CXCL12/CXCR7调节人肝癌细胞侵袭和血管生成能力的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分趋化因子受体CXCR7在人肝细胞肝癌及肝癌细胞株中的表达及意义
     目的
     探讨趋化因子受体CXCR7在人肝细胞肝癌组织、癌旁组织、正常肝脏组织及肝癌细胞中的表达,从而初步推测CXCR7在肝癌发生发展中的作用。
     方法
     应用免疫组织化学检测CXCR7在人肝癌组织、癌旁组织、正常肝脏组织中的表达。Western-blot和RT-PCR在蛋白和mRNA水平上检测CXCR7,CXCR4在肝癌细胞株(HepG2, Hep3B, SMMC-7721, MHCC97L, MHCC97H和HCCLM6)及人脐静脉内皮细胞(HUVECs)中的表达情况。
     结果
     (1)CXCR7在人肝细胞肝癌组织中的表达高于癌旁组织、正常肝脏组织。
     (2)与HUVECs相比,CXCR7在人肝癌细胞中的表达水平较高。
     (3)侵袭能力强的肝癌细胞中CXCR7表达水平高于侵袭能力弱的肝癌细胞。
     (4)在6株肝癌细胞及HUVECs中,均可见CXCR4的表达。
     结论
     ①在人肝细胞肝癌组织中CXCR7表达较高,而癌旁组织、正常肝脏组织中表达较低。
     ②CXCR7在高侵袭力肝癌细胞中表达较高,从而初步推测CXCR7在肝癌细胞的侵袭能力中可能具有一定作用。
     第二部分CXCR7shRNA真核表达载体的构建及鉴定
     目的
     构建CXCR7shRNA真核表达载体,将CXCR7shRNA重组质粒转染人肝癌细胞SMMC-7721,特异性沉默肝癌细胞中CXCR7的表达。经过G418稳定筛选,获得稳定表达CXCR7shRNA重组质粒的SMMC-7721细胞。
     方法
     设计合成针对CXCR7的转录模板序列,构建针对CXCR7的shRNA重组质粒,并通过酶切和测序鉴定。将CXCR7shRNA重组质粒转染人肝癌细胞SMMC-7721,经过G418筛选获得长效表达CXCR7shRNA重组质粒的细胞,荧光显微镜下观察转染效率。采用Western-blot检测稳定筛选细胞中CXCR7蛋白表达水平,RT-PCR检测CXCR7mRNA表达水平。
     结果
     (1)重组质粒经酶切鉴定,电泳结果显示,阳性重组质粒被BamH I切开,而不能被Pst I切开。
     (2)荧光显微镜下观察,CXCR7shRNA重组质粒转染人肝癌细胞SMMC-7721,经G418稳定筛选后,大量细胞均可见绿色荧光。
     (3)经G418稳定筛选后获得的细胞,用RT-PCR检测CXCR7mRNA表达,转染了CXCR7shRNA的细胞中CXCR7mRNA水平明显低于对照组(P<0. 05)。
     (4)经G418稳定筛选后获得的细胞,用Western-blot检测CXCR7蛋白表达,转染了CXCR7shRNA的细胞中CXCR7蛋白表达明显下调,和对照组比较具有明显差异(P<0. 05)。
     结论
     ①经酶切和测序鉴定,成功构建了针对CXCR7的shRNA重组质粒。
     ②荧光显微镜下观察,稳定转染了CXCR7shRNA重组质粒的SMMC-7721可见大量荧光。
     ③运用RT-PCR和Western-blot检测发现,稳定转染了CXCR7shRNA重组质粒的SMMC-7721中CXCR7的表达被有效沉默。
     第三部分CXCL12/CXCR7对人肝癌细胞生物学行为的影响
     目的
     特异性沉默CXCR7的表达后,研究其对SMMC-7721细胞的侵袭、粘附、VEGF分泌和诱导血管生成能力的影响。VEGF刺激能否调节CXCR7的表达,以及对SMMC-7721细胞侵袭能力的影响。
     方法
     ①运用Transwell小室侵袭实验,检测CXCL12诱导对SMMC-7721细胞侵袭能力的影响。②运用Transwell小室侵袭实验,检测特异性沉默CXCR7对SMMC-7721细胞侵袭能力的影响。③运用肿瘤细胞与细胞外基质粘附实验,检测特异性沉默CXCR7对SMMC-7721细胞粘附能力的影响。④运用ELISA法,检测特异性沉默CXCR7对SMMC-7721细胞VEGF分泌的影响。⑤运用肿瘤细胞与HUVECs共培养模型,检测特异性沉默CXCR7对SMMC-7721细胞诱导体外血管生成能力的影响。⑥运用RT-PCR和Western-blot,检测VEGF刺激对SMMC-7721细胞和HUVECs中CXCR7表达的影响。⑥运用Transwell小室侵袭实验,检测VEGF刺激对SMMC-7721细胞侵袭能力的影响。
     结果
     (1)不同浓度CXCL12(0, 10,100 ng/ml)诱导下,SMMC-7721细胞侵袭能力随CXCL12浓度的增加而增强,表现为浓度依赖性。特异性沉默CXCR7的表达后,CXCL12(100 ng/ml)诱导的SMMC-7721细胞侵袭能力减弱。
     (2) CXCL12(100 ng/ml)能够诱导增强SMMC-7721细胞与细胞外基质(FN和LN)的粘附能力。SMMC-7721细胞与LN的粘附能力比与FN的粘附能力强。特异性沉默CXCR7的表达后,CXCL12(100 ng/ml)诱导的SMMC-7721细胞与FN和LN的粘附能力减弱。
     (3) CXCL12(100 ng/ml)能够诱导SMMC-7721细胞分泌VEGF。特异性沉默CXCR7的表达后,CXCL12(100 ng/ml)诱导的SMMC-7721细胞分泌VEGF的能力减弱。
     (4)特异性沉默CXCR7的表达后,SMMC-7721细胞诱导体外血管生成的能力减弱。
     (5) VEGF(50 ng/ml )刺激下,SMMC-7721细胞和HUVECs中CXCR7mRNA表达上调,表现为时间依赖性。VEGF(50 ng/ml )刺激下,SMMC-7721细胞和HUVECs中CXCR7蛋白表达水平上调,表现为时间依赖性。
     (6) VEGF(50 ng/ml )预刺激后,SMMC-7721细胞的趋化侵袭能力增强。
     结论
     ①CXCL12能够诱导增强SMMC-7721细胞的侵袭、粘附和VEGF分泌能力。
     ②CXCR7表达被有效沉默后:CXCL12诱导的细胞侵袭、粘附和VEGF分泌的能力减弱;SMMC-7721细胞诱导体外血管生成的能力减弱。这些结果说明CXCL12/ CXCR7轴能够调节SMMC-7721细胞的侵袭、粘附、体外血管生成的能力。CXCL12/ CXCR7轴可能在肝癌细胞的远处转移中起重要作用。
     ③VEGF刺激能够上调CXCR7的表达,且上调的CXCR7是具有功能的。
     第四部分CXCR7沉默对人肝癌细胞裸鼠皮下种植瘤生长的影响
     目的
     研究特异性沉默SMMC-7721细胞中CXCR7表达后,对SMMC-7721细胞裸鼠皮下种植瘤生长的影响。
     方法
     将未转染的SMMC-7721细胞、转染了阴性shRNA的SMMC-7721细胞和稳定转染了CXCR7shRNA的SMMC-7721细胞,分别接种到裸鼠背部皮下,定时测量肿瘤体积,绘制肿瘤生长曲线。裸鼠处死后,完整剥离肿瘤,称取瘤重,并将肿瘤固定于4%多聚甲醛,石蜡包埋,切片。切片用于免疫组织化学检测CD31,计算MVD。取出裸鼠肺和肝脏,观察有无转移灶形成。
     结果
     (1) CXCR7的表达被有效沉默后,稳定转染CXCR7shRNA组肿瘤体积明显较小,生长速度明显低于对照组,差异具有统计学意义(P<0.05)。而转染了阴性shRNA组与对照组之间无明显差异(P>0.05)。
     (2) CXCR7的表达被有效沉默后,稳定转染CXCR7shRNA组肿瘤的重量明显低于对照组,差异具有统计学意义(P<0.05)。而转染了阴性shRNA组与对照组之间肿瘤重量无明显差异(P>0.05)。
     (3) CXCR7的表达被有效沉默后,稳定转染CXCR7shRNA组肿瘤血管CD31的表达明显较少,其MVD明显小于对照组MVD,差异具有统计学意义(P<0.05)。而转染了阴性shRNA组与对照组之间肿瘤血管生成均较多,两组之间无明显差异(P>0.05)。
     结论
     ①CXCR7的表达被有效沉默后,能够调节SMMC-7721细胞裸鼠皮下种植瘤的生长。
     ②CXCR7对裸鼠皮下种植瘤生长的调节,可能是通过抑制肿瘤血管生成而实现的。
     ③CXCR7的表达被有效沉默后,未影响裸鼠皮下种植瘤的转移。然而,我们并不能因此而推论CXCR7的表达不能调节裸鼠移植瘤的转移,因为原位移植瘤模型才是研究CXCR7调节肿瘤转移更合适的模型。
PART ONE EXPRESSION AND SIGNIFICANCE OF CHEMOKINE RECEPTOR CXCR7 IN HCC AND LIVER CANER CELL LINES
     Objective
     To study the expression of CXCR7 in hepatocellular carcinoma tissues, matched adjacent non-neoplastic tissues , normal liver tissues and liver cancer cells. To evaluate the role of CXCR7 in HCC development.
     Methods
     Immunohistochemistry was used to detect the expression of CXCR7 in human hepatocellular carcinoma tissues, matched adjacent non-neoplastic tissues and normal liver tissues. RT-PCR and Western-blot was used to evaluate CXCR7mRNA and CXCR4mRNA and protein levels in liver cancer cell lines(HepG2, Hep3B, SMMC-7721, MHCC97L, MHCC97H ,HCCLM6)and HUVECs.
     Results
     (1)HCC tissues displayed higher CXCR7 expression than matched adjacent non-neoplastic tissues and normal liver tissues.
     (2)Human liver cancer cells displayed higher CXCR7 expression than HUVECs.
     ( 3 ) High aggressive liver cancer cells displayed higher CXCR7 expression than low aggressive liver cancer cells.
     (4)The expression of CXCR4 was detected in six liver cancer cells and HUVECs.
     Conclusion
     ①The expression of CXCR7 was high elevated in HCC. However, CXCR7 expression was low in matched adjacent non-neoplastic tissues and normal liver tissues.
     ②CXCR7 was overexpressed in high aggressive liver cancer cells. CXCR7 might play a role in invasion of liver cancer cells.
     PART TWO CONSTRUCTION AND IDENTIFICATION OF CXCR7shRNA EUKARYOTIC EXPRESSION VECTOR
     Objective
     To construct siRNA eukaryotic expression vectors targeting to CXCR7 gene.To specifically silence CXCR7 expression through transfecting recombinant plasmid of CXCR7shRNA into SMMC-7721 cells. To obtain SMMC-7721 cells stably expressing recombinant plasmid of CXCR7shRNA through G418 selection.
     Methods
     Transcription template sequence targeting to CXCR7 was designed and synthesized. The recombinant plasmid of CXCR7shRNA was constructed and further identified by enzyme digestion and sequencing. The recombinant plasmid of CXCR7shRNA was transfected into SMMC-7721 cells and further selected by G418. Transfection efficiency was evaluated by fluorescent microscope. CXCR7mRNA levels in SMMC-7721 cells transfected with CXCR7shRNA were detected by RT-PCR. The protein levels of CXCR7 in SMMC-7721 cells transfected with CXCR7shRNA were detected by Western-blot.
     Results
     (1)The positive recombinant plasmid was cut by BamH I but not Pst I after recombinant plasmid was digested.
     (2) The recombinant plasmid of CXCR7shRNA was successfully transfected into SMMC-7721 cells. After G418 selection, a great quantity of cells transfected with recombinant plasmid displayed green fluorescence.
     (3)After G418 selection, CXCR7mRNA levels in SMMC-7721 cells were detected by RT-PCR. The cells transfected with CXCR7shRNA exhibited lower CXCR7mRNA levels compared with the control cells(P<0. 05).
     (4)After G418 selection, protein levels of CXCR7 in SMMC-7721 cells were detected by Western-blot. Expression of CXCR7 in cells transfected with CXCR7shRNA was significantly downregulated compared with the control cells(P<0. 05).
     Conclusion
     ①The recombinant plasmid of CXCR7shRNA was successfully constructed and identified by enzyme digestion and sequencing.
     ②Under fluorescent microscope, SMMC-7721 cells stably transfected with recombinant plasmid of CXCR7shRNA displayed a great quantity of green fluorescence. Transfection efficiency was approximate 80%-90%。
     ③Expression of CXCR7 in cells stably transfected with recombinant plasmid of CXCR7shRNA was efficiently silenced through RT-PC R and Western-blot assay.
     PART THREE EFFECT OF CXCL12/CXCR7 ON BIOLOGICAL BEHAVIOR OF HUMAN LIVER CANCER CELLS
     Objective
     To investigate the effect of CXCR7 silencing on invasion, adhesion, VEGF secretion and angiogenesis of SMMC-7721 cells. To evaluate the effect of VEGF stimulation on CXCR7 expression and invasive ability of SMMC-7721 cells.
     Methods
     ①Invasive ability of SMMC-7721 cells induced by CXCL12 was evaluated by Transwell chamber assay.②Effect of CXCR7 silencing on invasive ability of SMMC-7721 cells was evaluated by Transwell chamber assay.③Effect of CXCR7 silencing on adhesive ability of SMMC-7721 cells was evaluated by tumor cell- Extra Cellular Matrix adhesion assay.④Effect of CXCR7 silencing on VEGF secretion in SMMC-7721 cells was investigated by ELISA assay.⑤Effect of CXCR7 silencing on SMMC-7721 cells induced-angiogenesis was detected by tumor cell- HUVECs coculture system.⑥Effect of VEGF stimulation on CXCR7 expression in SMMC-7721 cells and HUVECs was evaluated by RT-PCR and Western-blot assay.⑥Effect of VEGF stimulation on invasive ability of SMMC-7721 was evaluated by Transwell chamber assay.
     Results
     (1) We found that CXCL12(0, 10,100 ng/ml) induced a significant and dose-dependent increase of invasion in SMMC-7721 cells.
     (2) CXCL12(100 ng/ml) induced invasion in SMMC-7721 cells was decreased after silencing of CXCR7.
     (3)CXCL12(100 ng/ml) induced a significant increase of cell-Extra Cellular Matrix (FN and LN) adhesion. Adhesion of SMMC-7721 cells to LN was greater than adhesion to FN.
     (4)CXCL12(100 ng/ml)induced adhesion of SMMC-7721 cells to LN and FN was decreased after silencing of CXCR7.
     (5)CXCL12(100 ng/ml)could induce VEGF secretion in SMMC-7721 cells.
     (6)VEGF secretion induced by CXCL12(100 ng/ml)was decreased after silencing of CXCR7.
     (7)In vitro tube formation induced by SMMC-7721 cells was decreased after silencing of CXCR7.
     (8)VEGF(50 ng/ml )stimulation induced a time-dependent increase of CXCR7mRNA levels in SMMC-7721 cells and HUVECs.
     (9)VEGF(50 ng/ml )stimulation induced a time-dependent increase of protein levels of CXCR7 in SMMC-7721 cells and HUVECs.
     (10)Invasive ability of SMMC-7721 cells was enhanced after VEGF(50 ng/ml )stimulation.
     Conclusion
     ①CXCL12 could induce invasion, adhesion, VEGF secretion in SMMC-7721 cells.
     ②Invasion, adhesion and VEGF secretion was decreased after silencing of CXCR7. Also, in vitro tube formation induced by SMMC-7721 cells was decreased after silencing of CXCR7. These results demonstrated that CXCL12/ CXCR7 could regulate invasion and adhesion of SMMC-7721 cells. CXCL12/ CXCR7 axis might play an important role in metastasis of SMMC-7721 cells.
     ③Up-regulation of CXCR7 expression by VEGF stimulation was functional.
     PART FOUR EFFECT OF CXCR7 SILENCING ON TUMOR GROWTH OF HUMAN LIVER CANCER CELL XENOGRAFT IN NUDE MOUSE
     Objective
     To study the effect of CXCR7 silencing on tumor growth of SMMC-7721 cells xenograft in nude mice.
     Methods
     The control, negative shRNA and stable CXCR7shRNA transfected SMMC-7721 cells were inoculated subcutaneously into the back of nude mice. The tumor size was measured and the growth curve of tumor was drawed. The tumors were completely separated and weighed after the mice were sacrificed. Subsequently, the tumors were fixed in 4% polyformaldehyde and embedded with paraffin. The tumor sections were excised for immunohistochemical analysis of CD31 and calculation of MVD. Metastasis was evaluated in lung and liver of nude mice.
     Results
     (1) The cells stably transfected with CXCR7shRNA showed smaller tumor size compared with control cells(P<0.05). However, no significant difference was observed between control and negative shRNA group(P>0.05).
     (2) The cells stably transfected with CXCR7shRNA showed significantly reduced tumor weight compared with control cells(P<0.05). However, no significant difference of tumor weight was observed between control and negative shRNA group(P>0.05).
     (3) The cells stably transfected with CXCR7shRNA showed significantly reduced expression of CD31 and decreased MVD compared with control cells. Statistic differences were obtained between control and CXCR7shRNA group(P<0.05). However, no significant difference of tumor angiogenesis was observed between control and negative shRNA group(P>0.05).
     Conclusion
     ①Tumor growth of SMMC-7721 cells xenograft in nude mice could be regulated by silencing of CXCR7.
     ②Silencing of CXCR7 substantially suppressed angiogenesis and subsequently regulated the tumor growth..
     ③We did not find metastasis of xenograft in nude mice after silencing of CXCR7.However, we could not conclude that CXCR7 was unable to regulate metastasis of transplanted tumor in nude mice. Orthotopic transplanted tumor model is a better way to further evaluate the role of CXCR7 in regulating tumor metastasis.
引文
[1] El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis [J]. Gastroenterology .2007,132: 2557-2576.
    [2] Mann CD, Neal CP, Garcea G, et al. Prognostic molecular markers in hepatocellular carcinoma: a systematic review [J]. Eur J Cancer .2007,43(6):979-992.
    [3] Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma [J]. Ann Surg. 2000, 232(1):10-24.
    [4] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature. 2001, 410(6824):50-6.
    [5] Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer [J]. Cancer Res. 2002, 62(20):5930-8.
    [6] Marchesi F, Monti P, Leone BE, et al. Increased Survival, Proliferation, and Migration in Metastatic Human Pancreatic Tumor Cells Expressing Functional CXCR4 [J]. Cancer Res. 2004, 64(22):8420-7.
    [7]Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone [J]. Cancer Res. 2002, 62(6):1832-7.
    [8] Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells [J]. Cancer Res. 2002 ,62(21):6304-11.
    [9] Murakami T, Maki W, Cardones AR, et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells [J].Cancer Res. 2002 ,62(24):7328-34.
    [10] Schimanski CC, Bahre R, Gockel I, et al. Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4 [J]. Br J Cancer. 2006 ,95(2):210-7.
    [11] Rossi D, Zlotnik A. The biology of chemokines and their receptors [J]. Annu Rev Immunol. 2000,18:217-42.
    [12] De La Luz Sierra M, Yang F, Narazaki M, et al. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity [J]. Blood. 2004 ,103(7):2452-9.
    [13] Aiuti A, Webb IJ, Bleul C, et al. The Chemokine SDF-1 Is a Chemoattractant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitors to Peripheral Blood [J]. J Exp Med. 1997, 185(1):111-20.
    [14] David NB, Sapède D, Saint-Etienne L, et al. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1 [J]. Proc Natl Acad Sci U S A. 2002 ,99(25):16297-302.
    [15] Guo Y, Hangoc G, Bian H, et al. SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells [J]. Stem Cells. 2005 ,23(9):1324-32.
    [16] Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment [J]. Blood. 1998 ,91(1):100-10.
    [17] Kortesidis A, Zannettino A, Isenmann S, et al. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells [J]. Blood. 2005,105(10):3793-801.
    [18] Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells [J]. Exp Hematol. 2002 ,30(9):973-81.
    [19] Raman D, Baugher PJ, Thu YM, et al. Role of chemokines in tumor growth [J]. Cancer Lett. 2007,256(2):137-65.
    [20] Gelmini S, Mangoni M, Serio M, et al. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis [J]. J Endocrinol Invest. 2008 ,31(9):809-19.
    [21] Koizumi K, Hojo S, Akashi T, et al. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response [J]. Cancer Sci. 2007 ,98(11):1652-8.
    [22] Ruffini PA, Morandi P, Cabioglu N, et al. Manipulating the chemokine-chemokine receptor network to treat cancer [J]. Cancer. 2007 ,109(12):2392-404.
    [23] Tang CH, Chuang JY, Fong YC, et al. Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells [J]. Carcinogenesis. 2008 ,29(8):1483-92.
    [24] Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt [J]. Cancer Res. 2003,63(8):1969-74.
    [25] Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A, et al. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway [J]. FASEB J. 1999,13(13):1699-710.
    [26] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development [J].J Exp Med .2006, 203(9):2201-13.
    [27] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [28] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [29] Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo [J]. Br J Cancer .2008, 99(9):1493-501.
    [30] Goldmann T, Dr?mann D, Radtke J, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy [J]. Virchows Arch. 2008 ,452(3):347-8.
    [31] Iwakiri S, Mino N, Takahashi T, et al. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer [J].Cancer. 2009 ,115(11):2580-93.
    [32] Maréchal R, Demetter P, Nagy N, et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma [J]. Br J Cancer. 2009 ,100(9):1444-51.
    [33] Grymula K, Tarnowski M, Wysoczynski M, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas [J]. Int J Cancer. 2010 Feb 16.
    [34]Tarnowski M, Grymula K, Reca R, et al. Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas [J]. Mol Cancer Res. 2010 ,8(1):1-14.
    [35] Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus[J]. Cancer Res.2005,65(12):5084-5095.
    [36] Rajagopal S, Kim J, Ahn S, et al. Beta-arrestin- but not G protein-mediated signaling by the "decoy" receptor CXCR7[J].Proc Natl Acad Sci U S A. 2010,107(2):628-32.
    [37] Zabel BA, Wang Y, Lewén S, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands[J]. J Immunol. 2009 ,183(5):3204-11.
    [38] Yoshida D, Nomura R, Teramoto A. Signaling Pathway Mediated by CXCR7, an Alternative Chemokine Receptor for Stromal-Cell Derived Factor-1alpha, in AtT20 mouse ACTH-secreting pituitary adenoma cells[J]. J Neuroendocrinol. 2009 , 21(5):481-488.
    [39] Levoye A, Balabanian K, Baleux F, et al. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling [ J ] .Blood. 2009 ,113(24):6085-93.
    [1] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature. 2001, 410(6824):50-6.
    [2] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development [J].J Exp Med .2006, 203(9):2201-13.
    [3] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [4] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [5]Tarnowski M, Grymula K, Reca R, et al. Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas [J]. Mol Cancer Res. 2010 ,8(1):1-14.
    [6] Maréchal R, Demetter P, Nagy N, et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma [J]. Br J Cancer. 2009 ,100(9):1444-51.
    [7] CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer [J].Cancer. 2009 ,115(11):2580-93.
    [1] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [2] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [3] Grymula K, Tarnowski M, Wysoczynski M, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas [J]. Int J Cancer. 2010 Feb 16.
    [4] Yoshida D, Nomura R, Teramoto A. Signaling Pathway Mediated by CXCR7, an Alternative Chemokine Receptor for Stromal-Cell Derived Factor-1alpha, in AtT20 mouse ACTH-secreting pituitary adenoma cells[J]. J Neuroendocrinol. 2009,21(5):481-488
    [1] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature. 2001, 410(6824):50-6.
    [2] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [3] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [4] Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo [J]. Br J Cancer .2008, 99(9):1493-501.
    [5] Grymula K, Tarnowski M, Wysoczynski M, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas [J]. Int J Cancer. 2010 Feb 16.
    [6] Rajagopal S, Kim J, Ahn S, et al. Beta-arrestin- but not G protein-mediated signaling by the "decoy" receptor CXCR7[J].Proc Natl Acad Sci U S A. 2010,107(2):628-32.
    [7] Yoshida D, Nomura R, Teramoto A. Signaling Pathway Mediated by CXCR7, an Alternative Chemokine Receptor for Stromal-Cell Derived Factor-1alpha, in AtT20 mouse ACTH-secreting pituitary adenoma cells[J]. J Neuroendocrinol. 2009, 21(5):481-488.
    [8] Murukesh N, Dive C, Jayson GC. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors[J].Br J Cancer. 2010 ,102(1):8-18.
    [9] Gordon MS, Mendelson DS, Kato G. Tumor angiogenesis and novel antiangiogenic strategies[J].Int J Cancer. 2010 ,126(8):1777-87.
    [10] DuBois SG, Marina N, Glade-Bender J. Angiogenesis and vascular targeting in Ewing sarcoma: a review of preclinical and clinical data [ J ] . Cancer. 2010 ,116(3):749-57.
    [11] Tysome JR, Lemoine NR, Wang Y. Combination of anti-angiogenic therapy and virotherapy: arming oncolytic viruses with anti-angiogenic genes[J]. Curr Opin Mol Ther. 2009,11(6):664-9.
    [12] Eck SM, C?téAL, Winkelman WD, et al. CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cell[sJ]. Mol Cancer Res. 2009 ,7(7):1033-44.
    [13] Chu CY, Cha ST, Lin WC, et al. Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12)-enhanced angiogenesis of human basal cell carcinomacells involves ERK1/2-NF-kappaB/interleukin-6 pathway[J]. Carcinogenesis. 2009 ,30(2):205-13.
    [14] Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment[J].Blood. 2006 ,107(5):1761-7.
    [15] Ayala F, Dewar R, Kieran M, et al. Contribution of bone microenvironment to leukemogenesis and leukemia progression[J]. Leukemia. 2009 ,23(12):2233-41.
    [16] Greenberg JI, Cheresh DA. VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy[J]. Expert Opin Biol Ther. 2009 ,9(11):1347-56.
    [17] Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules[J]. Nat Rev Clin Oncol. 2009 ,6(9):507-18.
    [18] Gerstner ER, Duda DG, di Tomaso E, et al.VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer [ J ] .Nat Rev Clin Oncol. 2009 ,6(4):229-36.
    [19] Van Rechem C, Rood BR, Touka M, et al. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1) [J]. J Biol Chem. 2009 ,284(31):20927-35.
    [20] Lucchesi W, Brady G, Dittrich-Breiholz O, et al. Differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2[J]. J Virol. 2008,82(15):7456-66.
    [21] Jin Z, Nagakubo D, Shirakawa AK, et al. CXCR7 is inducible by HTLV-1 Tax and promotes growth and survival of HTLV-1-infected T cells[J]. Int J Cancer. 2009,125(9):2229-35.
    [22] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development [J].J Exp Med .2006, 203(9):2201-13.
    [1] Ratajczak MZ, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis [J]. Leukemia.2006 ,20(11):1915-24.
    [2] Epstein RJ. The CXCL12-CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies [J]. Nat Rev Cancer. 2004 ,4(11):901-9.
    [3] Murphy PM. Chemokines and the molecular basis of cancer metastasis [J]. N Engl J Med. 2001 ,345(11):833-5.
    [4] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [5] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [6] Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo [J]. Br J Cancer .2008, 99(9):1493-501.
    [7] Grymula K, Tarnowski M, Wysoczynski M, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas [J]. Int J Cancer. 2010 Feb 16.
    [8] Folkman J.What is the evidence that tumors are angiogenesis dependent? [J].J Natl Cancer Inst. 1990,82(1):4-6.
    [9] Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF [J]. Oncogene. 1999 ,18(38):5356-62.
    [10] Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis [J]. Semin Cancer Biol. 1999 ,9(3):211-20.
    [11] Kerbel RS. Tumor angiogenesis: past, present and the near future [J]. Carcinogenesis. 2000 ,21(3):505-15.
    [12] Kryczek I, Lange A, Mottram P, et al.CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers [J]. Cancer Res. 2005 ,65(2):465-72.
    [13] Wang J, Wang J, Sun Y, et al. Diverse signaling pathways through theSDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis [J]. Cell Signal. 2005 ,17(12):1578-92.
    [14] Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4 [J]. Cancer Res. 2002 ,62(24):7203-6.
    [15] Rempel SA, Dudas S, Ge S, Gutiérrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma [J]. Clin Cancer Res. 2000 ,6(1):102-11.
    [1] Müller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis [J]. Nature. 2001, 410(6824):50-6.
    [2] Maksym RB, Tarnowski M, Grymula K, et al. The role of stromal-derived factor-1--CXCR7 axis in development and cancer [J]. Eur J Pharmacol. 2009 ,625(1-3):31-40.
    [3] Murphy PM.Chemokines and the molecular basis of cancer metastasis [J]. N Engl J Med. 2001 ,345(11):833-5.
    [4] Schwarz MK, Wells TN. New therapeutics that modulate chemokine networks [J]. Nat Rev Drug Discov. 2002 ,1(5):347-58.
    [5] Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt [J]. Cancer Res. 2003 ,63(8):1969-74.
    [6] Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development [J]. Nat Rev Immunol. 2006 ,6(2):107-16.
    [7] Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products [J]. Annu Rev Immunol. 1990,8:111-137.
    [8] Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer [J]. Cancer Cell. 2004;6:17–32.
    [9] Wright DE, Bowman EP, Wagers AJ, et al. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines [J]. J Exp Med. 2002;195:1145-1154.
    [10] Aiuti A, Webb IJ, Bleul C, et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood [J]. J Exp Med. 1997 ,185(1):111-20.
    [11] Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 [J]. Science. 1999;283: 845-848.
    [12] Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor [J]. Science. 1996 ,272(5263):872-7.
    [13] Federsppiel B, Melhado IG, Duncan AM, et al. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen [J]. Genomics. 1993,16(3):707-12.
    [14] Li YM, Pan Y, Wei Y, et al.Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis [J]. Cancer Cell. 2004,6(5):459-69.
    [15] Ptasznik A, Urbanowska E, Chinta S, et al.Crosstalk between BCR/ABLoncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells [J]. J Exp Med. 2002 ,196(5):667-78.
    [16] Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone [J]. Cancer Res. 2002,62(6):1832-7.
    [17] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature [J]. Proc Natl Acad Sci U S A. 2007, 104(40):15735-40.
    [18] Ohtani Y, Minami M, Kawaguchi N, et al. Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells [J]. Neurosci Lett. 1998 ,249(2-3):163-6.
    [19] Tanabe S, Heesen M, Yoshizawa I, et al. Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes [J]. J Immunol. 1997,159(2):905-11.
    [20] Bleul CC, Fuhlbrigge RC, Casasnovas JM, et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) [J]. J Exp Med. 1996 ,184(3):1101-9.
    [21] Lusso P. HIV and the chemokine system: 10 years later [J]. EMBO J. 2006 ,25(3):447-56.
    [22] Agrawal L, Lu X, Jin Q, et al. Anti-HIV therapy: Current and future directions [J]. Curr Pharm Des. 2006,12(16):2031-55.
    [23] Reeves JD, Piefer AJ. Emerging drug targets for antiretroviral therapy [J]. Drugs. 2005,65(13):1747-66.
    [24] Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products [J]. Annu Rev Immunol. 1990,8:111-137.
    [25] Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor [J].Proc Natl Acad Sci U S A.1994,91:2305-2309.
    [26] Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4downregulated by von Hippel-Lindau tumour suppressor pVHL [J]. Nature. 2003 ,425(6955):307-11.
    [27] Balkwill F.Cancer and the chemokine network [J]. Nat Rev Cancer. 2004 ,4(7):540-50.
    [28] Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer [J]. Cancer Cell. 2004,6(1):17-32.
    [29] Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis [J]. FASEB J. 2004 ,18(11):1240-2.
    [30] Lapteva N, Yang AG, Sanders DE, et al. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo [J]. Cancer Gene Ther. 2005 ,12(1):84-9.
    [31] Smith MC, Luker KE, Garbow JR, et al. CXCR4 regulates growth of both primary and metastatic breast cancer [J]. Cancer Res. 2004 ,64(23):8604-12.
    [32] Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro [J]. Cancer Res. 2003 ,63(16):4801-4.
    [33] Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4 [J]. J Biol Chem. 2003,278(24):21631-8.
    [34] Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone [J]. Cancer Res . 2002,62(6):1832–7.
    [35] Singh S, Singh UP, Grizzle WE, et al. CXCL12-4 interactions modulates prostate cancer cell migration, metalloproteinase expression and invasion [J]. Lab Invest 2004;84:1666–76.
    [36] Kukreja P, Abdel-Mageed AB, Mondal D, et al. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signalingpathway-dependent NF-kappaB activation [J]. Cancer Res. 2005 ,65(21):9891-8.
    [37] Wang J, Wang J, Dai J, et al. A glycolytic mechanism regulating an angiogenic switch in prostate cancer [J]. Cancer Res. 2007 ,67(1):149-59.
    [38] Wang J, Wang J, Sun Y, et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis [J]. Cell Signal. 2005 ,17(12):1578-92.
    [39] Hart CA, Brown M, Bagley S, et al. Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process [J]. Br J Cancer. 2005 ,92(3):503-12.
    [40] Singh S, Singh UP, Grizzle WE, et al. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion [J]. Lab Invest. 2004 ,84(12):1666-76.
    [41] Burger M, Glodek A, Hartmann T, et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells [J]. Oncogene. 2003 ,22(50):8093-101.
    [42] Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells [J]. Cancer Res. 2002, 62(21):6304-11.
    [43] Tang CH, Tan TW, Fu WM, et al. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis [J]. Carcinogenesis. 2008 ,29(1):35-43.
    [44] Su L, Zhang J, Xu H, et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells [J]. Clin Cancer Res. 2005 , 11(23):8273-80.
    [45] Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells [J]. Oncogene. 2005 , 24(27):4462-71.
    [46] Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor andhypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha [J]. J Biol Chem. 2005, 280(23):22473-81.
    [47] Law NM, Rosenzweig SA. Characterization of the G-protein linked orphan receptor GPRN1/RDC1 [J]. Biochem Biophys Res Commun. 1994 , 201(1):458-65.
    [48] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development [J].J Exp Med .2006, 203(9):2201-13.
    [49] Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity [J]. Immunity. 2000 ,12(2):121-7.
    [50] Thelen M, Thelen S.CXCR7, CXCR4 and CXCL12: an eccentric trio? [J]. J Neuroimmunol. 2008 ,198(1-2):9-13.
    [51] Madden SL, Cook BP, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain [J]. Am J Pathol. 2004 , 165(2):601-8.
    [52] Schutyser E, Su Y, Yu Y, et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells [J]. Eur Cytokine Netw. 2007, 18(2):59-70.
    [53] Goldmann T, Dr?mann D, Radtke J, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy [J]. Virchows Arch. 2008 , 452(3):347-8.
    [54] Gerrits H, van Ingen Schenau DS, Bakker NE, et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice [J]. Genesis. 2008 , 46(5):235-45.
    [55] Jones SW, Brockbank SM, Mobbs ML, et al. The orphan G-protein coupled receptor RDC1: evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover [J]. Osteoarthritis Cartilage. 2006 ,14(6):597-608.
    [56] Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes [J]. J Biol Chem. 2005, 280(42):35760-6.
    [57] Infantino S, Moepps B, Thelen M. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells [J]. J Immunol. 2006 , 176(4):2197-207.
    [58] Sierro F, Biben C, Martínez-Mu?oz L, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7 [J]. Proc Natl Acad Sci U S A. 2007, 104(37):14759-64.
    [59] Boldajipour B, Mahabaleshwar H, Kardash E, et al. Control of chemokine-guided cell migration by ligand sequestration [J]. Cell, 2008 ,132(3):463-473.
    [60] Mazzinghi B, Ronconi E, Lazzeri E, et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells [J]. J Exp Med, 2008 ,205(2):479-490.
    [61] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer [J]. J Biol Chem .2008, 283(7):4283-94.
    [62] Iwakiri S, Mino N, Takahashi T, et al. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer [J]. Cancer. 2009 , 115(11):2580-93.
    [63] Sun YX, Pedersen EA, Shiozawa Y, et al. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12 [J]. Clin Exp Metastasis. 2008, 25(7):765-76.
    [64] Goldmann T, Dr?mann D, Radtke J, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy [J]. Virchows Arch. 2008, 452(3):347-8.
    [65] Maksym RB, Tarnowski M, Grymula K, et al. The role of stromal-derived factor-1--CXCR7 axis in development and cancer [J]. Eur J Pharmacol. 2009 , 625(1-3):31-40.
    [66] Salmaggi A, Maderna E, Calatozzolo C, et al. CXCL12, CXCR4 and CXCR7 expression in brain metastases [J]. Cancer Biol Ther. 2009 , 8(17):1608-14.
    [67] Meijer J, Ogink J, Roos E. Effect of the chemokine receptor CXCR7 on proliferation of carcinoma cells in vitro and in vivo [J]. Br J Cancer .2008, 99(9):1493-501.
    [68] Grymula K, Tarnowski M, Wysoczynski M, et al. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas [J]. Int J Cancer. 2010 Feb 16.
    [69] Zabel BA, Wang Y, Lewén S, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands [J]. J Immunol. 2009 , 183(5):3204-11.
    [70] Jin Z, Nagakubo D, Shirakawa AK, et al. CXCR7 is inducible by HTLV-1 Tax and promotes growth and survival of HTLV-1-infected T cells [J]. Int J Cancer. 2009 , 125(9):2229-35.
    [71] Hartmann TN, Grabovsky V, Pasvolsky R, et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells [J]. J Leukoc Biol. 2008 , 84(4):1130-40.
    [72] Odemis V, Boosmann K, Heinen A, et al. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells [J]. J Cell Sci. 2010 , 123(Pt 7):1081-8.
    [73] Kalatskaya I, Berchiche YA, Gravel S, et al. AMD3100 is a CXCR7 ligand with allosteric agonist properties [J]. Mol Pharmacol. 2009 , 75(5):1240-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700