人EGFR显性负性突变体对胃癌抑制作用及其分子机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:证实EGFR在胃癌组织中的表达强度与胃癌进展存在联系,构建人EGFR显性负性突变体真核表达载体pEGFPN1-DNEGFR,并进行鉴定,瞬时转染COS-7细胞后检测DNEGFR-EGFP蛋白表达及进行亚细胞结构定位;稳定转染人胃癌细胞株,探讨DNEGFR-EGFP负调控EGFR功能的机制,以及检测其对胃癌细胞恶性表型的作用,并明确分子机制。
     方法:
     (1)应用免疫组织化学PV法,检测60例胃癌组织中EGFR的表达情况,并且分析其与临床病理特征的关系。
     (2)将RT-PCR方法扩增得到的编码EGFR信号肽段、胞外区和跨膜区的cDNA,定向克隆至空载体pEGFP-N1中,构建真核表达载体pEGFPN1-DNEGFR。经PCR扩增鉴定、双酶切鉴定、核苷酸序列测定以及生物信息学分析证明pEGFPN1-DNEGFR构建成功后,脂质体介导下瞬时转染体外培养的COS-7细胞,Western blotting检测DNEGFR-EGFP蛋白的表达,应用光谱激光扫描共聚焦显微镜对DNEGFR-EGFP亚细胞结构定位检测。
     (3)应用pEGFPN1-DNEGFR在脂质体介导下稳定转染人胃癌细胞株SGC-7901、NCI-N87,应用Western blotting检测DNEGFR-EGFP蛋白的表达,光谱激光扫描共聚焦显微镜对DNEGFR-EGFP亚细胞结构定位检测,并且RT-PCR、Western blotting检测DNEGFR-EGFP对内源性EGFR mRNA水平、蛋白及磷酸化水平的影响。
     (4)应用MTT法、流式细胞术、TUNEL法、划痕实验、细胞粘附实验、体外侵袭实验、HUVEC管腔结构形成实验、裸鼠皮下移植瘤模型、微血管计数检测DNEGFR-EGFP对胃癌细胞恶性表型的作用,Western blotting、ELISA检测相关蛋白明确分子机制。
     结果:
     (1)胃癌组织中EGFR阳性表达率为48.3%,其阳性表达与浸润深度、淋巴结转移、TNM分期相关。
     (2)PCR扩增鉴定、双酶切鉴定、核苷酸序列测定以及生物信息学分析证实pEGFPN1-DNEGFR构建成功,并且Western blotting检测DNEGFR-EGFP蛋白的表达,光谱激光扫描共聚焦显微镜观察显示DNEGFR-EGFP蛋白主要定位于细胞膜。
     (3)Western blotting检测到胃癌细胞中DNEGFR-EGFP蛋白的表达,光谱激光扫描共聚焦显微镜观察显示DNEGFR-EGFP蛋白主要定位于细胞膜,DNEGFR-EGFP降低内源性EGFR蛋白磷酸化水平,而对内源性EGFR mRNA水平及蛋白水平无影响。
     (4)DNEGFR-EGFP通过下调CDK2、Cyclin D1、pGSK-3β(ser 9),上调p21、p27导致G0/G1期阻滞和诱导凋亡,进一步达到抑制体外胃癌细胞生长的效应,通过下调MMP-2、MMP-9、VEGF的分泌,达到抑制细胞侵袭及血管形成能力的结果,并且抑制细胞粘附能力及运动能力,表明DNEGFR-EGFP对胃癌细胞恶性表型具有部分逆转作用。
     结论:免疫组织化学检测结果证明EGFR参与胃癌进展,为靶向EGFR生物治疗制剂在胃癌生物治疗中的应用提供了一定的理论依据;阐明DNEGFR-EGFP通过降低内源性EGFR蛋白磷酸化水平负调控内源性EGFR功能的分子机制,证实其能够部分逆转胃癌细胞恶性表型,并明确其分子机制,为“靶向EGFR显性负性策略”(我们将此阻断EGFR信号转导通路的方法命名为“靶向EGFR显性负性策略”)在胃癌生物治疗中进一步深入研究打下了基础。
Objective: We aim at confirming that the expression intensity of epidermal growth factor receptor (EGFR) in gastric cancer tissues is correlated with gastric cancer progression. Then we construct and identify the eukaryotic expression vector(pEGFPN1-DNEGFR) carrying human dominant negative epidermal growth factor receptor(DNEGFR), for the purpose of detecting the expression and the sub-cellular localization of dominant negative epidermal growth factor receptor- enhanced green fluorescence protein (DNEGFR-EGFP) in COS-7 cells transfected transiently with pEGFPN1-DNEGFR.After stable transfection of human gastric cancer cells with pEGFPN1-DNEGFR,we propose to explore the mechanism of the inhibitory effect of DNEGFR-EGFP on endogenous EGFR function, to detect the effect on malignant phenotype of human gastric cancer cells, and to elucidate molecular mechanisms.
     Methods:
     (1) Immunohistochemistry PV method was used to detect the expression of EGFR in 60 cases of gastric cancer, and the relationship between protein expression and clinic pathological features was analyzed.
     (2) The cDNA coding signal peptide, extracellular ligand-binding domain and membrane-spanning region of epidermal growth factor receptor(EGFR) precursor was obtained by reverse transcription-polymerase chain reaction(RT-PCR),then directionally cloned into the empty vector(pEGFP-N1) to construct pEGFPN1-DNEGFR.After being confirmed by PCR amplification assay, double enzyme digestion, DNA sequencing and bioinformatics analysis of nucleotide sequence,pEGFPN1-DNEGFR was transfected transiently into COS-7 cells, mediated by Lipofectamine 2000. The expression of and the sub-cellular localization of DNEGFR-EGFP in COS-7 cells were detected by Western blotting and Laser Scanning Spectral Confocal Microscope, respectively.
     (3) The pEGFPN1-DNEGFR was transfected stably into human gastric cancer cells (SGC-7901 and NCI-N87), mediated by Lipofectamine 2000. The expression of and the sub-cellular localization of DNEGFR-EGFP in human gastric cancer cells were detected by Western blotting and Laser Scanning Spectral Confocal Microscope, respectively. The influence of DNEGFR-EGFP on endogenous EGFR mRNA level, EGFR protein and its phosphorylation level was detected by RT-PCR and Western blotting, respectively.
     (4) MTT(methyl thiazolyl tetrazolium) assay, flow cytometry, TUNEL(terminal deoxynucleotidyl transferase)-mediated dUTP nick end-labeling) test, wound healing assay, cell adhesion assay, in vitro invasion assay, HUVEC(human umbilical vein endothelial cell) tube formation assay, subcutaneous xenograft model of nude mouse were used to test the effects of DNEGFR-EGFP on malignant phenotype of human gastric cancer cells, Western blotting、ELISA(enzyme linked immunosorbent assay) were used to test the expressions of relative proteins for the purpose of elucidating molecular mechanisms.
     Results:
     (1) The positive expression rate of EGFR was 48.3%(29/60) in gastric cancer tissues, and the positive expression was correlated with depth of invasion, lymph node metastasis,and TNM stage.
     (2)The pEGFPN1-DNEGFR was constructed successfully, which was confirmed by PCR amplification assay, double enzyme digestion, DNA sequencing and bioinformatics analysis of nucleotide sequence. The expression of DNEGFR-EGFP was verified by Western blotting, and its predominant localization on the cell membrane of COS-7 cells was identified by Laser Scanning Spectral Confocal Microscope.
     (3) The expression of DNEGFR-EGFP was verified by Western blotting, and its predominant localization on the cell membrane of gastric cancer cells was identified by Laser Scanning Spectral Confocal Microscope. DNEGFR-EGFP decreased the phosphorylation level of EGFR protein, but didn’t change EGFR mRNA level and protein level.
     (4) DNEGFR-EGFP led to G0/G1 arrest and induced apoptosis by down-regulating CDK2,Cyclin D1,pGSK-3β(ser 9) and up-regulating p21,p27,inhibited in vitro growth of human gastric cancer cells in the end; it repressed invasion and angiogenesis of SGC-7901 cells by inhibiting them from secreting MMP-2, MMP-9 and VEGF, and also inhibited adhesion ability and motility of cells. These results indicate that DNEGFR-EGFP reversed malignant phenotype of human gastric cancer cells in part.
     Conclusion: Immunohistochemistry results indicate EGFR takes part in gastric cancer progression, which lays a theoretical foundation on the application of biologicals targeting EGFR in gastric cancer biotherapy. The mechanisms that DNEGFR-EGFP inhibits endogenous EGFR function by down-regulating endogenous EGFR protein phosphorylation level are elucidated. It is verified that it reverses malignant phenotype of human gastric cancer cells in part, and the molecular mechanisms are elucidated, which lays a solid foundation for further research of“dominant negative strategy targeting EGFR”(we name the EGFR signal pathway blockade strategy as“dominant negative strategy targeting EGFR”) in gastric cancer biotherapy.
引文
[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005, 55(2):74-108.
    [2] Berardi R, Scartozzi M, Romagnoli E, et al.Gastric cancer treatment: a systematic review [J]. Oncol Rep, 2004, 11(4):911-916.
    [3] Ito R, Nakayama H, Yoshida K, et al.Expression of Cbl linking with the epidermal growth factor receptor system is associated with tumor progression and poor prognosis of human gastric carcinoma[J]. Virchows Arch, 2004, 444(4):324-331.
    [4] Gamboa-Dominguez A, Dominguez-Fonseca C, Quintanilla-Martinez L, et al. Epidermal growth factor receptor expression correlates with poor survival in gastric adenocarcinoma from Mexican patients: a multivariate analysis using a standardized immunohistochemical detection system[J]. Mod Pathol, 2004, 17(5):579-587.
    [5]常伟勤,姜瑛,周及彤,等.p53、ras和EGFR在胃癌组织中的表达及临床意义[J].中国实验诊断学,2004,8(1):67-68.
    [6]陈斌,罗荣城,黄宇贤,等.EGFR、HER-2/neu蛋白在胃癌中的表达及其预后价值研究[J].解放军医学杂志,2007,32(8):856-859.
    [7] Yarden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities [J]. Eur J Cancer, 2001, 37 Suppl 4:S3-8.
    [8] Mimori K, Nagahara H, Sudo T, et al. The epidermal growth factor receptor gene sequence is highly conserved in primary gastric cancers [J]. J Surg Oncol, 2006, 93(1):44-46.
    [9] Dhar A, Mehta S, Banerjee S, et al. Epidermal growth factor receptor: is a novel therapeutic target for pancreatic cancer [J]? Front Biosci, 2005, 10:1763-1767.
    [10] Chan JK, Pham H, You XJ, et al.Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model [J]. Cancer Res, 2005, 65(8):3243-3248.
    [11] Wu X, Deng Y, Wang G, et al. Combining siRNAs at two different sites in theEGFR to suppress its expression, induce apoptosis, and enhance 5-fluorouracil sensitivity of colon cancer cells [J]. J Surg Res,2007,138(1):56-63.
    [12] Thienelt CD, Bunn PA Jr, Hanna N, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer [J]. J Clin Oncol, 2005, 23(34):8786-8793.
    [13] Zimmermann M, Zouhair A, Azria D, et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications [J]. Radiat Oncol, 2006, 1:11.
    [14] Tian XX, Pang JC, Zheng J, et al.Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length [J]. Br J Cancer, 2002, 86(8):1328-1332.
    [15] Moolenaar WH, Bierman AJ, Tilly BC, et al.A point mutation at the ATP-binding site of the EGF-receptor abolishes signal transduction [J]. EMBO J, 1988, 7(3):707-710.
    [16] Eldredge ER, Korf GM, Christensen TA, et al. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor [J]. Mol Cell Biol, 1994, 14(11):7527-7534.
    [17] Chan JK, Pham H, You XJ, et al.Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model [J]. Cancer Res, 2005, 65(8):3243-3248.
    [1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin. 2005, 55(2):74-108.
    [2] Berardi R, Scartozzi M, Romagnoli E, et al.Gastric cancer treatment: a systematic review [J]. Oncol Rep, 2004, 11(4):911-916.
    [3] Alakus H, Grass G, Hennecken JK, et al. Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer[J]. Histol Histopathol. 2008, 23(8):917-923.
    [4] Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities [J]. Eur J Cancer. 2001, 37 Suppl 4:S3-8.
    [5] Marc K. Immunohistochemical Staining Methods [M]. 4th ed. California: Dako Corporation, 2006.
    [6] Barker FG, Ozua P, Van Noorden S. False positive immunoreaction in products of conception. J Clin Pathol [J]. 1994, 47(12):1118-1119.
    [7]周小鸽,王鹏,陆鸣,等.加热抗原修复对内源性抗生物素蛋白结合物的影响及其对策[J].中华病理学杂志,2002, 31(6):491-496.
    [8] Wood GS, Warnke R. Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems [J]. J Histochem Cytochem. 1981, 29(10):1196-1204.
    [9]陈斌,罗荣城,黄宇贤,等.EGFR、HER-2/neu蛋白在胃癌中的表达及其预后价值研究[J].解放军医学杂志,2007,32(8):856-859.
    [1]廖刚,王子卫.靶向表皮生长因子受体的肿瘤生物治疗方法研究进展[J].中国肿瘤生物治疗杂志,2009, 16(1):97-100.
    [2] Halatsch ME, Gehrke EE, Vougioukas VI, et al. Inverse correlation of epidermal growth factor receptor messenger RNA induction and suppression of anchorage-independent growth by OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in glioblastoma multiforme cell lines [J].J Neurosurg, 2004, 100(3):523-533.
    [3] Haddad F, Baldwin KM. Reverse transcription of the ribonucleic Acid: the first step in rt-PCR assay [J]. Methods Mol Biol, 2010,630:261-270.
    [4] Zhang J, Shen Y, Liu J, et al. Antimetastatic effect of prodigiosin through inhibition of tumor invasion [J]. Biochem Pharmacol, 2005, 69(3):407-414.
    [5] Chen T, Deng C. Inhibitory effect of siRNA targeting survivin in gastric cancer MGC-803 cells [J]. Int Immunopharmacol, 2008, 8(7):1006-1011.
    [6] Wang Z, Banerjee S, Kong D, et al. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells [J]. Cancer Res, 2007, 67(17):8293-8300.
    [7] Patel O, Dumesny C, Giraud AS, et al. Stimulation of proliferation and migration of a colorectal cancer cell line by amidated and glycine-extended gastrin-releasing peptide via the same receptor [J]. Biochem Pharmacol, 2004, 68(11):2129-2142.
    [8]郎明健,曾秋棠,郭敏,等.靶向大鼠CTGF的shRNA表达载体的构建和作用分析[J].第四军医大学学报, 2008,29(1): 59-63.
    [9]王家宁,郭凌郧,孔霞,等.PCR产物靶向克隆法构建原核表达载体pET15b-CAT[J].第四军医大学学报, 2008,29(20): 1851-1854.
    [10] International HapMap Consortium, Frazer KA, Ballinger DG, et al. A second generation human haplotype map of over 3.1 million SNPs [J].Nature, 2007, 449(7164):851-861.
    [11] Pennisi E. A closer look at SNPs suggests difficulties [J]. Science, 1998,281(5384):1787-1789.
    [12] Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation [J]. Science, 1997, 278(5343):1580-1581.
    [13] Halushka MK, Fan JB, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis [J]. Nat Genet, 1999, 22(3):239-247.
    [14] Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities [J]. Anticancer Drugs, 2009, 20(10):851-855.
    [15] Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities [J]. Eur J Cancer, 2001, 37 Suppl 4:S3-8.
    [16] Harari PM. Epidermal growth factor receptor inhibition strategies in oncology [J]. Endocr Relat Cancer, 2004, 11(4):689-708.
    [17] Rocha-Lima CM, Soares HP, Raez LE, et al. EGFR targeting of solid tumors [J]. Cancer Control,2007,14(3):295-304.
    [18] Martinelli E, De Palma R, Orditura M, et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy [J]. Clin Exp Immunol, 2009, 158(1):1-9.
    [19] Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer [J]. FEBS J, 2010, 277(2):301-308.
    [20] Okamoto I. Epidermal growth factor receptor in relation to tumor development: EGFR-targeted anticancer therapy [J]. FEBS J, 2010, 277(2):309-315.
    [21] Wahlfors J, Loimas S, Pasanen T, et al. Green fluorescent protein (GFP) fusion constructs in gene therapy research [J]. Histochem Cell Biol, 2001, 115(1):59-65.
    [22] Zhang G, Gurtu V, Kain SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells [J]. Biochem Biophys Res Commun, 1996, 227(3):707-711.
    [23] Mellon P, Parker V, Gluzman Y, et al. Identification of DNA sequences required for transcription of the human alpha 1-globin gene in a new SV40 host-vector system [J]. Cell, 1981, 27(2 Pt 1):279-288.
    [1] Chan JK, Pham H, You XJ, et al. Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model [J]. Cancer Res,2005 ,65(8):3243-3248.
    [2] Gazzaniga P, Gandini O, Giuliani L, et al. Detection of epidermal growth factor receptor mRNA in peripheral blood: a new marker of circulating neoplastic cells in bladder cancer patients [J]. Clin Cancer Res, 2001, 7(3):577-583.
    [3] Chen T, Deng C. Inhibitory effect of siRNA targeting survivin in gastric cancer MGC-803 cells [J]. Int Immunopharmacol,2008,8(7):1006-1011.
    [4] Wang Z, Banerjee S, Kong D, et al. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells [J]. Cancer Res, 2007, 67(17):8293-8300.
    [5] Patel O, Dumesny C, Giraud AS, et al. Stimulation of proliferation and migration of a colorectal cancer cell line by amidated and glycine-extended gastrin-releasing peptide via the same receptor [J]. Biochem Pharmacol, 2004, 68(11):2129-2142.
    [6]郎明健,曾秋棠,郭敏,等.靶向大鼠CTGF的shRNA表达载体的构建和作用分析[J].第四军医大学学报, 2008,29(1): 59-63.
    [7] Haddad F, Baldwin KM. Reverse transcription of the ribonucleic Acid: the first step in rt-PCR assay [J]. Methods Mol Biol, 2010,630:261-270.
    [8] Zhang J, Shen Y, Liu J, et al. Antimetastatic effect of prodigiosin through inhibition of tumor invasion [J]. Biochem Pharmacol, 2005, 69(3):407-414.
    [9] Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment: advances, challenges and opportunities [J]. Anticancer Drugs, 2009, 20(10):851-855.
    [10] Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities [J]. Eur J Cancer, 2001, 37 Suppl 4:S3-8.
    [11] Harari PM. Epidermal growth factor receptor inhibition strategies in oncology [J]. Endocr Relat Cancer,2004,11(4):689-708.
    [12] Rocha-Lima CM, Soares HP, Raez LE, et al. EGFR targeting of solid tumors [J]. Cancer Control,2007,14(3):295-304.
    [13] Martinelli E, De Palma R, Orditura M, et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy [J]. Clin Exp Immunol, 2009, 158(1):1-9.
    [14] Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer [J]. FEBS J, 2010, 277(2):301-308.
    [15] Okamoto I. Epidermal growth factor receptor in relation to tumor development: EGFR-targeted anticancer therapy [J]. FEBS J, 2010, 277(2):309-315.
    [16] Aifa S, Aydin J, Nordvall G, et al. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization [J]. Exp Cell Res, 2005, 302(1):108-114.
    [17] Bishayee A, Beguinot L, Bishayee S. Phosphorylation of tyrosine 992, 1068, and 1086 is required for conformational change of the human epidermal growth factor receptor c-terminal tail [J]. Mol Biol Cell,1999,10(3):525-536.
    [18] Kashles O, Yarden Y, Fischer R, et al. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization [J]. Mol Cell Biol, 1991, 11(3):1454-1463.
    [19] Sahu NK, Shilakari G, Nayak A, et al. Antisense technology: a selective tool for gene expression regulation and gene targeting [J]. Curr Pharm Biotechnol, 2007, 8(5):291-304.
    [20] Tian XX, Pang JC, Zheng J, et al.Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length [J]. Br J Cancer, 2002, 86(8):1328-1332.
    [21] Couzin J. Breakthrough of the year. Small RNAs make big splash [J].Science, 2002, 298(5602):2296-2297.
    [22] Kang CS, Pu PY, Li YH, et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor [J]. J Neurooncol, 2005, 74(3):267-273.
    [23] Wu X, Deng Y, Wang G, et al. Combining siRNAs at two different sites in the EGFR to suppress its expression, induce apoptosis, and enhance 5-fluorouracilsensitivity of colon cancer cells[J]. J Surg Res, 2007, 138(1):56-63.
    [24] Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs) [J]. RNA, 2004, 10(1):12-18.
    [25] Saxena S, Jónsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells [J]. J Biol Chem,2003,278(45):44312-44319.
    [26] Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi [J]. Nat Biotechnol, 2003, 21(6):635-637.
    [1] Zhou Z, Yuan X, Li Z, et al. RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells [J]. Surg Neurol, 2008, 70(6):562-569.
    [2] Xu RH, Zheng LY, He DL, et al. Effect of fragile histidine triad gene transduction on proliferation and apoptosis of human hepatocellular carcinoma cells [J]. World J Gastroenterol, 2008, 4(23):3754-3758.
    [3] Ryan JJ, Danish R, Gottlieb CA, et al. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells [J]. Mol Cell Biol, 1993, 13(1):711-719.
    [4] Leng RP, Lin Y, Ma W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation [J]. Cell, 2003, 112(6):779-791.
    [5] Ostroumov E, Hunter CJ. The role of extracellular factors in human metastatic chordoma cell growth in vitro [J]. Spine, 2007, 32(26):2957-2964.
    [6] Yang L, Zhou ZG, Zheng XL, et al. RNA interference against peroxisome proliferator-activated receptor delta gene promotes proliferation of human colorectal cancer cells [J]. Dis Colon Rectum, 2008, 51(3):318-328.
    [7] Zhou GX, Ding XL, Huang JF, et al. Apoptosis of human pancreatic cancer cells induced by Triptolide[J]. World J Gastroenterol, 2008, 14(10):1504-1509.
    [8] Liu J, Zhang X, Yang F, et al. Antimetastatic effect of a lipophilic ascorbic acid derivative with antioxidation through inhibition of tumor invasion [J]. Cancer Chemother Pharmacol, 2006, 57(5):584-590.
    [9] Valster A, Tran NL, Nakada M, et al. Cell migration and invasion assays [J]. Methods, 2005, 37(2):208-215.
    [10] Harimaya Y, Koizumi K, Andoh T, et al. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells [J]. Cancer Lett, 2002, 187(1-2):121-127.
    [11] Wu X, Zeng H, Zhang X, et al. Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells [J]. Am J Pathol, 2004,164(6):2039-2054.
    [12] Ohnishi Y, Lieger O, Attygalla M, et al. Effects of epidermal growth factor on the invasion activity of the oral cancer cell lines HSC3 and SAS[J]. Oral Oncol, 2008, 44(12):1155-1159.
    [13] Tsao AS, He D, Saigal B, et al. Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion [J]. Mol Cancer Ther, 2007, 6(7):1962-1972.
    [14] Rooprai HK, Kyriazis I, Nuttall RK, et al. Inhibition of invasion and induction of apoptosis by selenium in human malignant brain tumour cells in vitro [J]. Int J Oncol,2007,30(5):1263-1271.
    [15] Davies G, Martin TA, Ye L, et al. Phospholipase-C gamma-1 (PLCgamma-1) is critical in hepatocyte growth factor induced in vitro invasion and migration without affecting the growth of prostate cancer cells [J]. Urol Oncol, 2008, 26(4):386-391.
    [16] Lee SH, Kunz J, Lin SH, et al. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway [J]. Cancer Res,2007,67(22):11045-11053.
    [17] Lee JH, Lee DH, Lee HS, et al. Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis [J]. Oncol Rep,2008,20(1):129-134.
    [18] Wang Z, Banerjee S, Kong D, et al. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells [J]. Cancer Res, 2007, 67(17):8293-8300.
    [19] Chen T, Deng C. Inhibitory effect of siRNA targeting survivin in gastric cancer MGC-803 cells [J]. Int Immunopharmacol,2008,8(7):1006-1011.
    [20] Wang Z, Banerjee S, Kong D, et al. Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells [J]. Cancer Res, 2007, 67(17):8293-8300.
    [21] Patel O, Dumesny C, Giraud AS, et al. Stimulation of proliferation and migration of a colorectal cancer cell line by amidated and glycine-extended gastrin-releasing peptide via the same receptor [J]. Biochem Pharmacol, 2004, 68(11):2129-2142.
    [22]郎明健,曾秋棠,郭敏,等.靶向大鼠CTGF的shRNA表达载体的构建和作用分析[J].第四军医大学学报, 2008,29(1): 59-63.
    [23] Wang S, Liu H, Ren L, et al. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference [J]. Neoplasia, 2008, 10(4):399-407.
    [24] Ustach CV, Taube ME, Hurst NJ Jr, et al. A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression [J]. Cancer Res, 2004, 64(5):1722-1729.
    [25] Chaudhary R, Bromley M, Clarke NW, et al. Prognostic relevance of micro-vessel density in cancer of the urinary bladder[J]. Anticancer Res, 1999, 19(4C):3479-3484.
    [26] Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours [J]. Eur J Cancer, 2002, 38(12):1564-1579.
    [27] Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[J]. N Engl J Med,2004,351(4):337-345.
    [28] Langerak A, River G, Mitchell E, et al. Panitumumab monotherapy in patients with metastatic colorectal cancer and cetuximab infusion reactions: a series of four case reports [J]. Clin Colorectal Cancer,2009,8(1):49-54.
    [29] Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial [J]. JAMA, 2003, 290(16):2149-2158.
    [30] Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer [J]. N Engl J Med, 2005, 353(2):123-132.
    [31]吴永忠,任庆兰,李少林.c-erbB-2反义寡核苷酸对人卵巢癌SKOV3细胞增殖的抑制作用[J].肿瘤防治研究,2006,33(10):707-709.
    [32] Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade withC225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck [J]. Cancer Res, 1999, 59(8):1935-1940.
    [33]黄文林,朱孝峰.信号转导[M].北京:人民卫生出版社,2005,364-365.
    [34] Pardee AB. A restriction point for control of normal animal cell proliferation [J]. Proc Natl Acad Sci U S A, 1974, 71(4):1286-1290.
    [35] Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae [J]. Science, 1988, 241(4863):317-322.
    [36] Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events [J]. Science, 1989, 246(4930):629-634.
    [37] Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication [J]. Annu Rev Genet, 2007, 41:237-280.
    [38] Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells [J]. Curr Opin Cell Biol, 2003, 15(2):158-163.
    [39] Finn RS, Dering J, Conklin D, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro[J]. Breast Cancer Res, 2009, 11(5):R77.
    [40] Stewart ZA, Leach SD, Pietenpol JA. p21 (Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption [J]. Mol Cell Biol,1999,19(1):205-215.
    [41] Harbour JW, Luo RX, Dei Santi A, et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1 [J]. Cell, 1999, 98(6):859-869.
    [42] Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes [J]. Mol Cell Biol, 1998, 18(2):753-761.
    [43] Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer,2009,9(6):400-414.
    [44] Soos TJ, Kiyokawa H, Yan JS, et al. Formation of p27-CDK complexes during the human mitotic cell cycle [J]. Cell Growth Differ, 1996, 7(2):135-146.
    [45] Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3[J]. Trends Biochem Sci, 2004, 29(2):95-102.
    [46] Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway [J]. J Biol Chem, 1998, 273(32):19929-19932.
    [47] Hongisto V, Vainio JC, Thompson R, et al. The Wnt pool of glycogen synthase kinase 3beta is critical for trophic-deprivation-induced neuronal death [J]. Mol Cell Biol, 2008, 28(5):1515-1527.
    [48] John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis [J]. Pathol Oncol Res, 2001, 7(1):14-23.
    [49] Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis [J]. Eur J Cancer, 2000, 36(13 Spec No):1621-1630.
    [50] Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease [J]. Best Pract Res Clin Rheumatol, 2006,20(5):983-1002.
    [51] Liotta LA, Wewer U, Rao NC, et al. Biochemical mechanisms of tumor invasion and metastasis [J]. Anticancer Drug Des, 1987, 2(2):195-202.
    [52] Ohnishi Y, Sakamoto T, Fujii H, et al. Characterization of a liver metastatic variant of murine colon 26 carcinoma cells [J]. Tumour Biol, 1997, 18(2):113-122.
    [53] Zhu Z, Sanchez-Sweatman O, Huang X, et al. Anoikis and metastatic potential of cloudman S91 melanoma cells [J]. Cancer Res, 2001, 61(4):1707-1716.
    [54] Kato R, Ishikawa T, Kamiya S, et al. A new type of antimetastatic peptide derived from fibronectin [J]. Clin Cancer Res, 2002, 8(7):2455-2462.
    [55] Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion [J]. Physiol Rev, 2003, 83(2):337-376.
    [56] Yamada KM, Kennedy DW, Yamada SS, et al. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration [J]. Cancer Res, 1990, 50(15):4485-4496.
    [57] Andela VB, Schwarz EM, Puzas JE, et al. Tumor metastasis and the reciprocalregulation of prometastatic and antimetastatic factors by nuclear factor kappaB [J]. Cancer Res, 2000, 60(23):6557-6562.
    [58] Comoglio PM, Boccaccio C. Scatter factors and invasive growth [J]. Semin Cancer Biol, 2001, 11(2):153-165.
    [59] Wang S, Liu H, Ren L, et al. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference [J]. Neoplasia, 2008, 10(4):399-407.
    [60] Atkin GK, Chopada A. Tumour angiogenesis: the relevance to surgeons [J]. Ann R Coll Surg Engl, 2006, 88(6):525-529.
    [61] Carmeliet P. VEGF as a key mediator of angiogenesis in cancer [J]. Oncology, 2005, 69 Suppl 3:4-10.
    [62] Jain RK. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor [J]. Semin Oncol, 2002, 29(6 Suppl 16):3-9.
    [63] Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis [J]. J Clin Oncol, 2005, 23(5):1011-1027.
    [64] Folkman J. Tumor angiogenesis: therapeutic implications [J]. N Engl J Med,1971,285(21):1182-1186.
    [65] Masood R, Cai J, Zheng T, et al. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors [J]. Blood,2001,98(6):1904-1913.
    [66] de Jong JS, van Diest PJ, van der Valk P, et al. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis [J]. J Pathol, 1998, 184(1):53-57.
    [1] Yarden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities [J]. Eur J Cancer, 2001, 37 Suppl 4:S3-8.
    [2] Mimori K, Nagahara H, Sudo T, et al. The epidermal growth factor receptor gene sequence is highly conserved in primary gastric cancers [J]. J Surg Oncol, 2006, 93(1):44-46.
    [3] Dhar A, Mehta S, Banerjee S, et al. Epidermal growth factor receptor: is a novel therapeutic target for pancreatic cancer [J]? Front Biosci, 2005, 10:1763-1767.
    [4] Chan JK, Pham H, You XJ, et al.Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model [J]. Cancer Res, 2005, 65(8):3243-3248.
    [5] Wu X, Deng Y, Wang G, et al. Combining siRNAs at two different sites in the EGFR to suppress its expression, induce apoptosis, and enhance 5-fluorouracil sensitivity of colon cancer cells [J]. J Surg Res, 2007, 138(1):56-63.
    [6] Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[J]. N Engl J Med, 2004, 351(4):337-345.
    [7] Thienelt CD, Bunn PA Jr, Hanna N, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer [J]. J Clin Oncol, 2005, 23(34):8786-8793.
    [8] Fukuoka M, Yano S, Giaccone G, et al. Multi-Institutional Randomized Phase II Trial of Gefitinib for Previously Treated Patients With Advanced Non–Small-Cell Lung Cancer [J].J Clin Oncol, 2003, 21(12):2237-2246.
    [9] Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial [J]. JAMA, 2003, 290(16):2149-2158.
    [10] Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growthfactor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib [J]. N Engl J Med, 2004, 350(21):2129-2139.
    [11] Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer [J]. N Engl J Med, 2005 Jul 14; 353(2):123-132.
    [12] Fuster LM, Sandler AB. Select clinical trials of erlotinib (OSI-774) in non-small-cell lung cancer with emphasis on phase III outcomes [J]. Clin Lung Cancer, 2004, 6 Suppl 1:S24-29.
    [13] Zimmermann M, Zouhair A, Azria D, et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications [J]. Radiat Oncol, 2006, 1:11.
    [14] Tian XX, Pang JC, Zheng J, et al.Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length [J]. Br J Cancer, 2002, 86(8):1328-1332.
    [15] Sahu NK, Shilakari G, Nayak A, et al. Antisense technology: a selective tool for gene expression regulation and gene targeting [J]. Curr Pharm Biotechnol, 2007, 8(5):291-304.
    [16] Couzin J. Breakthrough of the year. Small RNAs make big splash [J].Science, 2002, 298(5602):2296-2297.
    [17] Kang CS, Pu PY, Li YH, et al. An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor [J]. J Neurooncol, 2005, 74(3):267-273.
    [18] Panikkar RP, Astsaturov I, Langer CJ. The emerging role of cetuximab in head and neck cancer: a 2007 perspective [J]. Cancer Invest, 2008, 26(1):96-103.
    [19] Fury MG, Lipton A, Smith KM, et al. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors [J]. Cancer Immunol Immunother, 2008, 57(2):155-163.
    [20]何颖,张尚权,赵峰等.表皮生长因子受体单抗导向药物(EQ75-ADR)的制备及对人表皮癌抑瘤作用的研究[J].中国肿瘤生物治疗杂志,2000,7(2):135-138.
    [21] Liu TF, Cohen KA, Ramage JG, et al. A diphtheria toxin-epidermal growth factor fusion protein is cytotoxic to human glioblastoma multiforme cells [J]. Cancer Res, 2003, 63(8):1834-1837.
    [22] Hoshimoto S, Ueda M, Jinno H, et al. Mechanisms of the growth-inhibitory effect of the RNase-EGF fused protein against EGFR-overexpressing cells [J]. Anticancer Res, 2006 , 26(2A):857-863.
    [23] Li Z, Zhao R, Wu X, et al. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics [J]. FASEB J, 2005, 19(14):1978-1985.
    [24]朱红, Issan TYS, Wong M .EGFR突变与非小细胞肺癌酪氨酸激酶抑制剂靶向治疗[J].中国肿瘤生物治疗杂志,2007,14(2):105~109.
    [25] Giaccone G, Herbst RS, Manegold C, et al.Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 1[J]. J Clin Oncol, 2004, 22(5):777-784.
    [26] Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 2[J]. J Clin Oncol, 2004, 22(5):785-794.
    [27] Fattah OM, Cloutier SM, Kündig C, et al. Peptabody-EGF: a novel apoptosis inducer targeting ErbB1 receptor overexpressing cancer cells[J]. Int J Cancer, 2006, 119(10):2455-2463.
    1. Parkin DM, Bray F, Ferlay J and Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 55:74-108, 2005.
    2. Berardi R, Scartozzi M, Romagnoli E, Antognoli S and Cascinu S: Gastric cancer treatment: a systematic review. Oncol Rep 11:911-916, 2004.
    3. Sutter AP and Fechner H: Gene therapy for gastric cancer: is it promising? World J Gastroenterol 12:380-387, 2006.
    4. Harding J and Burtness B: Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107-127, 2005.
    5. Valverde CM, Macarulla T, Casado E, Ramos FJ, Martinelli E and Tabernero J: Novel targets in gastric and esophageal cancer. Crit Rev Oncol Hematol 59:128-138, 2006.
    6. Rocha-Lima CM, Soares HP, Raez LE and Singal R: EGFR targeting of solid tumors. Cancer Control 14:295-304, 2007.
    7. Liu KJ, Chen CT, Hu WS, Hung YM, Hsu CY, Chuang BF and Juang SH: Expression of cytoplasmic-domain substituted epidermal growth factor receptor inhibits tumorigenicity of EGFR-overexpressed human glioblastoma multiforme. Int J Oncol 24:581-590, 2004.
    8. Chan JK, Pham H, You XJ, Cloven NG, Burger RA, Rose GS, Van Nostrand K, Korc M, Disaia PJ and Fan H: Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model. Cancer Res 65:3243-3248, 2005.
    9. Gamboa-Dominguez A, Dominguez-Fonseca C, Quintanilla-Martinez L, Reyes-Gutierrez E, Green D, Angeles-Angeles A, Busch R, Hermannst?dter C, N?hrig J, Becker KF, Becker I, H?fler H, Fend F and Luber B: Epidermal growth factor receptor expression correlates with poor survival in gastric adenocarcinoma from Mexican patients: a multivariate analysis using a standardized immunohistochemical detection system. Mod Pathol 17:579-587, 2004.
    10. Tsao AS, He D, Saigal B, Liu S, Lee JJ, Bakkannagari S, Ordonez NG, Hong WK,Wistuba I and Johnson FM: Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol Cancer Ther 6:1962-1972, 2007.
    11.Wang Z, Banerjee S, Kong D, Li Y and Sarkar FH:Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67:8293-8300, 2007.
    12. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Beli?n JA, de Waal RM, Van Marck E, Magnani E, Weidner N, Harris AL and Dirix LY: Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38:1564-1579, 2002.
    13. Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, Tsuneyama K and Takano Y: Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res 26:3579-3583, 2006.
    14. Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4-10, 2005.
    15. Jain RK: Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin Oncol 29(Suppl 16):3-9, 2002.
    16. Hicklin DJ and Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011-1027, 2005.
    17. Atkin GK and Chopada A: Tumour angiogenesis: the relevance to surgeons. Ann R Coll Surg Engl 88:525-529, 2006.
    18.Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I and Van Cutsem E:Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337-345, 2004.
    19. Langerak A, River G, Mitchell E, Cheema P and Shing M: Panitumumab monotherapy in patients with metastatic colorectal cancer and cetuximab infusionreactions: a series of four case reports. Clin Colorectal Cancer 8:49-54, 2009.
    20. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ and Kay AC: Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290:2149-2158, 2003.
    21.Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabárbara P, Seymour L and National Cancer Institute of Canada Clinical Trials Group:Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123-132, 2005.
    22. Huang SM, Bock JM and Harari PM: Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935-1940, 1999.
    23. John A and Tuszynski G: The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7:14-23, 2001.
    24. Curran S and Murray GI: Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36:1621-1630, 2000.
    25. Cawston TE and Wilson AJ: Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 20:983-1002, 2006.
    26. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182-1186, 1971.
    27. Masood R, Cai J, Zheng T, Smith DL, Hinton DR and Gill PS: Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98:1904-1913, 2001.
    28. de Jong JS, van Diest PJ, van der Valk P and Baak JP: Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J Pathol 184:53-57, 1998.
    29.Thienelt CD, Bunn PA Jr, Hanna N, Rosenberg A, Needle MN, Long ME, Gustafson DL and Kelly K:Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol 23:8786-8793, 2005.
    30. Blick SK and Scott LJ: Cetuximab: a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 67:2585-2607, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700