hTERT基因在人表皮干细胞中的表达与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表皮干细胞是皮肤组织特异性干细胞,具有强大增殖潜能和自我更新能力,是皮肤及其附属器发生、修复、改建的关键性源泉,有望成为皮肤组织工程理想的种子细胞。.了解表皮干细胞增殖分化调控机制是其应用的重要前提和理论基础。国内外现有研究主要集中在干细胞壁龛、整合素家族、Wnt信号转导通路、Notch信号转导通路、c-Myc和p63、p16基因的表达等途径上,且已取得一定进展。近期研究发现,表皮干细胞离体后其增殖性能与在体有很大差异,即很容易失去其干细胞特性,体外复制较为困难,限制了研究的进一步深入。目前已知端粒酶活性的丧失及其增殖相关基因表达的改变是造成多种成体干细胞体外复制和扩增受限的主要原因。但造成表皮干细胞这种差异的原因是否也是如此,目前尚不十分清楚。
     端粒酶是一种能延长端粒末端并保持端粒长度的核糖蛋白酶,它能以自身RNA为模板合成端粒DNA并加到染色体末端,补充染色体复制时丢失的端粒DNA以使端粒延长,从而延长细胞寿命甚至使其永生化。人端粒酶由一个互补于端粒DNA的RNA亚基(hTR)和具有逆转录活性的端粒酶逆转录酶(hTERT)及其它相关蛋白(TPI)组成。其中人端粒酶逆转录酶(humantelomerase reverse transcriptase, hTERT)基因的表达和转录是决定端粒酶活性的主要限速步骤。
     在人体,端粒酶活性存在于干细胞、生殖细胞、部分有再生能力的体细胞及绝大多数恶性肿瘤组织中。它的高活性表达是肿瘤细胞恶性增殖的一项重要条件,但其适量表达又具有延长细胞寿命的作用。随着干细胞分化的进行,端粒酶活性也随之降低,至终末分化细胞已无法测到端粒酶。上调和维持干细胞的端粒酶活性,对提高干细胞体外复制和扩增能力及揭示干细胞衰老机制都将具有重要意义。至今已有不少文献报道应用hTERT基因转染人骨髓间充质干细胞、成纤维细胞、成骨细胞、脐血间质细胞、视网膜色素细胞、内皮细胞等多种细胞来延长细胞增殖寿命的成功尝试,初步结果均表明显著延长了细胞生命周期,并保持正常表型且没有恶性转化倾向。皮肤发育生物学现有研究发现,在富含表皮干细胞的表皮基底层和生长期毛囊中均有端粒酶活性表达,提示端粒酶活性表达很可能与表皮干细胞增殖分化机制之间也存在着重要的内在联系。目前对体外培养的人表皮干细胞端粒酶活性表达特征及其与表皮干细胞增殖分化的关系仍缺乏了解。
     基于此,本课题采用表皮干细胞体外分离培养方法,观察hTERT基因及其蛋白和端粒酶活性在人表皮干细胞中的表达特征,探讨其对体外培养的人表皮干细胞生物学特性的作用及意义;采用脂质体介导转染法,将构建的携人端粒酶逆转录酶和增强型绿色荧光蛋白双基因的重组真核表达质粒pIRES2-EGFP-hTERT转染体外培养的人表皮干细胞,观察hTERT mRNA转录及其蛋白的表达、端粒酶活性和细胞生物学特性的变化,为其在皮肤组织工程中的应用提供新思路和理论依据。第一部分人表皮干细胞体外培养、鉴定与端粒酶逆转录酶表达
     目的:观察体外培养的人表皮干细胞hTERT基因及其蛋白和端粒酶活性的表达特征,探讨其对表皮干细胞生物学特性的作用及意义。
     方法:取因创伤等原因致意外流产的妊娠24~26周龄胎儿背部皮肤标本,由南昌大学第一附属医院产科提供,均得到产妇或家属知情同意,实验经医院医学伦理委员会批准。采用胰蛋白酶和乙二胺四乙酸联合消化法分离表皮、Ⅳ型胶原快速粘附法纯化人表皮干细胞,以含表皮生长因子、角质细胞无血清培养基组成的人表皮干细胞培养液进行体外培养。倒置相差显微镜下观察人表皮干细胞形态学变化,计算其克隆形成率,测定细胞周期,免疫细胞化学染色法行β1整合素、K19、p63和hTERT单抗检测。逆转录-聚合酶链反应(RT-PCR)和蛋白质免疫印迹法(Western blot)分别检测人表皮干细胞hTERT mRNA及其蛋白的表达,端粒重复序列扩增法(TRAP)-ELISA检测端粒酶活性。
     结果:分离培养的人胎儿表皮干细胞呈克隆样生长,其克隆形成率明显高于角质细胞对照组,差异有统计学意义(P<0.01);细胞周期分析发现,82.64%的表皮干细胞处于G0/G1期;免疫细胞化学染色显示,人表皮干细胞β1整合素、K19、p63和hTERT表达均阳性;RT-PCR和Western blot检测人表皮干细胞hTERT mRNA及其蛋白表达弱阳性;TRAP-ELISA检测人表皮干细胞端粒酶活性表达弱阳性。
     结论:
     1、本实验采用胰蛋白酶联合乙二胺四乙酸消化法分离表皮、Ⅳ型胶原快速黏附法纯化培养的人胎儿表皮干细胞呈克隆样生长,大部分细胞处于G0/G1期。表明本培养体系分离培养的人胎儿表皮干细胞具有干细胞生物学特性。
     2、体外培养的人胎儿表皮干细胞hTERT mRNA及其蛋白表达和端粒酶活性弱阳性,提示人表皮干细胞端粒酶逆转录酶的表达与调控对维持其增殖和自我更新能力可能具有重要意义。第二部分hTERT基因转染人表皮干细胞的实验研究
     目的:将携人端粒酶逆转录酶和增强型绿色荧光蛋白双基因的重组真核表达质粒pIRES2-EGFP-hTERT转染体外培养的人表皮干细胞,观察hTERT mRNA及其蛋白的表达、端粒酶活性和细胞生物学特性的变化,为其在皮肤组织工程中的应用提供新思路和理论依据。
     方法:构建与鉴定携人端粒酶逆转录酶和增强型绿色荧光蛋白双基因的重组真核表达质粒pIRES2-EGFP-hTERT,采用脂质体介导转染法将其导入体外培养的人胎儿表皮干细胞,G418筛选法进行抗性克隆筛选。RT-PCR和Western blot分别检测人表皮干细胞hTERT mRNA及其蛋白表达,TRAP-ELISA检测端粒酶活性,倒置相差显微镜下观察人表皮干细胞形态学变化,计算其克隆形成率,MTT法测定生长曲线,流式细胞仪测定细胞周期,并行染色体核型分析。
     结果:构建扩增重组真核表达质粒pIRES2-EGFP-hTERT,经酶切的片段与理论预期长度相符,并转染体外培养的人胎儿表皮干细胞,24h在荧光显微镜488nm波长处可见到EGFP阳性表达细胞,整个细胞均呈绿色。经G418筛选得到阳性克隆。转入hTERT基因的质粒转染组细胞hTERT mRNA及其蛋白表达和端粒酶活性均为阳性,表达水平强于空载体组和非转染组表皮干细胞(P<0.05),空载体组和非转染组组间差异无统计学意义;质粒转染组细胞形态未发生改变,呈克隆样生长,其克隆形成率高于空载体组和非转染组细胞(P<0.05);生长曲线显示,质粒转染组细胞较空载体组和非转染组细胞增殖迅速,生长活跃;细胞周期分析显示,转染P5代表皮干细胞仍84.60%处于G0/G1期;染色体核型分析,细胞染色体为正常二倍体核型,未发生畸变。
     结论:
     1、采用脂质体介导转染法可成功将hTERT-pIRES2-EGFP重组真核表达质粒转染体外培养的人胎儿表皮干细胞,转染细胞hTERT mRNA及其蛋白表达与端粒酶活性明显增强。
     3、转染hTERT基因的人表皮干细胞呈克隆样生长,增殖能力增强,生命周期延长,且大部分表皮干细胞仍处于相对静止期(G0/G1),维持了干细胞的特性,染色体核型分析未发生畸变。提示hTERT基因调控的人表皮干细胞可稳定培养,有望成为细胞移植和皮肤组织工程理想的种子细胞。
As the skin tissue-specific stem cells, epidermal stem cells have strong proliferative potential and self-renewal capacity. They are also the main source for generation, reparation and rebuilding of skin, which make them seed cells in tissue engineering. Proliferation and differentiation of epidermal stem cells to understand regulatory mechanisms is an important prerequisite for their application, and theoretical basis. The research on epidermal stem cells has focus on stem cell niches, integrin family, Wnt signaling pathway, Notch signaling pathway, c-Myc and p63, p16 gene expression and other pathways, which have made progress. Recent study found that after epidermal stem cells in vitro and in vivo the proliferation of performance are very different, that is very easy to lose their stem cell properties, in vitro replication more difficult, limiting further research.. The loss of telomerase activity are known and proliferation related gene expression changes are caused by a variety of adult stem cells in vitro' replication and the main reason for limited expansion. However, epidermal stem cells caused by the reasons for this difference is also true, is not yet clear.
     Telomerase is a telomere end can extend and maintain telomere length ribosomal protein, it to its own RNA synthesis of telomeric DNA as a template and added to the chromosome ends, add the missing chromosome telomere DNA replication in order to extend telomeres, thus extending life and even to immortalized cells. Human telomerase includes a telomere DNA complementary to the RNA subunit (hTR) and a reverse transcriptase activity of telomerase reverse transcriptase (hTERT), and other associated protein (TPI). Of the three subunits of telomerase, only human telomerase reverse transcriptase (hTERT) expression is coincide with telomerase activation.
     In humans, telomerase activity present in stem cells, germ cells, some capacity for regeneration of body cells and the vast majority of malignant tumors. Its expression is highly active malignant proliferation of tumor cells is an important condition, but the amount of expression but also has extended the role of cell life. With the conduct of stem cell differentiation, telomerase activity may also decrease to terminally differentiated cells can no longer measured telomerase. Up and maintenance of telomerase activity in stem cells, stem cells to improve the replication and amplification, and reveals the stem cell aging mechanisms will be important. Number of applications has been reported in the literature hTERT gene into human bone marrow mesenchymal stem cells, fibroblasts, osteogenic cells, umbilical cord blood mesenchymal cells, retinal pigment cells, endothelial cells and other cells to extend the life of the success of cell proliferation try. Preliminary results from both significantly prolong the cell life cycle, and maintain normal phenotype and no tendency to malignant transformation. Developmental biology of skin current study found that epidermal stem cells in the epidermis is rich in the basal layer and hair follicle growth phase in both the expression of telomerase activity, suggesting that telomerase activity may be related mechanism of proliferation and differentiation of epidermal stem cells also exist between important internal links. Present in vitro telomerase activity of human epidermal stem cells and its expression characteristics of epidermal stem cell proliferation and differentiation is still a lack of understanding of the relationship.
     In this topic, we observed the hTERT gene and its protein and telomerase activity in cultured epidermal stem cells in vitro. To investigate its effects on cultured human epidermal stem cell biological characteristics of the role and significance. To construct the recombinant plasmid pIRES2-EGFP-hTERT encoding human telomerase reverse transcriptase and enhanced green fluorescent protein and transfect into cultured human fetal epidermal stem cells by liposome-mediated transfection. The expression of hTERT mRNA transcription and protein, telomerase activity and biological characteristic were observed, which may offer new ideas and theories in skin tissue engineering.
     PartⅠIsolation, cultivation and expression of human telomerase reverse transcriptase in human epidermal stem cells
     Objectives:To observe the hTERT gene and protein expression of telomerase activity characteristics of cultured human skin stem cells. To explore the biological characteristics of epidermal stem cell function and significance.
     Method:The skin samples of fetus were taken from the accidental abortion (24-26 weeks gestational age) which provided by the Department of Maternity, the First Affiliated Hospital of Nanchang University. The use of these samples were obtained with consent from parturients and patients and approved by Medical Ethics Committee of the Hospital. The sample was disposed with Trypsin-EDTA respectively and got the epidermis, and then we digested the epidermis and harvested the epidermal cells. The type IV collagen was used to isolate and purify the human epidermal stem cells, and the epidermal growth factor and the keratinocyte serum free medium were used to culture the cells. To observe the human epidermal stem cells under inverted phase contrast microscope morphology. Theβ1 integrin, keratin 19 and p63 transcription factor were identified by the immunocytochemical stain. The colony forming efficiency were calculated. The proliferation and cycle of human epidermal stem cells were detected with flow cytometry. The expression of hTERT mRNA and hTERT protein levels were respectively measured by reserve transcriptase-polymerase chain reaction (RT-PCR) and Western blot. The telomerase activity was detected by TRAP-ELISA.
     Results:The cultured cells revealed colony growth. The cloning efficiency was significantly higher than the control group keratinocytes, the difference was statistically significant. (P< 0.05). The cells instage G0/G1 accounted for 82.64% by cell cycle analysis. The (31 integrin, k19 and p63 had positive expression in the epidermal stem cells but not the keratinocyte cells. The hTERT was expressed weakly at mRNA level and protein levels in the human fetal epidermal stem cells. The telomerase activity was weakly positive.
     Conclusion:
     1. In the study, the cultured cells isolated by trypsin-EDTA digestion andⅣrapid adhesion revealed colony growth. Most cells were in the G0/G1 phase, which shows that the cultured human fetal epidermal stem cells have the stem cell biological characteristics.
     2. The hTERT was expressed weakly at mRNA level and protein levels in the human fetal epidermal stem cells. The telomerase activity was weakly positive. The expression and regulation of telomerase reverse transcriptase in human epidermal stem cells may be of great significance to maintain of their self-renewal capacity.
     PartⅡTransfection of human telomerase reverse transcriptase gene into human epidermal stem cells
     Objectives:To transfect the recombinant plasmid pIRES2-EGFP-hTERT encoding human telomerase reverse transcriptase and enhanced green fluorescent protein into cultured human fetal epidermal stem cells, and to observe the hTERT gene and protein expression and telomerase activity of cultured human skin stem cells. To explore the biological characteristics of epidermal stem cell function and significance, which it offer new ideas and theories for the skin tissue engineering.
     Method:To construct the recombinant plasmid pIRES2-EGFP-hTERT encoding human telomerase reverse transcriptase and enhanced green fluorescent protein and transfect into cultured human fetal epidermal stem cells by liposome-mediated transfection. The positive cells were selected with G418. The plasmid pIRES2-EGFP and plasmid pIRES2-EGFP-hTERT encoding hTERT was transfected into cultured human fetal epidermal stem cells by liposome-mediated transfection. The positive cells were selected with G418. The expression of hTERT mRNA and hTERT protein levels were respectively measured by reserve transcriptase-polymerase chain reaction (RT-PCR) and Western blot. The telomerase activity was detected by TRAP-ELISA. The colony forming efficiency was calculated. The cell cycle of human epidermal stem cells was detected with flow cytometry. The growth curve was detected with MTT. The karyotype analysis in parallel was detected.
     Results:The plasmid pIRES2-EGFP-hTERT was successfully amplified and constructed recombinant eukaryotic expression. The restriction fragment length consistent with the theoretical expectations. The recombinant plasmid was transfected into cultured human fetal epidermal stem cells. The expression of EGFP-positive cells was observed at 488nm wavelength fluorescence microscope after 24h. The whole cells showed green. The cells selected with G418. The expression of hTERT mRNA and protein and telomerase activity was positive. The expression was higher than the non-transfected group and empty vector group (P<0.05). The difference was statistically significant between non-transfected group and empty vector group. The cells in transfected group did not change shape, revealed colony growth. The cloning efficiency was significantly higher than non-transfected group and empty vector group (P<0.05). Compared with non-transfected group and empty vector group, transfected group cells grew rapidly by growth curve. Cell cycle analysis showed that the cells instage G0/G1 accounted for 84.60%. The chromosomal morphology of cells was normal, diploid karyotypea, without distortion.
     Conclusion:
     1. The recombinant plasmid pIRES2-EGFP-hTERT can be successfully transfected into cultured human fetal epidermal stem cells by liposome-mediated transfection method. The expression of hTERT mRNA and protein and telomerase activity was significantly increased.
     2. The human epidermal stem cells transfed hTERT gene revealed colony growth, enhanced proliferation and life cycle extension. And most of the epidermal stem cells remains relatively quiescent (G0/G1), maintaining the characteristics of stem cells. The karyotype analysis of cells has no distortion. The human epidermal stem cells of hTERT gene regulation can be stably cultured, which may become ideal seed cells of tissue engineering.
引文
1 Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograt in the treatment of major burn wounds:Eleven years of clinical experience. Burns,2006,32(5):538-544.
    2 Williamson JS, Snelling CF, Clugston P, et al. Cultured epithelial autograft:five years of clinical experience with twenty-eight patients. J Trauma,1995,39(2):309-319.
    3 Coolen NA, Verkerk M, Reijnen L, et al. Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplant,2007,16(6):649-661.
    4 Xiao S, Zhu S, Ma B,et al. A new system for cultivation of keratinocytes on acellular demal matrix substitute with the use of human fibroblast feeder layer. Cells Tissues Organs,2008, 187(2):123-130.
    5 Hernon CA, Harrison CA, Thornton DJ, er al. Enhancement of keratinocyte performance in the production of tissue-engineered skin using a low-calcium medium. Wound Repair Regen, 2007,15(5):718-726.
    6 Atiyeh BS, Costagliola M. Cultured epithelial autograft(CEA) in burn treatment:three decades later. Burns,2007,33(4):405-413.
    7 Bannasch H, Unterberg T, Fohn M, et al. Cultured keratinocytes in fibrin with decellularised dermis close procine full-thickness wounds in a single step. Burns.2008,4(7):1015-1021.
    8 Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes:the formation of keratinizing colonies from single cells. Cell,1975,6(3):331-343.
    9 Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci,1979,76(11):5665-5668.
    10 O'Connor NE, Mulliken JB, Banks-Schlegel S, et al. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet,1981,1(8211):75-78.
    11 Bannasch H, Stark GB, Knam F, et al. Decellularized dermis in combination with cultivated keratinocytes in a short-and long-term animal experimental investigation. J Eur Acad Dermatol Venereol.2008,22(1):41-49.
    12 Gath HJ, Hell B,Zarrinbal R,et al. Regenration of intraoral defects after tumor resection with a bioengineered human dermal replacement(Dermagraft). Plast Reconstr Surg.2002,109(3): 889-893.
    13 Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograt in the treatment of major burn injures:A critical review of the literature. Burns,2006,32(4):395-401.
    14 Watt FM, Lo Celso C, Silva-Varqas V. Epidermal stem cells:an update. Curr Opin Genet Dev 2006,16(5):518-524
    15 Ghadially R. Epidermal stem cells. Adv Dermatol 2005,21:335-355
    16 Slack JM. Origin of stem cells in organogenesis. Science.2008,322(5907):1498-501.
    17 Bickenbach JR, Stern MM, Grinnell KL, et al. Epidermal stem cells have the potential to assist in healing damaged tissues. J Investig Dermatol Symp Proc 2006,11(1):118-123
    18 Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006,22:339-373
    19 李建福,付小兵,盛志勇,等.人胚胎期表皮干细胞与汗腺发生过程关系的研究.中华烧伤杂志,2002,18(6):369-371.
    20 Yamaguchi A. Historical background and recent advance in BMP research. Clin Calcium, 2006,16(5):732-737.
    21 Bienz M. beta-Catenin:a pivot between cell adhesion and Wnt signalling. Curr Biol 2005,15(2):R64-R67
    22 Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007,13(14):4042-4045
    23 李海红,付小兵,周岗,等.细胞角蛋白在皮肤中的表达.中华实验外科杂志,2005,22(7):834.
    24 Kai-Hong J, Jun X, Kai-Meng H, et al. P63 expression pattern during rat epidermis morphogenesis and the role of p63 as a marker for epidermal stem cells. J Cutan Pathol, 2007,34(2):154-159.
    25 Trempus CS, Monis RJ, Bortner CD, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol,2003,120(4): 501-511.
    26 Chen RE, Thorner J. Function and regulation in MAPK. signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007,1773(8):1311-1340
    27 Carlson ME, Conboy IM. Regulating the Notch pathway in embryonic, adult and old stem cells. Curr Opin Pharmacol 2007,7(3):303-309
    28 Gosselet FP, Magnaldo T, Culerrier RM,et al. BMP2 and BMP6 control p57Kip2 expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cellular Signalling,2007,19(4):731-739.
    29 Yamamoto N, Tanigaki K, Han H, et al. Notch/RBP-J signaling Regulates Epidermis/Hair Fate Determination of Hair Follicular Stem Cells. Current Biology,2003,13(4):333-338.
    30 Tumbar T. Epithelial skin stem cells. Methods Enzymol,2006,419:73-99.
    31 Braun KM, Prowse DM. Distinct epidermal stem cell compartments are maintained by independent niche microenvironments Stem Cell Rev 2006,2(3):221-231
    32 Moore KA, Lemischka IR. Stem cells and their niches. Science,2006,311:1880-1885.
    33 Walker MR, Patel KK, Stappenbeck TS. The stem cell niche. J Pathol,2009,217(2):169-180.
    34 Ju Z, Lenhard Rudolph K. Telomere dysfunction and stem cell ageing. Biochimie 2008, 90(1):24-32.
    35 Flores I, Benetti R, Blasco MA. Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 2006,18(3):254-260.
    36 Hivama E, Hivama M. Telomere and telomerase in stem cells. Br J Cancer 2007,96(7):1020-1024
    37 Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev 2008,88(2):557-579
    38 Greider CW. Telomerase RNA levels limit the telomere length equilibrium. Cold Spring Harb Symp Quant Biol 2006,71:225-229
    39 Ju Z, Rudolph KL. Telomeres and Telomerase in Stem Cells during Aging and Disease. Genome Dyn 2006,1:84-103
    40 Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998,279:349-352.
    41 Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr.Biol,1998,8:379-382.
    42 Abdallah BM, Haack-Sorensen M, Burns JS, et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation. Biochem Biophys Res Commun,2005, 326(3):527-538.
    43 Xu C, Jiang J, Sottile V, et al. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cell,2004,22(6):972-980.
    44 Kang SK, Putnam L, Dufour J, et al. Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cell,2004, 22(7):1356-1372.
    45 Terai M, Uyama T, Sugiki T, et al. Immortalization of human fetal cells:the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell,2005,16(3):1491-1499.
    46 Armstrong L, Saretzki G, Peters H, et al.Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 2005,23(4):516-529.
    47 刘德伍,黄培信,毛远桂,等.不同发育阶段人表皮干细胞端粒酶反转录酶表达的比较研究.中国组织工程研究与临床康复,2007,11(50):10025-10029.
    48 State Council of the People's Republic of China.Administrative Regulations on MedicalInstitution.1994-09-01.[2008-07-28].中华人民共和国国务院.医疗机构管理条例. 1994-09-01.[2008-07-28].http://www.gov.cn/banshi/2005-08/01/content_19113.htm
    49 Horch RE, Kopp J, Kneser U, et al. Tissue engineer of cultured skin substitutes. J Cell Mol Med,2005,9(3):592-608.
    50 Yang EK, Seo YK, Youn HH, et al. Tissue engineer artificial skin composed of dermis and epidermis. Arif Organs,2000,24(1):7-17.
    51 Hodgkinson T, Yuan XF, Bayat A. Adult stem cells in tissue engineering. Expert Rev Med Devices.2009,6(6):621-640.
    52 Shevchenko RV, James SL, James SE.A review of tissue-engineered skin bioconstructs available for skin reconstruction.J R Soc Interface.2010,7(43):229-258.
    53 Charles CA, Ricotti CA, Davis SC, et al. Use of tissue-engineered skin to study in vitro biofilm development. Dermatol Surg.2009,35(9):1334-1341.
    54 Auger FA, Lacroix D, Germain L. Skin substitutes and wound healing. Skin Pharmacol Physiol.2009,22(2):94-102.
    55 Charruyer A, Ghadially R. Stem cells and tissue-engineered skin.Skin Pharmacol Physiol. 2009,22(2):55-62.
    56 Cotsarelis G. Epithelial stem cells:a folliculocentric view. J Invest Dermatol 2006,126(7): 1459-1468
    57 Denham M, Conley B, Olsson'F, et al.Stem cells:an overview. Curr Protoc Cell Biol 2005;Chapter 23:Unit 23.1
    58 Dazard JE, Piette J, Basset-Seguin N, et al. Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene 2000,19(33):3693-3705
    59 Trempus CS, Monis RJ, Bortner CD, et al. Enrichment for living murine keratincytes from the hair follicle bulge with the cell surface marker CD34. J Invent Dermatol,2003,120(4): 501-511.
    60 Jones PH, Watt FM Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell,1993,73(4):713-724.
    61 Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA,2000,97(20):10960-10965.
    62 Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell,1995, 80(1):83-93.
    63 Michel M, Torok N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro:keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci, 1996,109(5):1017-1028.
    64 Zhu AJ, Haase I, Watt FM. Signaling via betal integrins and mitogen-activated protein kinase determines human epidermaol stem cell fate in vitro. Proc Natl Acad Sci USA,1999,96(12): 6728-6733.
    65 Tsujita-Kyutoku M,Kiuchi K, Danbara N, et al. p63 expression in normal hurnan epidermis and epidermis and epidermis and epidermal appendages and their tumors.J Cutan Pathol, 2003,30(1):11-17.
    66 Pellegrini G, Bondanza S, Guerra L, et al. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput,1998,36(6):778-790.
    67 HerveC, Pierre A, HerveLBet al·Cultured epithelial autografts in exten-siveburn coverage of severely traumatized patients:a five year single-center.
    68 Kaur P, Li A. Adhesive properties of human basal epilderrnal cells:ananalysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J Invest Dermatol, 2000,114(3):413-420.
    69 TaniH, MorrisRJ, KaurP.experience with 30 patients. Burns,2000,26(4):379.
    70 Chen JL, Blasco MA, Greider CW.Secondary structure of vertebrate telomerase RNA. Cell 2000;100(5):503-514.
    71 Papini S, Cecchetti D, Campani D,et al. Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells.2003,21(4):481-94.
    72 Bickenbach JR, Chism E. Selection and extended growth of murine epidermal stem cells in culture. Exp Cell Res.1998 10; 244(1):184-95.
    73 Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA.1998; 95:3902-3907.
    74 Terunuma A, Kapoor V, Yee C, et al. Stem cell activity of human side population and alpha 6 integrin-bright keratinocytes defined by a quantitative in vivo assay. Stem Cells.2007; 25: 664-669.
    75 Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007,449:1003-1007.
    76 Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin funetion and expression. Cell,1993,73(4):713-724.
    77 Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004,113(2):160-168
    78 Flores I, Cayuela ML, Blasco MA.Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005;309(5738):1253-1256
    79 Sarin KY, Cheung P, Gilison D, et al.Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005;436(7053):1048-1052
    80 Blackburn EH.Telomere states and cell fates. Nature 2000,408(6808):53-56
    81 Blackburn EH, Greider CW, Szostak JW.Telomeres and telomerase:the path from maize, Tetrahymena and yeast to human cancer and aging.Nat Med 2006,12(10):7-12
    82 Masutomi K, Yu EY, Khurts S, et al.Telomerase maintains telomere structure in normal human cells.Cell 2003,114(2):241-245
    83 Sharma GG, Gupta A, Wang H, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair.Oncogene 2003,22(1):131-146
    84 Kim N W,Piatyszek M A,Prowse K P,et al. Specific association of Human telomerase activity with immortal cells and cancer. Science,1994,266(5195):2011-2015.
    85 卫立辛,郭亚军,门振林,等.检测人端粒酶活性的端粒酶TRAP-ELISA法的建立.中华肿瘤杂志,1998,20(4):264.
    86 梁光萍,罗向东,陈渝,等.hTERT基因荧光真核表达载体的构建及表达.第四军医大学学报,2003,24(13):1221-1223.
    87 杨仕明,房殿春,杨金亮,等.人hTRT正反义真核表达载体的构建及初步鉴定.第三军医大学学报,2000,22(11):1113.
    88 Wang X, Wan H, Korzh V, et al.Use of an IRES bicistronic construct to trace expression of exogenously introduced mRNA in zebrafish embryos. Biotechniques,2000,29(4):814-820.
    89 Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science,1994,263(5148):802-805.
    90 Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature.1995,23,373(6516): 663-664.
    91 Naylor LH. Reporter gene technology:the future looks bright. Biochem Pharmacol,1999, 58:749-757.
    92 Ehrhardt D. GFP technology for live cell imaging. Curr Opin Plant Biol,2003,6:622-628.
    93 Lee RJ, Huang L. Lipidic vector systems for gene transfer. Critical Rev Therapeutic Drug Carrier Sys,1997,14:173.
    94 Chandler LA, DoukasJ, Gonzalez AM, et al. FGF2 targeted adenovirus eneoding platelet-derived growth factor B enhances de novo tissue formation. MolTher,2000,2:153-160.
    95 Liechty KW, Sablich TJ, Adzieh NS, et al. Recombinant adenoviral mediated gene transfer in isehemic impaired wound healing. Wound Repair Regener,1999,7:148-153.
    96 Starke MP, Elaswarapu R. Genomic Protocols:Methods in Molecular Biology.2001.175.
    97 Goldman CK, Soroeeanu L, Smith N, et al.Invitro and vivo gene delivery mediated by a synthetic polycationic amino polymer. Nature Biotechnol,1997,15:462.
    98 Yang GS,Shmid M,Yan Z,et al. Virus-mediated transduction of murine retina with adeno-associated virus:effects of viral capsid and genome size. J Virol,2002,76(15):7651-7660.
    99 成党校,黄桂君.新型基因转染阳离子脂质体研究进展.国外医学药学分册,2000,27(5):257-260.
    100 Martinet W, Schrijvers D, Kockx M. Nucleofection as an efficient nonviral trans fection method for human monocytic cells. Biotechrol Lett,2003,25(13):1025-1029.
    101 Meyerson M, Counter CM, EN, et al. hEST2, the Putative human Telomerase Catalytic Subunit Gene, is Up-regulated in Tumor cells and during Immortalization. Cell,1997,90:785-795.
    102 Nakamura TM, Morin GB, Chapman KB,et al. Telomerase catalytic aubunit homologs from fission yeast and human. Science,1997,277:955-959.
    103 Morin GB, The human telomere terminal transferase enzyme is a ribonuleoprotein that synthesizes TTAGGG repeats. Cell,1989,59:52313.
    104 Schaetzlein S, Lucas-Hahn A, Lemme E, et al. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci U S A 2004,101(21):8034-8038.
    105 Lee MK, Hande MP, Sabapathy K. Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation-and stress-induced p53-dependent apoptosis. J Cell Sci 2005,118(Pt 4):819-829.
    106 Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005,309(5738):1253-1256.
    107 Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature,2005,436:1048-1052.
    108 Murasawa S, Llevadot J, Silver M, et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation,2002, 106(9):1133-1139.
    109 OkamotoT, Aoyama T, Nakayama T, et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun,2002,295(2): 354-361.
    110 Janne LS, Cecilia R, Nedime S, et al. Telomerase expression extands the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat biotechnol,2002,20:592-596.
    111 Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extands the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol,2002,20(6):592-596.
    1 Bickenbach JR, Stern MM, Grinnell KL, et al. Epidermal stem cells have the potential to assist in healing damaged tissues. J Investig Dermatol Symp Proc 2006; 11(1):118-123
    2 Tumbar T. Epithelial skin stem cells. Methods Enzymol 2006; 419:73-99
    3 Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006; 22: 339-373
    4 Cotsarelis G. Epithelial stem cells:a folliculocentric view. J Invest Dermatol 2006; 126(7): 1459-1468
    5 Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 1981; 60:1611-1620
    6 Watt FM, Lo Celso C, Silva-Varqas V. Epidermal stem cells:an update. Curr Opin Genet Dev 2006; 16(5):518-524
    7 Ghadially R. Epidermal stem cells. Adv Dermatol 2005; 21:335-355
    8 Pellegrini G, Bondanza S, Guerra L, et al. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput 1998; 36 (6):778-790
    9 Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4(1-2):7-25
    10 Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311 (5769):1880-1885
    11 Chen RE, Thorner J. Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007; 1773(8):1311-1340
    12 Sturgill TW, Ray LB. Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun 1986:134(2): 565-571
    13 Dazard JE, Piette J, Basset-Seguin N, et al. Switch from p53 to MDM2 as differentiating human keratinocytes lose their proliferative potential and increase in cellular size. Oncogene 2000; 19(33):3693-3705
    14 Carroll JM, Romero MR, Watt FM. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 1995; 83(6):957-968
    15 Zhu AJ, Haase I, Watt FM. Signaling via betal integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci U S A 1999; 96(12): 6728-6733
    16 Nusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes:the Wnt gene family. Cell 1991; 64(2):231-232
    17 Bienz M. beta-Catenin:a pivot between cell adhesion and Wnt signalling. Curr Biol 2005; 15(2):R64-R67
    18 Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13(14):4042-4045
    19 Seto ES, Bellen HJ. The ins and outs of Wingless signaling. Trends Cell Biol 2004; 14(1): 45-53
    20 Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 2007; 447(7142):316-320
    21 Thompson CC, Sisk JM, Beaudoin GM. Hairless and Wnt signaling:allies in epithelial stem cell differentiation. Cell Cycle 2006; 5(17):1913-1917
    22 Vasioukhin V, Bauer C, Degenstein L, et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 2001; 104(4):605-617
    23 Gat U, DasGupta R, Degenstein L, et al. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 1998; 95(5):605-614
    24 Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation 2004; 72 (9-10):512-526
    25 Yamaguchi A. Historical background and recent advance in BMP research. Clin Calcium 2006; 16(5):732-737
    26 Carlson ME. Conboy IM. Regulating the Notch pathway in embryonic, adult and old stem cells. Curr Opin Pharmacol 2007; 7(3):303-309
    27 Carlson ME, O'Connor MS, Hsu M, et al. Notch signaling pathway and tissue engineering. Front Biosci 2007; 12:5143-5156
    28 Lowell S, Jones P, Le Roux I, et al. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000; 10(9):491-500
    29 Braun KM, Prowse DM. Distinct epidermal stem cell compartments are maintained by independent niche microenvironments Stem Cell Rev 2006; 2(3):221-231
    30 Bickenbach JR, Stern MM. Plasticity of epidermal stem cells:survival in various environments. Stem Cell Rev 2005; 1(1):71-77
    1 Boukamp P, Mirancea N. Telomeres rather than telomerase a key target for anti-cancer therapy? Exp Dermatol 2007; 16(1):71-79
    2 McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics 1938;23(4):315-376
    3 Hao LY, Armanios M, Strong MA, et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 2005; 123(6):1121-1131
    4 Blackburn EH. Telomere states and cell fates. Nature 2000; 408(6808):53-56
    5 Shav JW, Wright WE. Senescence and immortalization:role of telomeres and telomerase. Carcinogenesis 2005; 26(5):867-874
    6 Greider CW. Telomerase RNA levels limit the telomere length equilibrium. Cold Spring Harb Symp Quant Biol 2006;71:225-229
    7 Blackburn EH, Greider CW, Szostak J W. Telomeres and telomerase:the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12(10):7-12
    8 Chen JL, Blasco MA, Greider CW. Secondary structure of vertebrate telomerase RNA. Cell 2000;100(5):503-514
    9 Sharma GG, Gupta A, Wang H, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 2003; 22(1):131-146
    10 Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114(2):241-245
    11 Ducrest AL, Szutorisz H, Lingner J, et al. Regulation of the human telomerase reverse transcriptase gene. Oncogene 2002; 21(4):541-552
    12 Harrington L, McPhail T, Mar V, et al. A Mammalian Associated Protein. Science 1997; 275 (5203); 973-977
    13 Denham M, Conley B, Olsson F, et al. Stem cells:an overview. Curr Protoc Cell Biol 2005;Chapter 23:Unit 23.1
    14 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154-156
    15 Ju Z, Rudolph KL. Telomeres and Telomerase in Stem Cells during Aging and Disease. Genome Dyn 2006;1:84-103
    16 Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004:113(2):160-168
    17 Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer 2007; 96(7): 1020-1024
    18 Drummond MW, Balabanov S, Holyoake Tl, et al. Concise review:Telomere biology in normal and leukemic hematopoietic stem cells. Stem Cells 2007; 25(8):1853-1861
    19 Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007; 3(10):640-649
    20 Schaetzlein S, Lucas-Hahn A, Lemme E, et al. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci U S A 2004;101(21):8034-8038
    21 Lee MK, Hande MP, Sabapathy K. Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation-and stress-induced p53-dependent apoptosis. J Cell Sci 2005; 118(Pt 4):819-829
    22 Armstrong L, Saretzki G, Peters H, et al. Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 2005;23(4):516-529
    23 Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005;309(5738):1253-1256
    24 Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005;436(7053):1048-1052
    25 Murasawa S, Llevadot J, Silver M, et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 2002; 106(9):1133-1139
    26 OkamotoT, Aoyama T, Nakayama T, et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun 2002; 295(2):354-361
    27 Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002;20(6):592-596
    28 Simonsen JL, Rosada C, Serakinci N, et al. Telomerase expression extands the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002; 20(6):592-596
    29 Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev 2008; 88(2):557-579
    30 Hivama E, Hivama M Telomere and telomerase in stem cells. Br J Cancer 2007; 96(7):1020-1024
    31 Ju Z, Lenhard Rudolph K. Telomere dysfunction and stem cell ageing. Biochimie 2008;90(1):24-32
    32 Flores I, Benetti R, Blasco MA. Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 2006:18(3):254-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700