Genistein对HeLa细胞拓扑异构酶Ⅱα和SIRT1的抑制作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分genistein对HeLa细胞生长的抑制作用
     目的:子宫颈癌是常见的妇女癌症,根据统计显示:子宫颈癌发生率的排名为女性癌症第一位,各个年龄层的女性都有可能发生子宫颈癌,但以25岁到45岁的妇女最为常见。死亡率的排名则为女性癌症的第四位,死亡人数占全部癌症死亡人数的4%。
     genistein具有雌激素作用、抗氧化作用、防突变、防射线损伤、抗感染、抗心脑血管病、抗骨质疏松等多种生理功效,近年来,genistein的抗癌效应及其应用前景受到普遍关注。基础研究表明,genistein能够抑制肿瘤细胞的生长、侵袭、并可加强其它抗癌药物的疗效、以及逆转肿瘤细胞的耐药性、诱导肿瘤细胞凋亡、诱导肿瘤细胞分化等。
     本研究将检测genistein对宫颈癌细胞株HeLa细胞生长的抑制作用,并测定其对HeLa细胞的半数抑制浓度,同时检测genistein对HeLa细胞细胞周期及凋亡的影响。
     方法:先用MTT法测定不同浓度genistein对HeLa细胞作用24 h和48h的吸光度值,计算不同浓度genistein对HeLa细胞的抑制率,并绘制抑制率曲线,确定ICso值。然后以genisteinIC5o作用后,Hoechst 33258荧光染色检测凋亡时细胞核形态变化,Annexin V-FITC和PI标记后采用流式细胞术进一步定量检测凋亡细胞比例,同时检测细胞周期分布情况。
     结果:genistein可以抑制HeLa细胞生长,并具有剂量和时间依赖性,24 h半数抑制浓度为126 uM,48h半数抑制浓度为75uM。采用75uMgenistein作用48 h后,Hoechst 33258染色可见凋亡细胞形态改变,且凋亡细胞比率较对照组增加;Annexin V-FITC和PI标记后采用流式细胞术进一步定量检测凋亡细胞,genistein作用组凋亡细胞比率明显增加;细胞周期分析显示genistein作用后G2/M细胞明显增加,G0/G1期和S期细胞比例没有明显改变,提示genistein使HeLa细胞周期阻滞于G2/M期。
     结论:genistein能够抑制HeLa细胞增殖,且具有时间和剂量依赖性。以75uM genistein作用48 h,能够引起细胞凋亡及细胞周期G2/M期阻滞。
     第二部分genistein对HeLa细胞拓扑异构酶Ⅱα抑制作用及相关机制研究
     目的:拓扑异构酶Ⅱ(topoisomeraseⅡ,TopoⅡ)是普遍存在的细胞核酶,能够解开S期和G2/M期紧凑缠绕的DNA超螺旋结构,催化DNA的超螺旋状态与解旋状态之间的相互转换,以便DNA复制、转录、修复、重组、染色体分离等,使细胞生命活动得以顺利进行。TopoⅡ有两种亚型,即TopoⅡα和TopoⅡβ,分子量分别为170kDa and 180 kDa. TopoⅡα和TopoⅡβ在细胞中具有不同的功能,TopoⅡα蛋白水平存在明显细胞周期特异性,表现为G1期较低,S期开始升高,G2/M期达顶峰。临床研究表明,在如肺癌、乳腺癌及头颈部肿瘤组织内,TopoⅡα基因表达明显高于正常组织,因此TopoⅡα被认为是肿瘤细胞增殖的一个特异性标志,在恶性肿瘤的发生、诊断,以及治疗中具有重要作用。
     自上世纪八十年代末开始注意到,genistein对DNA TopoⅡ的抑制作用是其发挥抗癌效应的重要方面。并且逐渐认识到,genistein对TopoⅡ的作用与VP-16、米托蒽醌、安吖啶等临床常用抗癌药物相似,即参与形成TopoⅡ-DNA断裂复合体,诱导DNA断裂和细胞凋亡,从而达到抑制或杀灭肿瘤细胞的目的。但目前的研究多集中于genistein对TopoⅡ-DNA断裂复合体影响,而缺乏genistein对TopoⅡ表达调控的研究。有研究显示,TopoⅡα表达与mRNA稳定性无关。在TopoⅡα基因启动子区存在2个GC盒,其表达主要受Sp家族调控。Sp1和Sp3作为广泛存在的转录调控因子,可以调控基因的表达,Sp1通过其三个“锌指结构”与TopoⅡα启动子区的GC盒结合,增强TopoⅡαmRNA的转录,上调TopoⅡα蛋白的表达。而Sp3同样含有三个“锌指结构”,可与Sp1竞争性结合GC盒位点。近期有研究表明,在人消化系肿瘤Caco-2细胞株中,GC盒与genistein对金属结合蛋白metallothionein IIA表达影响作用有关,genistein能够阻断反式维甲酸对血管内皮生长因子(VEGF)的转录刺激作用,而VEGF启动子中Sp1和Sp3结合位点起到关键作用。这些研究都预示,genistein可能可以通过Sp1和Sp3调节TopoⅡα表达。本研究旨在研究genistein对TopoⅡα基因表达的影响,并探讨转录因子Sp1和Sp3是否参与genistein对TopoⅡα的表达调控。
     方法:RT-PCR检测genistein作用后TopoⅡα及其上游转录因子Spl、Sp3 mRNA表达改变,western-blotting的方法检测TopoⅡα及转录因子Sp1、Sp3蛋白表达变化。TopoⅡα的启动子区存在2个GC盒,其中一个靠近转录起始位点,另一个远离转录起始位点,为测定两个GC盒中哪个在TopoⅡα表达调控中发挥作用,针对两个GC盒,分别跨越GC序列设计两对扩增引物,用染色体免疫共沉淀的方法检测TopoⅡα表达改变是否与转录因子Sp1、Sp3相关,并确定Sp1和Sp3分别通过哪个GC盒发挥作用。
     结果:genistein作用后,TopoⅡα与Sp1 mRNA及蛋白表达降低,而Sp3 mRNA和蛋白表达增加,且TopoⅡα表达变化与表达改变有关,两个GC盒在Sp1和Sp3参与genistein对TopoⅡα表达调控中都发挥作用。
     结论:genistein能够降低TopoⅡαmRNA及蛋白表达,降低Sp1 mRNA及蛋白表达,增加Sp3表达;且TopoⅡα表达变化与Sp1、Sp3表达改变有关;两个GC盒在Sp1和Sp3参与genistein对TopoⅡα表达调控中都发挥作用。
     第三部分genistein对HeLa细胞SIRT1的抑制作用及相关机制研究
     目的:蛋白质赖氨酸侧链能够被乙酰化、甲基化、泛素化,及ADP核糖基化,这些竞争性、可逆性翻译后修饰由不同的酶及与其相互作用的一些复合体调节。在真核细胞,乙酰化是最普遍的共价修饰,且目前认为乙酰化比磷酸化有更广泛的底物。现已知的有数百种的蛋白都被乙酰化修饰,乙酰化能够明显改变蛋白的特性和功能,mRNA剪接、运输、整体性、翻译、蛋白活性、定位、稳定性和相互作用都受乙酰化调节,因此乙酰化能够影响从信号转导到转录到蛋白降解调节过程的每一步,可逆的赖氨酸基团乙酰化对蛋白功能和细胞网络的调节至关重要。调节蛋白乙酰化状态的酶,包括乙酰化酶和脱乙酰化酶。相对于乙酰化酶,作为药物靶点,脱乙酰化酶受到研究者的更多关注。至今研究表明,脱乙酰化酶抑制剂在各种疾病中的应用更有希望,如白血病和其他的血液系统疾病。脱乙酰化酶分为三类,一、二类属于经典的脱乙酰化酶,催化反应需要Zn离子作为辅因子,sirtuins蛋白属于第三类,与经典的脱乙酰化酶作用有所不同,它的催化作用不需要锌指的参与,而是烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD)依赖性的,因而新陈代谢则可调节其活性,这也使其刚刚问世便成为了众多科学研究的对象。
     沉默信息调节因子2(Silent information regulator 2, Sir 2)是由Sinclair和同事在麻省理工学院的Leonard Guarente实验室于酵母中发现的,它是一种NAD依赖的组蛋白脱乙酰化酶。酵母Sir2与染色体末端的失活及rDNA的转录沉默有关。酵母Sir2含量加倍,可以延缓复制衰老,延长寿命。Sir2是一个高度保守的基因家族。Sir2相关酶类(sirtuins, SIRT)是Sir2的同源物,它不仅存在于酵母、果蝇、秀丽杆菌等细胞内,还广泛存在于哺乳动物各种细胞内。caloric restriction (CR)试验表明,在酵母、秀丽杆菌、蠕虫、小鼠及人均可以通过增加SIRT1的活性而延长寿命,因而SIRT被认为是一个长寿基因。至今为止,人类细胞内已经发现了7种不同类型的SIRT蛋白,分别命名为SIRT1-SIRT7。SIRT1是目前研究最多最清楚的一个成员,研究发现,哺乳动物SIRT1与宿主一些已知与癌症有关的因子相互作用,可能在一些情况下促进肿瘤细胞的生存,而目前尚缺乏关于genistein对肿瘤细胞中SIRT1的作用的研究报道。因此,本研究就genistein对HeLa细胞SIRT1表达的影响及其作用机制进行探讨。
     方法:HeLa细胞经SIRT1选择性抑制剂splitocimin预处理后,用不同浓度genistein作用,MTT法测定不同浓度genistein对HeLa细胞作用,比较与非经抑制剂处理组之间细胞细胞生长抑制情况;Hoechst 33258荧光染色检测细胞凋亡情况的差别;流式细胞术检测细胞周期分布情况。并比较splitocimin预处理对genistein在细胞周期G2/M期阻滞作用中的影响;应用Western blot印迹检测genistein对细胞内SIRT1蛋白表达水平的变化及经splitocimin预处理后genistein对SIRT1蛋白表达的影响。
     结果:splitocimin预处理后,genistein对HeLa细胞生长抑制作用增强;Hoechst 33258染色可见凋亡细胞形态改变,单纯splitocimin处理组与对照组细胞凋亡率没有明显区别。但经splitocimin预处理后,genistein的促凋亡作用比未经splitocimin预处理的单纯genistein作用时细胞凋亡率增加。细胞周期分析显示,单纯splitocimin的作用可以使S期细胞增加,经splitocimin预处理后再经genistein作用,S期细胞数减少,而G2/M期阻滞增加。genistein可以抑制HeLa细胞内SIRT1蛋白的表达,且呈剂量依赖性;经splitocimin预处理后,再经genistein作用时,SIRT1蛋白的表达较只用splitocimin预处理时有所增加,但仍低于对照组水平。
     结论:genistein可通过下调SIRT1表达而抑制HeLa细胞的生长,诱导细胞凋亡。SIRT1抑制剂可以增强genistein对HeLa细胞的抑制作用。
Part 1 genistein inhibits HeLa cell growth
     Objective:Cervical cancer is a common cancer for women, according to statistics, the incidence of cervical cancer ranks as the first female cancer. Cervical cancer is possible for all ages women, but the 25-year-old to 45-year-old women most common. Mortality of cervical cancer ranks fourth in that of female cancer and the number of deaths accounted for 4% in that of cancer deaths.
     Genistein is an isoflavone compound from natural plants and has many physiological functions, such as estrogen action, anti-oxidation, preventing mutation, anti-infection, preventing and therapy of heart-cerebrovascular disorders, which provide its usage in health care or in treating related diseases. For genistein anticancer property, recently studies have shown that genistein could inhibit a wide range of cancer cells, it can inhibit cancer cells growth,, induce cell deferience, reverse cell drug resisdence, do advantage for other anti-cancer drugs effect. This research will investage if genistein inhibite HeLa cell growth, and to know the effect of genistein on inducing cell apoptosis and arresttingt the cell cycle.
     Methods:The effect of genistein on HeLa cell growth was assessed using the MTT assay to measure the cell viability and calculate the half inhibition concentration (IC50) of genistein on the cell. To verify whether the decreased cell viability of HeLa cells treated with genistein was related to apoptosis, Hoechst 33258 staining was used to detect the nuclear morphological changes. Cell cycle distribution was examined with flow cytometry. To assess the capability of genistein inducing HeLa cell apoptosis and distinguish different types of cell death, HeLa cells were double-stained with annexin V-FITC and propidium iodide (PI), and analyzed by flow cytometry.
     Results:MTT results showed that genistein inhibited HeLa cell growth in a dose and time dependent manner. The IC50 value of genistein on HeLa cell was calculated at 126μM for 24 h and 75μM for 48 h. By Hoechst 33258 staining, the control cells were well spread flatly and appeared uniform in chromatin density, while genistein treated cells displayed many examples of chromatin fragments or nuclear debris, which could be identified as apoptotic cells, and the percentage of apoptotic cells was 18.34±2.35% after exposure to genistein for 48 h, while that of control cells was only 1.52±0.56%. Double-stained with annexin V-FITC and propidium iodide (PI), and analyzed by flow cytometry reveal the ratio of apoptotic cells obviously increased in genistein treated cells compared to that of control groups. Cell cycle distribution was examined with flow cytometry showed that the percentage of G2/M cells increased significantly, while the percentage of G0/G1 and S cells have no significant difference with that of control group, which suggesting that the cell cycle was arrested at G2/M phase.
     Conclusions:genistein can inhibit HeLa cell growth and induce cell apoptosis and arrest the cell cycle at G2/M phase.
     Part 2 The effect of genistein on topoisomeraseⅡαexpression in HeLa cell
     Objective:TopoisomeraseⅡ(TopoⅡ) is a ubiquitous nuclear protein catalyzing the reaction of breakage and relinking of DNA, which plays an important role in maintenance of DNA topology required for DNA replication, transcription, and recombination of cellular genes. The two TopoⅡisoforms, TopoⅡαand TopoⅡβ, are 170 kDa and 180 kDa proteins, respectively, and have different roles in regulating cellular function. TopoⅡαshows cell-cycle specific expression during the S and G2/M phases and is essential for chromosome condensation. TopoⅡαis closely related to the occurrence, development, diagnosis, prognosis and treatment of cancer. Otherwise, TopoⅡβis associated with non-proliferating function and believed to maintain the integrity of nuclear chromatin.
     In recent years, TopoⅡhas become a popular target for cancer chemotherapy treatments. Genistein can inhibit a wide range of cancer cells, and the mechanism of genistein cytotoxicity is considered to involve an inhibitory effect on TopoⅡ. It is believed that genistein can bind to and stabilize the topoisomerase-DNA complex, resulting in DNA strand breaks and inducing cell apoptosis. However, the molecular events of genistein inhibiting TopoⅡexpression at the gene transcription level have not been clearly understood.
     It is known that the human TopoⅡαgene promoter has five functional CCAAT boxes and two GC boxes. The two GC boxes, GC1 and GC2 are located at the proximal and distal region of the TopoⅡαgene promoter, respectively. Sp1 and Sp3 can bind with similar affinities to both GC boxes by three zinc-fingers. It is believed that Sp1 and Sp3 have different functions in regulating TopoⅡαgene expression. Sp1 acts mainly as a transcriptional activator, while Sp3, consisting of three subtype proteins of 115 kDa,80 kDa, 78 kDa, respectively, can act as a transcriptional repressor binding the GC boxes competitively with Sp1. Recently, it has been shown that the GC-rich sequence is necessary for the effect of genistein on metal-binding protein, metallothioneinⅡA expression in human intestinal Caco-2 cells. Moreover, genistein can block the stimulation of VEGF gene transcription by all trans-retinoic acid through Sp1 and Sp3 sites in a human bronchioloalveolar carcinoma cell. Thus, it is likely that genistein may be able to regulate TopoⅡαgene expression through Sp1 and Sp3.
     The aim of the present study is to investigate the effect of genistein on TopoⅡαgene expression and to determine whether the transcription factors Sp1 and Sp3 have a role in the regulation of TopoⅡαexpression in HeLa cells.
     Methods:To investigate the effect of genistein on TopoⅡαexpression at gene transcription level, HeLa cells were treated with genistein for 48 h and the expression of TopoⅡα, Spl and Sp3 mRNA in HeLa cells were examined with RT-PCR. TopoⅡα, Sp1 and Sp3 protein expression were examined by Western blot assay. There are two GC boxes, GC1 and GC2 in the TopoⅡαpromoter, which the transcription factors Sp1 and Sp3 can bind to. To assess the role of Sp1 and Sp3 in the inhibitory effect of genistein on TopoⅡαexpression, we analyzed their binding ability to the two GC boxes by ChIP experiment.
     Results:RT-PCR results showed that genistein down-regulated TopoⅡαand Spl mRNA expression, while Sp3 mRNA expression was up-regulated in HeLa cells Western blot assay results showed that genistein down-regulated TopoⅡαand Sp1 protein expression, while Sp3 protein expression was up-regulated in HeLa cells. ChIP experiment results showed that Sp1 occupancy was reduced and Sp3 occupancy was elevated in cells treated with genistein compared to those of controls for both GC1 and GC2.
     Conclusions:genistein can inhibit TopoⅡαexpression, which has relation with the regulation of Specificity protein 1 and Specificity protein 3 in HeLa cell.
     Part 3 The effect of genistein on SIRT1 expression in HeLa cell
     Objective:Lysine side chains can be acetylated, methylated, ubiquitinated, sumoylated and ADP-ribosylated. These rivalling and reversible post translational modifications are regulated by a complex interplay of different enzymes. Reversible acetylation of lysine-amino groups crucially modulates protein function und cellular networks. In eukaryotic cells, acetylation is among the most common covalent modifications and ranks similar to the important master switch phosphorylation. Acetylation apparently shows a broader substrate spectrum than phosphorylation. Hundreds of proteins are known to be modified by acetylation. Acetylation can change protein characteristics and functions enormously. In general, acetylation changes the electrostatic state of lysine from positive to neutral and increases the size of the amino acid side chain. Acetylation can equally affect enzymatic activities and determine protein function at multiple levels. Comparatively little attention has been drawn to inhibitors of acetyltransferases (HATi), as HATs are rarely considered as drug targets. A reason for this could be the promising use of inhibitor of histone deacetylases (HDACi) in various diseases like leukaemia and other haematological disorders. HDACs can be grouped into two distinct families. The "classical family" of zinc-dependent HDACs are structurally related to the yeast Hdal/Rpd3 proteins, and the second one consists of the NAD+-dependent yeast Sir2 homologues. Sirtuins make use of a different mechanism of catalysis. Instead of using an electrophilic Zn2+ ion to directly hydrolyse the amide bond with water, they transfer the acetyl group to the cosubstrate NAD+ yielding two products, nicotinamide and 2-O-acetyl-ADPribose. This reaction depends on the NAD+/NADH ratio. Metabolism thus may provide a mechanism to regulate SIRTs. Silent Information Regulator 2 (Silent information regulator 2, Sir 2) was found by the Sinclair and colleagues at the Massachusetts Institute of Technology's Leonard Guarente lab in yeast, it is a NAD dependent histone deacetylase. Yeast Sir2 has relation with the chromosome end inactivation and the silencing of rDNA transcription. If content of yeast Sir2p double, it can delay replicative senescence and prolong life. Sir2 is a highly conservative gene family. Sir2-related enzymes (sirtuins, SIRT) is a Sir2 homologs, it not only in yeast, flies, but widely present in various mammalian cells. SIRT1 can delay replicative senescence, prolonging life, which is considered a longevity gene and the evidence is from caloric restriction (CR) test, in yeast, worms, mice and human CR have increased SIRT1 activity can prolong life.
     To date, seven human isoforms have been identified (SIRT1 to SIRT7), and SIRT1 is the most studied one. Recent reports revealed that hSIRT1 is up-regulated in tumor cell lines, suggesting that hSIRTl may be involved in contributing to tumorigenesis. Therefore, this study will research the action of genistein on SIRT1 in HeLa cell.
     Methods:After treatment with splitomicin, a special inhibitor of SIRT1, the effect of genistein on HeLa cell growth was assessed using the MTT assay, the capability of genistein inducing HeLa cell apoptosis was tested with Hoechst 33258 staining, and cell cycle distribute was analyzed by flow cytometry. The action of genistein on SIRT1 protein expression was detected by western blotting.
     Results:after pretreatment with splitomicin, MTT results showed that genistein inhibited more HeLa cells growth in a dose and time dependent manner. By Hoechst 33258 staining, after pretreatment with splitomicin the ratio of apoptotic cells obviously increased in genistein treated cells. Cell cycle distribution was examined with flow cytometry showed the percentage of S cells increased after treatment with splitomicin only, and the percentage of G2/M cells in genistein and splitomicin group is more than of splitomicin group. Genistein can inhibite SIRT1 expression, after pretreatment with splitomicin, genistein can increase SIRT1 expression, but SIRT1 protein level is still lower than that of control group.
     Conclusions:SIRT1 has relation with genistein inhibition on HeLa cell, and SIRT1 inhibitor can help genistein induce cell apoptosis and arrest the cell cycle at G2/M phase.
引文
1 Ishimi Y, Yoshida M, Wakimoto S, et al. Genistein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevents bone loss in castrated male mice. Bone,2002,31(1):180-185
    2 Lee YW, Lee WH. Protective effects of genistein on proinflammatory pathways in human brain microvascular endothelial cells. J Nutr Biochem, 2008,19(12):819-825
    3 Okamura S, Sawada Y, Satoh T, et al. Pueraria mirifica phytoestrogens improve dyslipidemia in postmenopausal women probably by activating estrogen receptor subtypes. Tohoku J Exp Med,2008,216(4):341-351
    4 Davis TA, Mungunsukh O, Zins S, et al. Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol,2008, 84(9):713-726
    5 Lucas EA, Lightfoot SA, Hammond LJ, et al. Soy isoflavones prevent ovariectomy-induced atherosclerotic lesions in Golden Syrian hamster model of postmenopausal hyperlipidemia. Menopause,2003, 10(4):314-321
    6 Wu J, Wang XX, Takasaki M, et al. Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res,2001,16(10):1829-1836
    7 Nogowski L, Mackowiak P, Kandulska K, et al. Genistein-induced changes in lipid metabolism of ovariectomized rats. Ann Nutr Metab,1998, 42(6):360-366
    8 Messina, MMessina V. Provisional Recommended Soy Protein and Isoflavone Intakes for Healthy Adults:Rationale. Nutr Today,2003, 38(3):100-109
    9 Ferenc P, Solar P, Kleban J, et al. Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J Photochem Photobiol B,2010,98(1):25-34
    10 Yan GR, Xiao CL, He GW, et al. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics,2010,10(5):976-986
    11 Zhang B, Shi ZL, Liu B, et al. Enhanced anticancer effect of gemcitabine by genistein in osteosarcoma:the role of Akt and nuclear factor-kappaB. Anticancer Drugs,2010,21(3):288-296
    12 Park SJ, Kim MJ, Kim YK, et al. Combined cetuximab and genistein treatment shows additive anti-cancer effect on oral squamous cell carcinoma. Cancer Lett,2009,292(1):54-63
    13 Nakamura Y, Yogosawa S, Izutani Y, et al. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer,2009,8:100
    14 Rabiau N, Kossai M, Braud M, et al. Genistein and daidzein act on a panel of genes implicated in cell cycle and angiogenesis by Polymerase Chain Reaction arrays in human prostate cancer cell lines. Cancer Epidemiol, 2010,34(2):200-206
    15 Sakamoto T, Horiguchi H, Oguma E, et al. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem,2009
    16 Tenderenda M. A study on the prognostic value of cyclins D1 and E expression levels in resectable gastric cancer and on some correlations between cyclins expression, histoclinical parameters and selected protein products of cell-cycle regulatory genes. J Exp Clin Cancer Res,2005, 24(3):405-414
    17 Coqueret O. Linking cyclins to transcriptional control. Gene,2002, 299(1-2):35-55
    18 Mundle SD, Saberwal G. Evolving intricacies and implications of E2F1 regulation. FASEB J,2003,17(6):569-574
    19 Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol,2002, 22(4):1049-1059
    20 Mitra J, Enders GH. Cyclin A/Cdk2 complexes regulate activation of Cdkl and Cdc25 phosphatases in human cells. Oncogene,2004, 23(19):3361-3367
    21 Zou H, Zhan S, Cao K. Apoptotic activity of genistein on human lung adenocarcinoma SPC-A-1 cells and preliminary exploration of its mechanisms using microarray. Biomed Pharmacother,2008, 62(9):583-589
    22 Yamaguchi M, Weitzmann MN. The estrogen 17beta-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-kappaB activity. Int J Mol Med,2009,23(2):297-301
    23 Ismail IA, Kang KS, Lee HA, et al. Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation. Eur J Pharmacol,2007,575(1-3):12-20
    24 Caruso MG, Messa C, Orlando A, et al. Early induction of LDL receptor gene expression by genistein in DLD-1 colon cancer cell line. Fitoterapia, 2008,79(7-8):524-528
    25 Banerjee S, Li Y, Wang Z, et al. Multi-targeted therapy of cancer by genistein. Cancer Lett,2008,269(2):226-242
    26 Rucinska A, Roszczyk M, Gabryelak T. Cytotoxicity of the isoflavone genistein in NIH 3T3 cells. Cell Biol Int,2008,32(8):1019-1023
    27 Schmidt F, Knobbe CB, Frank B, et al. The topoisomerase Ⅱ inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines. Oncol Rep,2008,19(4):1061-1066
    28 张庆红,胡玉珍,周士胜,王复周,Genistein对大鼠垂体前叶细胞增殖的抑制作用.生理学报,2001,53(1):51-54
    29 Su SJ, Chow NH, Kung ML, et al. Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer,2003,45(1):113-123
    30 Yoon HS, Rho SH, Jeong JH, et al. Genistein produces reduction in growth and induces apoptosis of rat RPE-J cells. Curr Eye Res,2000, 20(3):215-224
    31 Kim SH, Lee SC, Song YS. Involvement of both extrinsic and intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells. Ann N Y Acad Sci,2009,1171:196-201
    32 Li Z, Li J, Mo B, et al. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol In Vitro,2008,22(7):1749-1753
    33 Anel A, Buferne M, Boyer C, et al. T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. Eur J Immunol,1994, 24(10):2469-2476
    34 Knox KA, Gordon J. Protein tyrosine phosphorylation is mandatory for CD40-mediated rescue of germinal center B cells from apoptosis. Eur J Immunol,1993,23(10):2578-2584
    35 Meinhardt G, Roth J, Totok G. Protein kinase C activation modulates pro-and anti-apoptotic signaling pathways. Eur J Cell Biol,2000, 79(11):824-833
    1 Froelich-Ammon SJ, Gale KC, Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase Ⅱ. DNA secondary structure as a determinant of enzyme recognition/cleavage. J Biol Chem,1994, 269(10):7719-7725
    2 Mandraju RK, Kannapiran P, Kondapi AK. Distinct roles of Topoisomerase Ⅱ isoforms:DNA damage accelerating alpha, double strand break repair promoting beta. Arch Biochem Biophys,2008,470(1):27-34
    3 Mandraju RK, Kondapi AK. Regulation of topoisomerase Ⅱ alpha and beta in HIV-1 infected and uninfected neuroblastoma and astrocytoma cells: involvement of distinct nordihydroguaretic acid sensitive inflammatory pathways. Arch Biochem Biophys,2007,461(1):40-49
    4 阴梅云,郑全辉,郑立芬,DNA拓扑异构酶Ⅱ抑制剂与肿瘤不典型多药耐药.中国肿瘤临床,2002,30(11):805-809
    5 阴梅云,郑全辉,郑力芬等,拓扑异构酶Ⅱ研究进展.细胞生物学杂志,2002,24:212-215
    6 Katz J, Blake E, Medrano TA, et al. Isoflavones and gamma irradiation inhibit cell growth in human salivary gland cells. Cancer Lett,2008, 270(1):87-94
    7 Schmidt F, Knobbe CB, Frank B, et al. The topoisomerase Ⅱ inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines. Oncol Rep,2008,19(4):1061-1066
    8 Su SJ, Chow NH, Kung ML, et al. Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer,2003,45(1):113-123
    9 Chodon D, Ramamurty N, Sakthisekaran D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro, 2007,21(5):887-891
    10 Privat M, Aubel C, Arnould S, et al. Breast cancer cell response to genistein is conditioned by BRCA1 mutations. Biochem Biophys Res Commun,2009,379(3):785-789
    11 Bandele OJ, Osheroff N. Bioflavonoids as poisons of human topoisomerase Ⅱ alpha and Ⅱ beta. Biochemistry,2007,46(20):6097-6108
    12 Michael McClain R, Wolz E, Davidovich A, et al. Genetic toxicity studies with genistein. Food Chem Toxicol,2006,44(1):42-55
    13 Kaufmann, SH, Cell death induced by topoisomerase-targeted drugs:more questions than answers. Biochim Biophys Acta,1998,1400(1-3):195-211
    14 Markovits J, Linassier C, Fosse P, et al. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase Ⅱ. Cancer Res,1989,49(18):5111-5117
    15 Bouwman P, Philipsen S. Regulation of the activity of Spl-related transcription factors. Mol Cell Endocrinol,2002,195(1-2):27-38
    16 Dynan WS, Tjian R. The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell,1983,35(1):79-87
    17 Athanikar JN, Sanchez HB, Osborne TF. Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1:a critical role for the Btd domain of Sp1. Mol Cell Biol,1997, 17(9):5193-5200
    18 Oleksiak MF, Crawford DL.5'genomic structure of human Sp3. Mol Biol Evol,2002,19(11):2026-2029
    19 Pascal E, Tjian R. Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev,1991, 5(9):1646-1656
    20 Suske G. The Sp-family of transcription factors. Gene,1999, 238(2):291-300
    21 Takahara T, Kanazu SI, Yanagisawa S, et al. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J Biol Chem,2000,275(48):38067-38072
    22 Yang X, Su K, Roos MD, et al. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci USA,2001,98(12):6611-6616
    23 Hochhauser D, Stanway CA, Harris AL, et al. Cloning and characterization of the 5'-flanking region of the human topoisomerase Ⅱ alpha gene. J Biol Chem,1992,267(26):18961-18965
    24 Ng SW, Liu Y, Schnipper LE. Cloning and characterization of the 5'-flanking sequence for the human DNA topoisomerase II beta gene. Gene, 1997,203(2):113-119
    25 Hagen G, Muller S, Beato M, et al. Spl-mediated transcriptional activation is repressed by Sp3. EMBO J,1994,13(16):3843-3851
    26 Kadonaga JT, Carner KR, Masiarz FR, et al. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell,1987,51(6):1079-1090
    27.Hua P, Tsai WJ, Kuo SM. Estrogen response element-independent regulation of gene expression by genistein in intestinal cells. Biochim Biophys Acta,2003,1627(2-3):63-70
    28 Maeno T, Tanaka T, Sando Y, et al. Stimulation of vascular endothelial growth factor gene transcription by all trans retinoic acid through Sp1 and Sp3 sites in human bronchioloalveolar carcinoma cells. Am J Respir Cell Mol Biol,2002,26(2):246-253
    29 Faria MH, Goncalves BPdo, Patrocinio RM, et al. Expression of Ki-67, topoisomerase Ⅱalpha and c-MYC in astrocytic tumors:correlation with the histopathological grade and proliferative status. Neuropathology,2006, 26(6):519-527
    30 Mdluli K, Ma Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect Disord Drug Targets,2007,7(2):159-168
    31 Kaina B. DNA damage-triggered apoptosis:critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol, 2003,66(8):1547-1554
    32 Seiter K. Toxicity of the topoisomerase Ⅱ inhibitors. Expert Opin Drug Saf, 2005,4(2):219-234
    33 Dingemans AM, Witlox MA, Stallaert RA, et al. Expression of DNA topoisomerase Ⅱalpha and topoisomerase Ⅱbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin Cancer Res,1999,5(8):2048-2058
    34 Mirski SE, Voskoglou-Nomikos T, Young LC, et al. Simultaneous quantitation of topoisomerase II alpha and beta isoform mRNAs in lung tumor cells and normal and malignant lung tissue. Lab Invest,2000, 80(6):787-795
    35 Leslie EM, Deeley RG, Cole SP. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metab Dispos,2003,31(1):11-15
    36 Tamura, S, Bito T, Ichihashi M, et al. Genistein enhances the cisplatin-induced inhibition of cell growth and apoptosis in human malignant melanoma cells. Pigment Cell Res,2003,16(5):470-476
    37 Darbon JM, Penary M, Escalas N, et al. Distinct Chk2 activation pathways are triggered by genistein and DNA-damaging agents in human melanoma cells. J Biol Chem,2000,275(20):15363-15369
    38 van Hille B, Perrin D, Hill BT. Differential in vitro interactions of a series of clinically useful topoisomerase-interacting compounds with the cleavage/religation activity of the human topoisomerase Ⅱalpha and Ⅱbeta isoforms. Anticancer Drugs,1999,10(6):551-560
    39 Mo YY, Wang Q, Beck WT. Down-regulation of topoisomerase Ⅱalpha in CEM cells selected for merbarone resistance is associated with reduced expression of Sp3. Cancer Res,1997,57(22):5004-5008
    40 Harrison SM, Houzelstein D, Dunwoodie SL, et al. Sp5, a new member of the Spl family, is dynamically expressed during development and genetically interacts with Brachyury. Dev Biol,2000,227(2):358-372
    41 Rothem L, Aronheim A, Assaraf YG. Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J Biol Chem,2003, 278(11):8935-8941
    42 Mortensen ER, Marks PA, Shiotani A, et al. Epidermal growth factor and okadaic acid stimulate Spl proteolysis. J Biol Chem,1997, 272(26):16540-16547
    43 Yu B, Datta PK, Bagchi S. Stability of the Sp3-DNA complex is promoter-specific:Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites. Nucleic Acids Res,2003, 31(18):5368-5376
    44 Ward SV, Samuel CE. The PKR kinase promoter binds both Sp1 and Sp3, but only Sp3 functions as part of the interferon-inducible complex with ISGF-3 proteins. Virology,2003,313(2):553-566
    45 Kennett SB, Udvadia AJ, Horowitz JM. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res,1997,25(15):3110-3117
    46 Kennett SB, Moorefield KS, Horowitz JM. Sp3 represses gene expression via the titration of promoter-specific transcription factors. J Biol Chem, 2002,277(12):9780-9789
    47 Sjottem E, Anderssen S, Johansen T. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3'to the TATA box. J Virol,1996,70(1):188-198
    1 Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell,2006, 23(4):607-618
    2 Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol,2007,21(8):1745-1755
    3 Feige JN, Auwerx J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol,2008,20(3):303-309
    4 Abdelmohsen K, Pullmann R, Jr Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell,2007,25(4):543-557
    5 Sinclair DA, Lin SJ, Guarente L. Life-span extension in yeast. Science, 2006,312(5771):195-197
    6 Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science,2004,306(5704): 2105-2108
    7 Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 2005,123(3):437-448
    8 Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett,2003,540(1-3):255-258.
    9 Deltour S, Pinte S, Guerardel C, et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol,2002,22(13):4890-4901
    lOKwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci,2008, 33(11):517-525
    11 Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001,107(2):149-159
    12 Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell,2001,107(2):137-148
    13 Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J,2002, 21(10):2383-2396
    14 Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A,2003,100(19):10794-10799
    15 Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell,2004, 13(5):627-638
    16 Sawada M, Sun W, Hayes P, et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol,2003,5(4):320-329
    17 Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirTl regulate apoptotic response to DNA damage. Nat Cell Biol,2006, 8(9):1025-1031
    18 Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdrl and cancer resistance to chemotherapy by the longevity gene sirtl. Cancer Res,2005,65(22):10183-10187
    19 Lim CS. SIRT1:tumor promoter or tumor suppressor? Med Hypotheses, 2006,67(2):341-344
    20 Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 2008,14(4):312-323
    21 Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One,2008,3(12):e4020
    22 Heltweg B, Gatbonton T, Schuler AD, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res,2006,66(8):4368-4377
    23 Bennett CB, Snipe JR, Westmoreland JW, et al. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol Cell Biol,2001,21(16):5359-5373
    24 Ng SW, Liu Y, Schnipper LE. Cloning and characterization of the 5'-flanking sequence for the human DNA topoisomerase II beta gene. Gene, 1997,203(2):113-119
    1 Sinclair DA, Lin SJGuarente L. Life-span extension in yeast. Science,2006, 312(5771):195-197; author reply 195-197
    2 Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun,2000,273:793-798
    3 Feige JN, Auwerx J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol,2008,20(3):303-309
    4 Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol,2007,21(8):1745-1755
    5 Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol,2001,8(7):621-625
    6 Min, J, Landry J, Sternglanz R, et al. Crystal structure of a SIR2 homolog-NAD complex. Cell,2001,105(2):269-279
    7 Avalos JL, Celic I, Muhammad S, et al. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell,2002,10(3):523-535
    8 Bitterman KJ, Anderson RM, Cohen HY, et al. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem,2002,277(47):45099-45107
    9 Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell,2005,16(10):4623-4635
    10 Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab,2007,6(2):105-114
    11 Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev,2006, 20(10):1256-1261
    12 Schwer B, North BJ, Frye RA, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol,2002, 158(4):647-657
    13 Onyango P, Celic I, McCaffery JM, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A,2002,99(21):13653-13658
    14 Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol,2007, 27(24):8807-8814
    15 Tanno, M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem,2007, 282(9):6823-6832
    16 Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev,2007,21(8):920-928
    17 Jenuwein T, Allis CD. Translating the histone code. Science,2001, 293(5532):1074-1080
    18 Vaquero, A, Scher M, Lee D, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell,2004, 16(1):93-105
    19 Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000,403(6771):795-800
    20 Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature,2008, 452(7186):492-496
    21 Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell,2006, 124(2):315-329
    22 Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell,2006, 23(4):607-618
    23 Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science,2004, 306(5704):2105-2108
    24 Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 2005,123(3):437-448
    25 Subramanian T, Chinnadurai G. Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett,2003,540(1-3):255-258
    26 Deltour, S, Pinte S, Guerardel C, et al. The human candidate tumor suppressor gene HIC1 cruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol,2002,22(13):4890-4901
    27 Kwon, HSOtt. The ups and downs of SIRT1. Trends Biochem Sci,2008, 33(11):517-525
    28 Abdelmohsen K, Pullmann R, Jr Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell,2007,25(4):543-557
    29 Yang, Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol,2007, 9(11):1253-1262
    30 Kim, JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature, 2008,451(7178):583-586
    31 Zhao, W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature,2008,451 (7178):587-590
    32 Kwon, HS, Brent MM, Getachew R, et al. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe,2008,3(3):158-167
    33 Nemoto, S, Fergusson M, MFinkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem,2005,280(16):16456-16460
    34 Picard, F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature,2004, 429(6993):771-776
    35 Vaziri, H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001,107(2):149-159
    36 Luo, J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell,2001,107(2):137-148
    37 Langley, E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J,2002, 21(10):2383-2396
    38 Cheng, HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad SciUSA,2003,100(19):10794-10799
    39 Cohen, HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell,2004, 13(5):627-638
    40 Sawada, M, Sun W, Hayes P, et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol,2003,5(4):320-329
    41 Wang, C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol,2006, 8(9):1025-1031
    42 Chu, F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdrl and cancer resistance to chemotherapy by the longevity gene sirtl. Cancer Res,2005,65(22):10183-10187
    43 Lim, CS. SIRT1:tumor promoter or tumor suppressor? Med Hypotheses, 2006,67(2):341-344
    44 Sakamoto, J, Miura T, Shimamoto K, et al. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett,2004,556(1-3):281-286
    45 McBurney, MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol, 2003,23(1):38-54
    46 Raval, AP, Dave KRPerez-Pinzon MA, Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab,2006, 26(9):1141-1147
    47 Borrell-Pages, M, Zala D, Humbert S, et al. Huntington's disease:from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci,2006,63(22):2642-2660
    48 Parker, JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet,2005,37(4):349-350
    49 Yeung, F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J,2004,23(12):2369-2380
    50 Greene, AE, Todorova MT, McGowan R, et al. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia,2001,42(11):1371-1378
    51 Mantis, JG, Centeno NA, Todorova MT, et al. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet:role of glucose and ketone bodies. Nutr Metab (Lond), 2004,1(1):11
    52 Eagles, DA, Boyd SJ, Kotak A, et al. Calorie restriction of a high-carbohydrate diet elevates the threshold of PTZ-induced seizures to values equal to those seen with a ketogenic diet. Epilepsy Res,2003, 54(1):41-52
    53 Bough KJ, Schwartzkroin PA, Rho JM. Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia, 2003,44(6):752-760
    54 Bruce-Keller, AJ, Umberger G, McFall R, et al. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol,1999,45(1):8-15
    55 Anderson, RM, Bitterman KJ, Wood JG, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem,2002,277(21):18881-18890
    56 Anderson, RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature,2003,423(6936):181-185
    57 Gallo, CM, Smith DL, Jr. Smith JS. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol, 2004,24(3):1301-1312
    58 Araki, T, Sasaki YMilbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science,2004, 305(5686):1010-1013
    59 Bedalov A, Gatbonton T, Irvine WP, et al., Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A,2001, 98(26):15113-15118
    60 Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell,2003, 12(1):51-62
    61 Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature,2004, 430(7000):686-689
    62 Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature,2003, 425(6954):191-196
    63 Bogacka I, Gettys TW, de Jonge L, et al. The effect of beta-adrenergic and peroxisome proliferator-activated receptor-gamma stimulation on target genes related to lipid metabolism in human subcutaneous adipose tissue. Diabetes Care,2007,30(5):1179-1186
    64 Wu A, Ying Z, Gomez-Pinilla F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma,2007,24(10):1587-1595
    1 Tenderenda M. A study on the prognostic value of cyclins D1 and E expression levels in resectable gastric cancer and on some correlations between cyclins expression, histoclinical parameters and selected protein products of cell-cycle regulatory genes. J Exp Clin Cancer Res,2005, 24(3):405-414
    2 Bindels EM, Lallemand F, Balkenende A, et al. Involvement of G1/S cyclins in estrogen-independent proliferation of estrogen receptor-positive breast cancer cells. Oncogene,2002,21(53):8158-8165
    3 Fung TK, Siu WY, Yam CH, et al. Cyclin F is degraded during G2-M by mechanisms fundamentally different from other cyclins. J Biol Chem,2002, 277(38):35140-35149
    4 Coqueret O. Linking cyclins to transcriptional control. Gene,2002, 299(1-2):35-55
    5 Mundle SD, Saberwal G. Evolving intricacies and implications of E2F1 regulation. FASEB J,2003,17(6):569-574
    6 Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol,2002, 22(4):1049-1059
    7 Mitra J, Enders GH. Cyclin A/Cdk2 complexes regulate activation of Cdkl and Cdc25 phosphatases in human cells. Oncogene,2004, 23(19):3361-3367
    8 Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001,107(2):149-159
    9 Anekonda TS, Reddy PH. Neuronal protection by sirtuins in Alzheimer's disease. J Neurochem,2006,96(2):305-313
    10 Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,2004, 303(5666):2011-2015
    11 Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature,2005, 434(7029):113-118
    12 Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature,2004, 429(6993):771-776
    13 Bordone L, Motta MC, Picard F, et al. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol,2006,4(2):e31
    14 Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J,2002, 21(10):2383-2396
    15 Yamaguchi T, Cubizolles F, Zhang Y, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev,24(5):455-469
    16 Bennett CB, Snipe JR, Westmoreland JW, et al. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol Cell Biol,2001,21(16):5359-5373
    17 Ocker M, Schneider-Stock R. Histone deacetylase inhibitors:signalling towards p21 cip1/waf1. Int J Biochem Cell Biol,2007,39(7-8):1367-1374
    18 Ju R, Muller MT. Histone deacetylase inhibitors activate p21(WAF1) expression via ATM. Cancer Res,2003,63(11):2891-2897
    19 Li H, Wu X. Histone deacetylase inhibitor, Trichostatin A, activates p21 WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun,2004,324(2):860-867
    20 Kramer OH, Muller S, Buchwald M, et al. Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J, 2008,22(5):1369-1379
    21 Suzuki A, Tsutomi Y, Miura M, et al. Caspase 3 inactivation to suppress Fas-mediated apoptosis:identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene,1999,18(5):1239-1244
    22 Sun A, Bagella L, Tutton S, et al. From GO to S phase:a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway. J Cell Biochem,2007,102(6):1400-1404
    23 Abramova MV, Pospelova TV, Nikulenkov FP, et al. G1/S arrest induced by histone deacetylase inhibitor sodium butyrate in E1A+ Ras-transformed cells is mediated through down-regulation of E2F activity and stabilization of beta-catenin. J Biol Chem,2006,281(30):21040-21051
    24 Ianari A, Gallo R, Palma M, et al. Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem,2004,279(29):30830-30835
    25 Martinez-Balbas MA, Bauer UM, Nielsen SJ, et al. Regulation of E2F1 activity by acetylation. EMBO J,2000,19(4):662-671
    26 Galbiati L, Mendoza-Maldonado R, Gutierrez MI, et al. Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle,2005,4(7):930-939
    27 Marzio G, Wagener C, Gutierrez MI, et al. E2F family members are differentially regulated by reversible acetylation. J Biol Chem,2000, 275(15):10887-10892
    28 Chan HM, Krstic-Demonacos M, Smith L, et al. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol,2001, 3(7):667-674
    29 Pediconi N, Ianari A, Costanzo A, et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol,2003, 5(6):552-558
    30 Nguyen DX, Baglia LA, Huang SM, et al. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J, 2004,23(7):1609-1618
    31 Zhang HS, Gavin M, Dahiya A, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell,2000,101(1):79-89
    32 Costanzo A, Merlo P, Pediconi N, et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell,2002,9(1):175-186
    33 Bernassola F, Salomoni P, Oberst A, et al. Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med,2004,199(11):1545-1557
    34 Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell,2001,107(2):137-148
    35 Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A,2003,100(19):10794-10799
    36 Sawada M, Sun W, Hayes P; et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol,2003,5(4):320-329
    37 Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell,2004, 13(5):627-638
    38 Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 2005,123(3):437-448
    39 Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirTl regulate apoptotic response to DNA damage. Nat Cell Biol,2006, 8(9):1025-1031
    40 Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell,2004,116(4):551-563
    41 Gilley J, Coffer PJHam J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol, 2003,162(4):613-622
    42 You H, Pellegrini M, Tsuchihara K, et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med,2006, 203(7):1657-1663
    43 Sasaki T, Maier B, Koclega KD, et al. Phosphorylation regulates SIRT1 function. PLoS One,2008,3(12):e4020
    44 Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol,2007, 9(11):1253-1262
    45 Sasaki T, Maier B, Bartke A, et al. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell,2006,5(5):413-422
    46 Puntervoll P, Linding R, Gemund C, et al. ELM server:A new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res,2003,31(13):3625-3630
    47 Wang Y, Oh SW, Deplancke B, et al. C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev, 2006,127(9):741-747
    48 Berdichevsky A, Viswanathan M, Horvitz HR, et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell, 2006,125(6):1165-1177
    49 Obenauer JC, Cantley LCYaffe MB. Scansite 2.0:Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res,2003,31(13):3635-3641
    50 Huang HD, Lee TY, Tzeng SW, et al. KinasePhos:a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res,2005,33(Web Server issue):W226-229
    51 Dequiedt F, Martin M, Von Blume J, et al. New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class Ⅱa histone deacetylases. Mol Cell Biol,2006,26(19):7086-7102
    52 Parra M, Mahmoudi TVerdin E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev,2007,21(6):638-643

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700