壁面自动清洗机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层建筑外墙清洗作业量大面广且适合实现自动化,对此目前国内外基本尚处于人工清洗阶段。壁面清洗机器人由于受到自身重量、造价、安全性、通用性、壁面适应能力等因素影响,大大制约了其实用化进程。
     本文研究目标是为城市建筑清洗业提供一套新型高效的机器人作业系统,以期提高机器人的壁面适应能力、改善清洗质量、提高作业效率和节能环保性能、降低作业费用,最终彻底改善从业人员的工作条件。本文对该壁面清洗机器人的运动系统、吸附系统、清洗作业系统及用于其与机器人本体之间的集成机构、运动特性、控制系统、路径规划等方面的关键技术进行了系统深入的研究。
     本文深入分析了壁面清洗机器人的两大关键技术—爬壁机器人技术和壁面清洗技术在理论和实际开发中存在的技术难点,采用模块化设计方法设计了具有轮腿式和轮式两种运动方式的轮腿式壁面清洗机器人,它主要由爬壁机器人本体、清洗作业系统及其连接机构、安全保险装置、控制系统四大部分组成。
     根据壁面清洗机器人的总体设计要求,本文提出了三种多吸盘真空吸附轮腿式壁面清洗机器人的吸附运动系统总体设计方案,它们均集吸附、运动、越障、面—面转换、姿态调整功能于一体,通过对比分析确定轮腿式与轮式运动机构联合作为本文机器人运动系统的设计方案。在此基础上本文对爬壁机器人进行了受力分析,得到了机器人在轮腿式与轮式两种运动方式下实现可靠吸附与运动的基本条件。
     本文完成了上述所选吸附系统的细化设计,即包括自适应多腔真空吸盘、负压同步分配器及其密封机构、真空发生器与高压气源等设计或选型在内的真空耦合传递吸附系统设计。多腔真空吸盘机构内每个子真空室通过真空安全阀与共腔连接,吸盘四周安装具有良好变形能力的橡胶密封圈,从而实现了各子真空室及各吸盘间独立的有效吸附,避免了相互影响。吸盘与轮腿转臂通过球铰连接,从而使得吸盘具备了壁面自适应功能。同时,对作为轮腿与真空发生器间关键的连接机构—负压同步分配器,本文针对机器人不同的工作环境共提出了三种设计方案,并进行了对比分析。
     本文完成了上述所选运动系统的细化设计,包括轮腿机构越障能力分析与设计、轮式机构设计、传动机构设计、气缸及其辅助导杆机构设计等。其中,三组轮腿机构由一个驱动电机通过链传动带动,在与作业壁面平行方向仅有一个移动自由度,解决了运动“走偏”问题,提高了运动精度。两组轮式机构由两个电机单独驱动,并采用倾斜计进行姿态闭环控制,可实现包括零半径转弯在内的灵活转向。上述联合运动系统与真空耦合传递吸附系统有效集成后可配合完成机器人作业过程中的吸附、运动、逼近障碍物、越障、面—面转换及灵活的姿态调整等功能,以简单轻便的结构使得爬壁机器人既具有脚足式爬壁机器人较强的壁面适应能力,又具有轮式机器人较高的运动速度。在上述工作的基础上,本文对爬壁机器人平面运动、姿态调整、越障及面—面转换过程进行了深入分析。
     针对目前壁面清洗机器人多只能自上而下单向作业、且多不进行污水回收的现状,本文采用模块化设计方法成功设计了三种具有双向(或四向)作业功能及污水回收净化循环利用能力的清洗作业系统,提高了作业效率,特别是其中具有双向作业能力的双腔清洗作业系统,由于增加了清水淋洗工序,形成了冲洗→滚刷刷洗→清水淋洗→刮洗的作业方式,最大程度地提高了清洗效果。此外,针对轮腿式爬壁机器人在垂直于作业壁面方向具有位移脉动的特点,本文设计了用于清洗作业系统与机器人本体之间柔性集成的高度自适应弹性连接机构,使得清洗作业系统对壁面不平度、机器人高度脉动、吸附压力脉动均能够自适应,从而具备了恒压作业和独特的恒压越障功能,并能实现对窗框类障碍物的有效清洗。该连接机构还可用于其他机器人与作业机构之间的集成,具有一定的普遍意义。
     运动学和动力学的分析和建模是实现机器人控制的基础。本文利用Sheth-Uicher规则,分别建立了爬壁机器人轮式和轮腿式两种运动方式下的运动学模型,求取了运动学正、逆问题的解,并对壁面清洗机器人几种典型的运动状态进行了仿真,为机器人的运动控制提供了理论依据。在此基础上,分别对机器人两种运动方式下的位姿推测算法进行了理论研究。本文还分别利用罗斯方程、马基方程和安沛儿方程对壁面清洗机器人的非完整系统建立了动力学模型,得到了正、逆问题的解,并对三种方程进行了对比分析,基于此进行的动力学仿真分析为电机的选择及动力学控制提供了必要条件。
     同时,本文借鉴移动机器人的路径规划方法,集成了栅格法和启发式搜索算法,提出了一种考虑机器人往复主运动方向、可用于双向(或四向)作业壁面清洗机器人的完全遍历路径规划方法,明显改善了路径规划的性能,降低了规划路径的重叠率。
     总之,本文设计的壁面清洗机器人结构灵活简单、重量轻、壁面适应能力及越障能力强、运动速度快、精度高、功能丰富可靠、控制容易,能够适用于包括玻璃幕墙在内的多种不同材质、多种规则形状的复杂壁面,具有很高的推广价值。本文设计的集成吸附运动系统、清洗作业系统、高度自适应弹性连接机构等还能够用于其他诸多机器人系统。特别对本文的轮腿式爬壁机器人系统而言,它还可用作其他诸如检测、除锈、喷漆、反恐等作业系统的运载和移动平台,市场前景广阔。
Cleaning the facades of skyscrapers is not only a heavy workload but also tedious, time-consuming, dangerous, and suitable for automation. Even to present, most work is done by workers in suspended scaffoldings or nacelle. Wall cleaning robot has not been used widely yet and the practical process is restricted by its weight, cost, safety, versatility, adaptability to wall surfaces and other factors.
     The research in this dissertation aims at providing city construction industry with a highly efficient wall climbing robot for cleaning glass or tile wall automatically in order to enhance the wall adaptability of robot, improve cleaning quality, increase working efficiency, increase energy-saving and environment-friendly performance, reduce operating costs and improve the working condition of workers. The key technology of the wall auto-cleaning robot was studied in depth on the moving system, adsorption system, cleaning operating system and the relational integration mechanism with the robot body, locomotion characteristics, control system and path planning in this dissertation.
     The technical difficulties of wall climbing robot and wall cleaning in developing the wall cleaning robot system were analyzed in depth. A wheel-legged wall auto-cleaning robot with both wheel-legged and wheeled moving modes was designed using modular design method, which consisted of wall climbing robot, cleaning operating system and relational connection mechanism, safety device and control system.
     According to general design requirements of wall cleaning robot, three kinds of adsorption and motion system design plans of wheel-legged wall auto-cleaning robot adopting multi-sucker vacuum adsorption were presented in this dissertation, which all integrated functions of adsorption, motion, overstepping obstacle, transition from surface to surface and pose adjustment. By comparative analysis of the three plans, the joint motion system design plan with both wheel-legged and wheeled movement mechanisms was adopted. On this basis, the basic conditions of reliable adsorption and movement of the robot in two moving modes were achieved by mechanical analysis.
     The detailed design of the selected adsorption system was completed, which as design of vacuum coupling delivery and adsorption system included the design of adaptive multi-antrum vacuum sucker and negative pressure synchronous distributor and the selection of vacuum generator and high-pressure gas source. Each sub-vacuum chamber in sucker was connected to common-chamber by a vacuum valve, and rubber seal with good deformation ability was installed around the sucker, therefore independent and effective absorption of every sub-vacuum chamber and every sucker was ensured. Sucker was connected with arm of wheel-leg through ball hinge, which made the sucker self-adaptive to wall. Meanwhile aiming at complicated work environment, three design plans of negative pressure synchronous distributor as key connection mechanism between wheel-leg and vacuum generator were proposed and comparatively analyzed.
     The detailed design of the selected joint motion system was completed, which included overstepping obstacle capacity analysis and design of wheel-leg mechanism, wheel mechanism design, transmission design, cylinder and its auxiliary guide-bar mechanism design. Among them, three sets of wheel-leg sucker mechanisms were driven by a motor and corresponding chain, which made the robot with one moving degree of freedom in the direction parallel to the wall and solved the“slanting track”problem and improved movement accuracy. Two sets of wheel mechanisms were driven respectively by one motor, which adopted inclinometer for pose closed loop control and realized swift turn of robot. The above-mentioned joint motion system effectively integrated with adsorption system can cooperatively complete functions of adsorption, movement, closing to obstacles, overstepping obstacle, transition from surface to surface and pose adjustment of robot in the process of operation. This integrated motion and adsorption system made the wall climbing robot with strong adaptive ability to wall like legged robot and with high velocity like wheeled robot by simple and lightweight structure. Based on the above-mentioned work, the processes of planar motion, pose adjustment, overstepping obstacle and transition from surface to surface of wall climbing robot were analyzed in depth.
     Aiming at the current situation of most wall cleaning robots operating only top-down one-way without the function of sewage purifying and recycling, three kinds of cleaning operating system with the functions of two-way (or four-way) operating, sewage purifying and recycling were successfully designed using modular design method and improve operational efficiency largely. Among them, due to the increase of water spraying process, dual-chamber cleaning operating system with two-way operation ability combined the detergent wash, brushing, water spraying and scraping cleaning modes and maximized the cleaning effect. In addition, aiming at the characteristic of wheel-legged wall auto-cleaning robot with displacement fluctuation in the direction perpendicular to wall, elastic connection mechanism self-adaptive to height for flexible integration between cleaning operating system and robot body was designed and made the cleaning operating system self-adaptive to wall roughness, height fluctuation of robot body and adsorption pressure fluctuation, which made the robot have functions of constant pressure operation, unique constant pressure overstepping obstacle and effective cleaning of window frames. The elastic connection mechanism can also be used to connect operation system to other robots, which has a certain universal significance.
     Kinematics and dynamics analysis and modeling is the basis of robot control. The Sheth-Uicher transform was used to build the kinematics equations of wall climbing robot respectively in wheeled and wheel-legged moving modes. The positive and inverse solutions of the kinematics equations were gained and kinematics simulation aiming at several typical motion states was carried out, which provided the theory support for motion control of the wall climbing robot. On this basis, theoretical research on position and pose conjecture arithmetic of the robot respectively in both moving modes was completed. Furthermore, Routh equation, Maggi equation and Appell equation were used to establish the dynamics model of the wall auto-cleaning robot in two moving modes. The positive and inverse solutions of the dynamics equations were gained, and three kinds of dynamics equations were comparatively analyzed. Dynamics simulation was carried out and provided the necessary conditions for selection of the motor and dynamic control of the robot.
     At the same time using path planning method of mobile robot for reference, a complete cover path planning method considering main movement direction and integrating grid method with heuristic search algorithm was proposed and can be used for wall cleaning robot with two-way (or four-way) operation capability, which significantly reduced trajectories overlap and improved the performance of path planning.
     In short, the wall auto-cleaning robot with strong adaptive ability to wall and strong overstepping obstacle in this dissertation is simple, flexible, lightweight, fast, accurate, versatile, easy to control, suitable for a variety of walls of different materials and regular shapes. The integrated adsorption and motion system, cleaning operating system and elastic connection mechanism adaptive to height, etc. can also be applied to many other robot systems. Wheel-legged wall climbing robot as load and mobile platform can evolve into other special service robots for inspection, derust, spray-paint, anti-terror, etc. by combining with other operation tools, which owns broad market potential.
引文
[1] Hopcroft J, Cutkosky M, Lozano-Perez T. Robotics: a long range plan to maximize national capabilities[J]. Annual Review of Computer Science. 1990, 4: 467-479.
    [2]杨小彪.高层建筑清洗行业的现状与市场浅析[J].洗净技术, 2003, (05M): 46-48.
    [3]魏洪波.高处作业吊篮在CCTV新台址工程中的应用[J].建筑机械化, 2008, (4): 60-62.
    [4]张华,薛抱新.高处作业吊篮在特殊工程中的应用[J].建筑机械化, 2005, 26(8): 44-46.
    [5] Schraft R D, Br?uning U, Orlowski T, Hornemann M. Automated cleaning of windows on standard facades[J]. Automation in Construction. 2000, 9(5-6):489-501.
    [6]薛抱新,祝志锋.高层建筑擦窗机的选型与建筑设计要求[J].建筑科学, 2004, 20(1): 66-71.
    [7]王巍.灵巧擦窗机器人相关问题研究[D].北京:北京航空航天大学, 2000.
    [8] Hirose S, Nagakubo A, Toyama R. Machine that can walk and climb on floor, wall and ceilings[C]. Proceedings of 1991 IEEE International Conference on Robot and Automation. Pisa, Italy, 1991, pp. 753-758.
    [9] Hirose S, Tsutsumitake H. Disk rover: a wall-climbing robot using permanent magnet disks[C]. Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems. Raleigh, NC, 1992, pp. 2074-2079.
    [10] Guo L, Rogers K, Kirkham R. A climbing robot with continuous motion[C]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, USA, 1997, pp. 2495-2500.
    [11] Grieco J C, Prieto M, Armada M, and Gonzalez de Santos P. A six-legged climbing robot for hight payloads[C]. Proceedings of the 1998 IEEE International Conference on Control Applications. Trieste, Italy, 1998, pp. 446-450.
    [12] Wang Y, Liu S L, Xu D G, Zhao Y Z, Shao H, Gao X S. Development and application of wall-climbing robots[C]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, Michigan, USA, 1999, 2, pp. 1207-1212.
    [13] Wang G R, Ma P S, Li Y M, Cao X, Sun H. The mobile robot for outer surface inspection of boiler tubes[J]. International Journal of Robotics and Automation. 2004, 19(1): 36-41.
    [14]徐芸,刘宝生,费燕琼,赵锡芳.磁轮式超声串列自动扫查爬壁机器人结构及位置调整[J].机器人. 2005, 27(4): 346-349.
    [15]桂仲成,陈强,孙振国,张文增,刘康.爬壁机器人永磁吸附装置的优化设计[J].电工技术学报, 2006, 21(11): 40-46.
    [16] Shen W M, Gu J, Shen Y J. Permanent magnetic system design for the wall-climbing robot[C]. Proceedings of the IEEE International Conference on Mechatronics & Automation. Niagara Falls, Canada, 2005, pp. 2078-2083.
    [17] Kalra L P, Gu J. An autonomous self contained wall climbing robot for non-destructive inspection of above-ground storage tanks[J]. Industrial Robot. 2007, 34(2): 122-127.
    [18] Liu K, Zhang W Z, Zeng P. Symmetrically centralized magnetic-wheel unit for wall-climbing robots[C]. Proceedings of the 13th IASTED International Conference on Robotics and Applications. Würzburg, Germany, 2007, 247-251.
    [19] Son C W, Lee S H, Go S J, Lee M C. Fundamental techniques of mobile robot for inspection of cas in oil tanker[C]. Proceedings of the Ninth IASTED International Conference on Control and Applications. Montreal, Quebec, Canada, 2007.
    [20] Fischer W, Tache F, Siegwart R. Magnetic wall climbing robot for thin surfaces with specific obstacles[C]. Proceedings of the International Conference on Field and Service Robotics. Chamonix, France, 2007
    [21] Kawaguchi Y, Yoshida I, Kurumatani H, Kikuta T, Yamada Y. Internal pipe inspection robot[C]. Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995, pp. 857-862.
    [22] Sun L Z, Sun P, Qin X J. Study on micro-robot in small pipe[C]. Proceedings of the UKACC International Conference on Control. Swansea, UK, 1998, pp. 1212-1217.
    [23] Sun L Z, Sun P, Qin X J, Wang C M. Micro robot in small pipe with electromagnetic actuator[C]. Proceedings of the International Symposium on Micromechatronics and Human Science. Nagoya, Japan, 1998, pp.243-248.
    [24] Song X C, Wu X J, Kang, Y H. An inspection robot for boiler tube using magnetic flux leakage and ultrasonic methods[J]. Insight, 2004, 46(5): 275-277.
    [25]广濑茂男など.磁气デイスク型壁面ロボット[C].第3回日本ロボット学会学术讲演会予稿集. 1990, (11): 589-590.
    [26]西亮,若杉康雄など.垂直壁面移动机构の设计[J].日本ロボット学会志, 1984, 2(3): 39-45.
    [27]西亮.壁面移动ロボットの研究开发[J].ロボット. 1992, (84): 111-116.
    [28] Nishi A. Development of Wall-climbing robots[J]. Computers & Electrical Engineering, 1996, 22(2): 123-149.
    [29]长塚谦一.真空吸着壁面自走车バツクスの吸着机构[J].油压技术, 1987, 26(5): 46-48.
    [30]长塚谦一.真空吸着壁面自走车バツクス“VACS”[J].ロボット, 1986, (53): 112-115.
    [31]俊藤建二.壁面诊断ロボット[J].日本ロボット学会志, 1992, 10(5): 594-595.
    [32]邵浩,赵言正.单吸盘爬壁机器人的吸附稳定性的分析及计算[J].机械设计, 2000, (3): 42-43.
    [33]王卫,杨宏.壁面爬行机器人行走控制系统的研究[J].电气传动, 1991, 21(3): 43-47.
    [34]赵言正,门广亮.爬壁机器人全方位移动机构的研究[J].机器人. 1995, 17(2): 102-107.
    [35] Briones L, Bustamante P, Serna M A. Wall-climbing robot for inspection in nuclear power plants[C]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego, CA, USA, 1994, 2, pp. 1409-1414.
    [36] Kim H, Kim D, Yang H, Lee K, Seo K, Chang D, Kim J. Development of a wall-climbing robot using a tracked wheel mechanism[J]. Journal of Mechanical Science and Technology, 2008, 22(8): 1490-1498.
    [37] Fukuda T, Aral F, Matsuura H, Nishibori K. Wall surface mobile robot having multiple suckers on variable structural crawler[C]. Proceedings of the 1992 international symposium on theory of machines and mechanisms. Nagoya, Japan, 1992, pp. 707-712.
    [38] Schmid D, Maeule B. Tracked robot goes up the wall[C]. Proceedings of the first intenational Climbing and Walking Robots symposium. Brussels, Belgium, 1998, pp. 33-34.
    [39] Bach Fr W, H. Haferkamp H, Lindemaier J, Rachkov M. Underwater climbing robot for contact arc metal drilling and cutting[C]. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation. Taipei, Taiwan, 1994, 3, pp. 1560-1565.
    [40] Backes P G, Bar-Cohen Y, Joffe B. The multifunction automated crawling system (MACS)[C]. Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, USA, 1997, pp. 335-340.
    [41]唐宗军,陈震,董再励,刘艳梅.一种全方位移动爬壁机器人系统设计[J].机械工程师, 2006(1): 33-35.
    [42] Rosa G L, Messina M, Muscato G, Sinatra R. A low-cost lightweight climbing robot for the inspection of vertical surfaces[J]. Mechatronics, 2002, 12(1): 71-96.
    [43]内藤绅司.曲面用吸着移动机构の开发[J].日本ロボット学会志. 1993, 11(6): 25-31.
    [44] Fujita A, Tsuge M, Mori K, Sonada S, Watahiki S. Development of inspection robot for spherical gas storage tanks[C]. Proceedings of the 16th international symposium on industrial robots. Brussels, Belgium, 1986, pp. 1185-1194.
    [45] Kroczynshi P, Wade B. The skywasher: A building washing robot[C]. Proceedings of 17th international symposium On industrial robots.1987, 1, pp. 11-19.
    [46] Adist P D, Crane C D, Gamble D R, Ridgeway S C, Tosunoglu S. Design, fabrication and control of a robotic wall-crawler for remote inspection operations[C]. Proceedings of the 1995 IEEE 21st international conference on industrial electronics, control and instrumentation. Orlando, FL, USA , 1995, pp.110-115.
    [47] White T, Hewer N, Luk B L, Hazel J. The design and operation performance of a climbing robot used for weld inspection in hazardous environments[C]. Proceedings of the 1998 IEEE international conference on control applicationa. Trieste, Italy, 1998, pp. 451-455.
    [48] Bahr B, Li Y, Najafi M. Design and suction cup analysis of a wall climbing robot[J]. Computers and Electrical Engineering, 1996, 22(3): 193-209.
    [49] Pack R T, Christopher J L, Kawamura K. A Rubbertuator-based structure-climbing inspection robot[C]. Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, USA, 1997, pp. 1869-1874.
    [50] Nishi A. A biped walking robot capable of moving on a vertical wall[J]. Mechatronics, 1992, 2(5): 543-554.
    [51] Zhang Y, Nishi A. Low-pressure air motor for wall-climbing robot actuation[J]. Mechatronics, 2003, 13(4): 377-392.
    [52] Luk B L, Collie A A, Billingsley J. Robug II: an intelligent wall climbing robot[J]. Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, Ca, USA, 1991: 2342-2347.
    [53]广濑茂男など.四足壁面移动ロボットNINJA-Iの开发[C].日本机械学会论文集. 1991, 57(540): 2679-2686.
    [54] Nagakubo A, Hirose S. Walking and running of the quadruped wall-climbing robot[C]. Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego, CA, USA, ,1994, 2, pp. 1005-1012.
    [55] Hirose S, Kawabe K. Ceiling walk of quadruped wall climbing robot NINJA-II[C]. Proceedings of the First International Conference CLAWAR 98. Brussels, 1998, pp. 143-147.
    [56] Prieto M, Armada M. Experimental issues on wall climbing gait generation for a six-legged robot[C]. Proceedings of the First International Conference CLAWAR 98. Brussels, 1998, pp. 125-130.
    [57] Galt S, Luk B L. Smooth and efficient walking motions and control for an 8-legged robot[C].Proceedings of the UKACC International Conference on Control. Swansea, UK, 1997, 2, pp. 1652-1657.
    [58] Galt S, Luk B L, Cooke D S, Collie A A. A tele-operated semi-intelligent climbing robot for nuclear applications[C]. Proceedings of the Fourth Annual Conference on Mechatronics and Machine Vision in Practice. Toowoomba, Qld., Australia, 1997, pp. 118-123.
    [59] Neubauer W. A spider-like robot that climbs vertically in ducts or pipes[J]. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Munich, Germany, 1994, 2, pp. 1178-1185.
    [60] Savall J, Avello A, Briones L. Two compact robots for remote inspection of hazardous areas in nuclear power plants[C]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, MI, USA, 1999, pp. 1993-1998.
    [61] Choi H, Park J, Kang T. A self-contained wall climbing robot with closed link mechanism[J]. Journal of Mechanical Science and Technology, 2004, 18(4): 573-581.
    [62] Wang Y, Liu S L, Xu D G, Zhao Y Z, Shao H, Gao X S. Development & application of wall-climbing robots[C]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, Michigan, USA, 1999, pp. 1207-1212.
    [63] Nishi A, Miyagi H. Control of a wall-climbing robot using propulsive force of propeller[C]. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems. Osaka, Japan, 1991, pp. 1561-1567.
    [64] Nishi A. A wall climbing robot using propulsive force of propeller[C]. Proceedings of the Fifth International Conference on Advanced Robotics. Pisa, Italy, 1991, pages 320-325.
    [65] Aracil R, Saltarén R, Sabater J M. Trepa, parallel climbing robot for maintenance of palm trees and large structures[C]. The 2nd International Conference on Climbing and Walking Robots. Portsmouth, UK, 1999: 453-461.
    [66] A. Nishi, H. Miyagi. Development of a flying-type wall-moving robot[C]. The 2nd International Conference on Climbing and Walking Robots. Portsmouth, UK, 1999: 699-705.
    [67] Nishi A, Miyagi H. A flight-type wall-climbing robot[C]. Clawar'98 First International Symposium. Brussels, Belgium, 1998, pp. 35-39.
    [68] Nishi A, Miyagi H. Mechanism and control of propeller type wall-climbing robot[C]. Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Munich, Germany, 1994, 3, pp. 1724-1729.
    [69]田口幹,石崎篤.粘着剖含用壁面移勤口不少卜[J].日本ロポット学会誌, 1996, 14(1):150~153.
    [70] Sameoto D, Li Y, Menon C. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot[J]. Journal of Bionic Engineering, 2008, 5(3): 189-196.
    [71] Pretto I, Ruffieux S, Menon C, Ijspeert A J, Cocuzza S. A point-wise model of adhesion suitable for real-time applications of bio-inspired climbing robots[J]. Journal of Bionic Engineering, 2008, 5(S1): 98-105.
    [72] Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: a gecko inspired climbing robot using elastomer adhesives[C]. Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida, USA, 2006, pp. 2329-2335.
    [73] Greuter M, Shah G, Caprari G, Tache F, Siegwart R, Sitti M. Toward micro wall-climbing robots using biomimetic fibrillar adhesives[C]. Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMIRE 2005). Fukui, Japan, 2005, pp. 39-46.
    [74]张海洪.机器人壁面自动清洗系统的工程研究[D].上海:上海大学, 2001.
    [75]刘方湖.管道形轮腿式月球探测机器人及其运动特性的研究[D].上海:上海交通大学, 2002.
    [76]刘方湖,李满华,马培荪.管道形轮腿式月球探测机器人的运动学建模[J].东南大学学报, 2003, 33(6): 741-745.
    [77]刘方湖,马培荪,陈建平.管道形轮腿式月球探测机器人[J].机械工程学报, 2002, 38(11): 42-48.
    [78] Morrey J M, Lambrecht B, Horchler A D, Ritzmann R E, Quinn R D. Highly mobile and robust small quadruped robots[C]. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, Nevada, USA, 2003, 1, pp: 82– 87.
    [79] Daltorio K A, Horchler A D, Gorb S, Ritzmann R E, and Quinn R D. A small wall-walking robot with compliant, adhesive feet[C]. Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005, pp. 4018–4023.
    [80] Daltorio K A, Gorb S, Peressadko A, Horchler A D, Ritzmann R E, Quinn R D. A robot that climbs walls using micro-structured polymer feet[C]. Proceedings of the 8th International Conference on Climbing and Walking Robots. London, UK, 2005, pp. 131-138.
    [81]王田苗,孟偲,裴葆青,戴振东.仿壁虎机器人研究综述[J].机器人, 2007, 29(3): 290-297.
    [82] Menon C, Murphy M, Angrilli F, Sitti M. WaalBots for space applications[C]. Proceedings of 55th International Astronautical Congress. Vancouver, Canada, 2004.
    [83] Unver O, Murphy M P, Sitti M. Geckobot and waalbot: small-scale wall climbing robots[C].Proceedings of AIAA 5th Aviation, Technology, Integration, and Operations Conference. Arlington, Virginia, USA, 2005.
    [84] Murphy M P, Tso W, Tanzini M, Sitti M. Waalbot: an agile small-scale wall climbing robot utilizing pressure sensitive adhesives[C]. Proceeding of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 3411-3416.
    [85] Michael P. Murphy, Metin Sitti. Waalbot: an agile small-scale wall-climbing robot utilizing dry elastomer adhesives[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS, 2007, 12(3): 330-338.
    [86] Elkmann N, Felsch T, Sack M, Saenz J, Hortig J. Innovative service robot systems for fa?ade cleaning of difficult-to-access areas[C]. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. EPFL, Lausanne, Switzerland, 2002, pp:756-762.
    [87] Sack M, Elkmann N, Felsch T, Bohme T. Intelligent control of modular kinematics-the robot platform SIRIUS[C]. Proceedings of the 2002 IEEE International Symposium on Intelligent Control. Vancouver, Canada, 2002, pp. 549-553.
    [88] Elkmann N, Kunst D, Krueger T, Lucke M, B?hme T, Felsch T, Stürze T. SIRIUSc-facade cleaning robot for a high-rise building in Munich, Germany[C]. Proceedings of the 7th International Conference on Climbing and Walking Robots. Madrid, Spain, 2005, pp: 1033-1040.
    [89] Elkmann N, Kunst D, Lucke M, Krüger T, Stürze T. SIRIUSc: fully automated facade cleaning robot for high-rise building[C]. Proceedings of International Conference on Robotics and Applications. Honolulu, Hawaii USA, 2006.
    [90] Elkmann N, Lucke M, Krüger T, Kunst D, Stürze T. Kinematics and sensor and control systems of the fully automated facade cleaning robot siriusc for fraunhofer headquarters in munich[J]. Field and Service Robotics, 2008, 42: 505-512.
    [91] Bohme, T. Schmucker, U. Elkmann, N. Sack, M. Service robots for facade cleaning[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Aachen, Germany, 1998, 2: 1204-1207.
    [92] Gambao E, Hernando M, Surdilovic D. Development of a semi-automated cost-effective facade cleaning system[J]. Robotics and Automation in Construction, 2008: 295-306.
    [93] Bock T, Bulgakow A, Ashida S. Facade cleaning robot for the skyscraper[M]. NIST Special Publication SP, 2003.
    [94] Miyake T, Ishihara H, Shoji R, Yoshida S. Development of small-size window cleaning robot by wall climbing mechanism[C]. Proceedings of 23rd international Symposium on Automation andRobotics in Construction. 2006, pp. 215-220.
    [95] MIYAKE T, ISHIHARA H. Mechanisms and basic properties of window cleaning robot[C]. Proceedings of the 2003 IEEE/ASME lntemational Conference on Advanced Intelligent Mechatronics. Port Island, Kobe, Japan, 2003, pp. 1372-1377.
    [96] Cepolina F, Michelini R C, Razzoli R P, Zoppi M. Gecko, climbing robot for walls cleaning[C]. Proceedings of the 1st International Workshop on Advances in Services Robotic. Bardoline, Italia, 2003.
    [97] Zhu J, Sun D, Tso S K. Development of a tracked climbing robot[J]. Journal of Intelligent and robotic Systems, 2002, 35(4): 427-443.
    [98]周延武,宗光华.面向对象的设计-擦窗机器人实用化的技术路线[J].机器人,2000, 22(7): 719-723.
    [99] Tso S K, Fung Y H, Chow W L, Zong G H,Liu R. Design and implementation of a glass-wall cleaning robot for high-rise buildings[C]. Proceedings of the World Automation Congress Eighth International Symposium on Robotics with Applications. Maui, Hawaii, 2000, paper ID:ISORA 123.
    [100] Zhang H X, Zhang J W, Wang W, Liu R, Zong G H. A series of pneumatic glass-wall cleaning robots for high-rise buildings[J]. Industrial Robot, 2007, 34(2): 150-160.
    [101] Zhang H X, Zhang J W, Zong G H, Wang W, Liu R. Sky Cleaner 3: a real pneumatic climbing robot for glass-wall cleaning[J]. IEEE Robotics & Automation Magazine, 2006, 13(1): 32-41.
    [102]张兆君,颜宁,宗光华.壁面吊挂清洗机器人碰壁缓冲问题研究[J].北京航空航天大学学报, 2005, 31(10): 1058-1062.
    [103]徐祯祥,刘荣,衡进,石龙.面向复杂曲面的爬壁机器人机构及运动学分析[J].北京航空航天大学学报, 2005, 31(7): 718-721.
    [104]张兆君,颜宁,宗光华.壁面吊挂清洗机器人真空吸附力和牵引力设计研究[J].机器人, 2005, 27(1): 56-62.
    [105]李锡江,刘荣,张厚祥,宗光华.基于模糊故障树法的清洗机器人安全性研究[J].北京航空航天大学学报, 2004, 30(4):344-348.
    [106]王巍,宗光华.灵巧壁面移动机器人运动学和动力学研究[J].北京航空航天大学学报, 2003, 29(9): 763-766.
    [107] Zhang H, Zhang J, Liu R, Wang W, Zong G. Pneumatic climbing robots for glass wall cleaning[C]. Proceedings of the 7th International Conference on Climbing and Walking Robots. Madrid, SPAIN, 2005: 1061-1069.
    [108]张兆君.高大建筑清洗机器人系统力学问题研究[D].北京:北京航空航天大学, 2004.
    [109]唐伯雁,张慧慧,宗光华,费仁元.球面幕墙清洗机器人的自攀爬机构设计[J].中国机械工程, 2004, 15(17): 1508-1511.
    [110] Liu R, Heng J, Zong G. The layer-crossing strategy of curved wall cleaning robot[C]. Proceedings of the 7th International Conference on Climbing and Walking Robots. Madrid, SPAIN, 2005: 1053-1060.
    [111] Zhang H, Zhang J, Liu R, Zong G. Realization of a service robot for cleaning spherical surfaces[J]. International Journal of Advanced Robotic Systems, 2005, 2(1): 053-058.
    [112]蒋志坚,徐殿国,孙光伟,王炎.交流伺服清洗爬壁机器人的姿态控制[J].哈尔滨工业大学学报, 2002, 34(4): 581-584.
    [113] Gao X S, Kikuchi K. Study on a kind of wall cleaning robot[C]. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics. Shenyang, China, 2004, pp. 391-394.
    [114] Zhao Y Z, Fu Z, Cao Q X, Wang Y. Development and applications of wall-climbing robots with a single suction cup[J]. Robotica, 2004, 22(6): 643–648.
    [115]刘淑霞,王炎,徐殿国,赵言正.爬壁机器人技术的应用[J].机器人, 1999, 21(2):148-155.
    [116]高学山,徐殿国,王炎.新型壁面清洗机器人的研究与设计[J].高技术通讯, 2004, 14(4): 39-44.
    [117]钱志源,刘仁强,赵言正,付庄.一种壁面牵引移动式玻璃幕墙清洗机器人[J].上海交通大学学报, 2006, 40(11):1818-1821, 1826.
    [118]潘雷,赵言正,钱志源,付庄,曹其新.具有双负压吸盘的爬壁机器人吸附特性[J].上海交通大学学报, 2005, 39(6): 873-876, 883.
    [119] Qian Z Y, Zhao Y Z, Fu Z, Cao Q X. Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups[J]. International Journal of Advanced Manufacturing Technology, 2006, 30(1-2): 147-155.
    [120]张海洪,龚振邦,谈士力.全方位越障移动机构研究[J].机器人, 2001, 23(4): 341-345.
    [121] Tan S L, Wang M T, Zhang H H. Key technology research on wall-cleaning robot with single suction cup[C]. Proceedings of the 2007 International Conference on Life System Modeling and Simulation. Shanghai, China, 2007, pp. 100-104.
    [122]刘淑霞.壁面清洗爬壁机器人控制技术的研究[D].哈尔滨:哈尔滨工业大学, 2000.
    [123]张厚祥.幕墙清洗机器人系统相关问题研究[D].北京:北京航空航天大学博士学位论文, 2003.
    [124]魏竹波,周继维等.金属清洗技术[M].北京:化学工业出版社,2007: 160-205.
    [125]陈旭俊.工业清洗剂和清洗技术[M].北京:化学工业出版社,2002: 422.
    [126]邵浩.清洗爬壁机器人机构及清洗作业系统的研究[D].哈尔滨:哈尔滨工业大学, 1999.
    [127]赵言正.全方位壁面移动机器人系统的研究[D].哈尔滨:哈尔滨工业大学, 1999.
    [128]钱志源,付庄,赵言正.一种在驱动轮打滑情况下爬壁机器人动力学建模方法[J].上海交通大学学报, 2007, 41(6):857-860.
    [129]钱志源,赵言正,付庄.基于变质量系统力学理论的爬壁机器人动力学分析[J].机器人, 2007, 29(2): 106-110.
    [130]钱志源.带滑动式吸盘的爬壁机器人运动特性分析及其应用研究[D].上海:上海交通大学, 2006.
    [131]仝建刚,马培荪,陈俊梅.履带式磁吸附爬壁机器人壁面适应能力的研究[J].上海交通大学学报, 1999, 33(7): 851-854.
    [132]徐泽亮,马培荪.永磁吸附履带式爬壁机器人转向运动灵活性分析[J].上海交通大学学报, 2003, 33(11): 58-61,65.
    [133]徐泽亮.履带式永磁吸附式爬壁机器人壁面适应性及其应用研究[D].上海:上海交通大学, 2003.
    [134]孟宪超,王祖温,包钢, SKTSO,邵浩.一种多吸盘爬壁机器人原型的研制[J].机械设计, 2003, 20(8): 30-34.
    [135]张培锋,王洪光,房立金,姜勇.一种新型爬壁机器人机构及运动学研究[J].机器人, 2007, 29(1): 12-17.
    [136] Luk B L, Cooke D S, Galt S, Collie A A, Chen S. Intelligent legged climbing service robot for remote maintenance applications in hazardous environments[J]. Robotics and Autonomous Systems, 2005, 53(2): 142-152.
    [137] Akinfiev T, Armada M, Prieto M, Uquillas M. Concerning a technique for increasing stability of climbing robots[J]. Journal of Intelligent and Robotic Systems, 2000, 27(1-2), pp:195-209.
    [138] Krosuri S P, Minor M A. A multifunctional hybrid hip joint for improved adaptability in miniature climbing robots[C]. Proceedings of the IEEE International Conference on Robotics and Automation. Taipei, Taiwan, 2003, 1(14-19), pp. 312-317.
    [139]谈士力,张海洪,龚振邦.爬壁机器人全方位移动机构研制[J].上海大学学报. 2000, 6(2): 95-99.
    [140]张海洪,龚振邦,谈士力,冯星华.具有越障功能的全方位移动机构研究[J].高技术通讯. 2001, (2): 95-97.
    [141]昌先国,高学山,潘沛霖,邵浩.自适应式多真空室吸盘的研究[J].哈尔滨工业大学学报.1998, 30(1): 28-31.
    [142] Ma Peisun, Zhu Haihong. Control and selection of structure parameters of adaptive sucking disk[J]. Journal of Shanghai Jiaotong University. 1997, E-2(2): 94-98
    [143]成大先.机械设计手册单行本气压传动[M].北京:化学工业出版社. 2004: 99.
    [144]项中岱.高层建筑墙面自动清洗装置:中国, 96205687.1[P]. 1998.01.21.
    [145]徐灏.密封[M].北京:冶金工业出版社. 1999:2-5.
    [146]辛一行.现代机械设备设计手册第1卷设计基础[M].北京:机械工业出版社. 1996: 7-17-7-22.
    [147]田玲.气动组合台真空吸附机械手系统设计[J].真空. (5), 2001: 37-40.
    [148]王巍.自主移动玻璃幕墙清洁机器人工程化研究[D].北京航空航天大学博士后学位论文. 2003:35.
    [149] Tan Shili, Zhang Haihong, Gong Zhenbang. Omni-directional mechanism with overstepping function[C]. Proceeding of the First International Conference on Mechanical Engineering. 2000: 287-297.
    [150]高学山.壁面清洗机器人及实用技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2002.
    [151]陈建东.玻璃幕墙工程技术规范应用手册[M].北京:中国建筑工业出版社, 1996.
    [152]徐华芬.壁面清洗原理研究[D].上海:上海大学, 1998.
    [153]成大先.机械设计手册(单行本):弹簧·起重运输件·五金件[M].北京:化学工业出版社, 2004.
    [154] http://www.people.com.cn/GB/paper39/765/95610.html.(Z)
    [155]张厚祥,刘荣,王巍,宗光华.爬壁机器人气动位置伺服控制研究[J].北京航空航天大学学报. 2004, 30(8): 705-708.
    [156]龚振邦,汪勤悫等.机器人机械设计[M].北京:电子工业出版社, 1995.
    [157] Muir P F. Modeling and control of wheeled mobile robot[D]. America: Carnegie Mellon University, 1988.
    [158] Muir P F, Neuman C P. Kinematic modeling of wheeled mobile robots[J]. Journal of Robotic System. 1987,4(2): 281-340.
    [159]毕学涛.高等动力学[M].天津:天津大学出版社, 1994.
    [160]陈文良,洪嘉振等.分析动力学[M].上海:上海交通大学出版社, 1990.
    [161]沙永海.分析力学解题指导[M].哈尔滨:黑龙江科学技术出版社, 1986.
    [162]何旭初.广义逆矩阵的基本理论和计算方法[M].上海:上海科学技术出版社, 1985.
    [163]钱吉林,李照海.矩阵及其广义逆[M].武汉:华中师范大学出版社, 1988.
    [164]刘淑霞.壁面清洗爬壁机器人控制技术研究[D].哈尔滨:哈尔滨工业大学, 2000.
    [165] ]陈伯时.自动控制系统[M].北京:机械工业出版社, 1990.
    [166]邱雪娜,刘士荣,俞金寿, Yang S X.移动机器人的完全遍历路径规划:生物激励与启发式模板方法[J].模式识别与人工智能, 2006, 19(1): 122-128.
    [167]邱雪娜,刘士荣,宋加涛, Yang S X.不确定动态环境下移动机器人的完全遍历路径规划[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700