003
    [73]阳林,郝艳捧,黎卫国等,等.输电线路在线监测覆冰力学计算模型[J].中国电机工程学报,2010,30(19):100-105
    [74]王国利,陆国庆,李锐海等.特高压工程技术(昆明)国家工程试验室的建设[J].高电压技术,2009,35(7):1553-1558
    [75]张小力,张芳杰.云广±800kV直流输电重冰区导线选型[J].高电压技术,2006,32(12):178-182
    [76]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006
    [77]潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242
    [78] XI Guang-yong, YUE Jian-ping, ZHANG Kun-jun, MA Wen. Monitoring DataProcessing of Distributed Optical Fiber Temperature Sensor Based onMulti-wavelet[C]. Shanghai:2008International Workshop on Education Technologyand Training&2008International Workshop on Geoscience and Remote Sensing,2008
    [79] Jihong Geng, Sean Staines, Mike Blake, Shibin Jiang. Distributed fiber temperatureand strain sensor using coherent radio-frequency detection of spontaneous Brillouinscattering [J]. Applied Optics,2008,46(23):5928-5932
    [80] Tkach R. W., Chraplyvy A. R., Derosier R. M., Spontaneous Brillouin scattering forsingle-mode optical-fibre characterization. Electron. Lett.,1986,22(19):1011-1013
    [81] Shimizu K., Horiguchi T., Koyamada Y., et al., Coherent self-heterodyne BrillouinOTDR for measurement of Brillouin frequency shift distribution in optical fibers.Journal of Lightwave Technology,1994,12(5):730-736
    [82] Toshio Kurashima, Tsuneo Horiguchi, Hisashi Izumita, et al., Brillouin Optical-FiberTime Domain Reflectometry, IEICE Trans. Commun.,1993, E76-B(4):382-390
    [83] Horiguchi T., Tateda M., BOTDA-nondestructive measurement of single-modeoptical fiber attenuation characteristics using Brillouin interaction: theory. Journal ofLightwave Technology,1989,7(8):1170-1176
    [84] Garus D., Gogolla T., Krebber K. et al. Brillouin optical-fiber frequency-domainanalysis for distributed temperature and strain measurements. Journal of LightwaveTechnology,1997,15(4):654-662
    [85] Hotate K., Tanaka M., Distributed fiber Brillouin strain sensing with1cm spatialresolution by correlation-based continuous-wave technique. IEEE Photon. Technol.Lett.,2002,14(2):179-181
    [86]李波,赵华成,张敏芳. CUDA高性能计算并行编程[J].微型电脑应用,2009,25(9):55-64
    [87]邓力,陈晓翔,林嘉宇.基于GPU的CUDA应用开发环境构架[J].微处理机,2013,(1):1-3
    [88]赵丽丽,张盛兵,张萌,姚涛.基于CUDA的高速FFT计算[J].计算机应用研究,2011,28(4):1556-1559
    [89]商威. OPGW结构性能比较[J].电力系统通信,1998,2:15-17
    [90]汪立峰,胡维维.输电线路OPGW的结构特点及设计选择[J].浙江电力,2000,4:27-30
    [91]郭勇.温度对OPGW中的光纤余长的影响[J].电力系统通信,2003,5:27-29
    [92]安平.光缆的余长设计与温度特性分析[J].科技创业,2006,5:195-196
    [93]滕玲. OPGW光缆覆冰性能研究[J].电力系统通信,2010,31(207):8-12
    [94]陈锡浩,黄俊华,张建明,季忠,周锋.对遭受冰灾过载OPGW的分析和建议[J].电力系统通信,2008,29(191):8-13
    [95] A. Munoz Aguiar, M. J. Soteldo Pérez. Experience in OPGW Cables Selection forOverhead Transmission Live Lines[C]. Caracas: Transmission&DistributionConference and Exposition: Latin America,2006. TDC'06. IEEE/PES,2006
    [96] Krzysztof Borzycki. Influence of temperature and aging on polarization modedispersion of tight-buffered optical fibers and cables [J]. Journal ofTelecommunications and Information Technology,2005,3:96-104
    [97]刘永莉,孙红月,尚岳全,于洋.基于BOTDR的传感光纤固定方式研究[J].传感器技术学报,2010,23(9),1353-1358
    [98] L.L. Grigsby. The Electric Power Engineering Handbook [M]. CRC Press,2001
    [99]李博之.高压输电线路架线施工计算原理[M].北京:中国电力出版社,2002:13-21
    [100]杨风利,杨靖波,付东杰,李清华.输电线路导线舞动荷载分析[J].中国电机工程学报,2011,31(16):102-107
    [101]雷川丽,段炜佳,侯镭,王黎明,关志成.架空线舞动的计算机仿真[J].高电压技术,2007,33(10):178-182
    [102]孟遂民,康渭铧,杨唠,徐云鹏.基于MATLAB的导线舞动仿真正交试验设计[J].南方电网技术,2011,5(5):65-68
    [103]朱宽军,刘超群,任西春.输电线路舞动时导线动态张力分析[J].中国电力,2005,38(10):40-44.
    [104] A. T. EDWARDS, A. MADEYSKI. Progress Report on the Investigation ofGalloping of Transmission Line Conductors [J]. Transactions of the AIEE,1956,75(3):666-686
    [105]张永德,汪洋涛,王沫楠,姜金刚.基于ANSYS与ADAMS的柔性体联合仿真[J].高电压技术,2008,20(17):4501-4504
    [106]喻涛,李文蔚. ADAMS约束问题讨论[J].计算机应用技术,2007,12(34):50-51
    [107]蒲明辉,吴江.基于ADAMS的链传动多体动力学模型研究[J].机械设计与研究,2008,24(2):57-59
    [108] Jianwei Wang, Jean-Louis Lilien. Overhead Electrical Transmission Line Galloping aFull Multi-Span3-DOF Model some Alications and Design Recommendations [J].IEEE Transactions on Power Delivery,1998,13(13):909-916
    [109] Wernich de Villiers, Johannes Hendrik Cloete, L. Martin Wedepohl, Arthur Burger.Real-Time Sag Monitoring System for High-Voltage Overhead Transmission LinesBased on Power-Line Carrier Signal Behavior [J]. IEEE Transactions on PowerDelivery,2008,23(1):389-395
    [110] Robert G. Olsen, Kenneth S. Edwards. A New Method for Real-Time Monitoring ofHigh-Voltage Transmission-Line Conductor Sag [J]. IEEE Transactions on PowerDelivery,2002,17(4):1142-1152
    [111]陈绍鑫,吴培胜,孙云涛,郝旭东,徐青松.输电线路温度和弧垂在线监测装置应用研究[J].华北电力技术,2008,3(8):14-15
    [112]黄新波,孙钦东,张冠军,等.输电线路实时增容技术的理论计算与应用研究[J].高电压技术2008,34(6):1138-l144
    [113]崔雅莉,别朝红,王锡凡.输电系统可用输电能力的概率模型及计算[J].电力系统自动化,2003,27(14):36-40
    [114]张冰.输电线路输电容量动态增容监测技术的研究[D].华北电力大学(北京),2006
    [115]竹志扬,王柏正,陶登元.用线芯温度计测量导线温度[J].电力建设,1992,4(13):50-51
    [116] Kevin M. Klein, Paul L. Springer, William Z. Black. Real-Time Ampacity andGround Clearance Software for Integration into Smart Grid Technology [J]. IEEETransactions on Power Delivery,2010,25(3):1768-1777
    [117] Keshavarzian Mehran, Priebe Charles H. Sag tension calculations for overheadtransmission lines at high temperature model field ruling Span method [J].IEEETransactions on Power Delivery,2000,15(1):777-778
    [118] Chen. S.L.Black. W.Z., Loard. H.W., Jr. High-temperature ampacity model foroverhead conductors [J]. IEEE Transactions on Power Delivery,2002,17(4):1136-1141
    [119] IEEE Std.738-1993, IEEE Standard for Calculating the Current-TemperatureRelationship of Bare Overhead Conductors, IEEE, USA,1993
    [120] Schmidt, N.P.. Comparison between IEEE and CIGRE ampacity standards, IEEETransactions on Power Delivery,1999,14(4):1555-1559
    [121] Albizu, I., Ferna ndez, E, Mazo n. A.J, Bengoechea. J. Influence of the conductortemperature error on the overhead line ampacity monitoring systems, Generation,Transmission&Distribution, IET,2011,5(4):440-447
    [122] Savadjiev K, Farzaneh M. Modeling of Icing And Ice Shedding on Overhead PowerLines Based On Statistical Analysis of Meteorological Data [J]. IEEE Transactionson Power Delivery,2004,19(2):715-721
    [123]欧阳丽莎,黄新波.基于灰关联分析微气象因素和导线温度对输电线路导线覆冰的影响[J].高压电器,2011,47(3):31-36
    [124]黄新波,欧阳丽莎,王娅娜,等.输电线路覆冰关键影响因素分析[J].高电压技术,2011,37(7):1677-1682
    [125]阳林,郝艳捧,黎卫国,等.输电线路覆冰与导线温度和微气象参数关联分析[J].高电压技术,2010,36(3):775-781
    [126] Yan Ning, Qi Huang, Changhua Zhang. The Feasibility Study of Monitoring Systemof Icing on Transmission Line Based on Fiber Optic Sensor[C]. Wuhan:2010International Conference on Electrical and Control Engineering,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700