大尺寸硅片磨削平整化理论与工艺技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路(IC)制造技术的飞速发展,为了提高IC集成度,IC的特征线宽不断减小;另一方面,为了增大IC芯片产量,降低单元制造成本,硅片趋向大直径化。随着硅片直径增大,为了保证硅片具有足够的强度,硅片的厚度也相应增加;与此相反,为满足先进IC芯片封装技术需要,芯片的厚度越来越薄。这些变化使硅片平整化加工面临许多突出的技术问题:IC特征线宽减小,对硅片加工精度和表面质量提出很高的要求;硅片直径增大后,加工中容易翘曲变形,加工面型精度不易保证;硅片厚度增大以及芯片厚度减小,使硅片背面减薄加工的材料去除量增大,提高加工效率成为一个亟待解决的问题。因此,采用固结磨料砂轮的超精密磨削技术正在取代传统的研磨技术成为硅片超精密平整化加工技术的主流发展方向,其中最有代表性的硅片自旋转磨削方法被认为是大尺寸硅片磨削平整化加工的理想方法。尽管,硅片自旋转磨削技术已在大直径硅片的制备、有电路硅片的背面减薄以及废旧硅片的回收加工中得到应用,但是,如何进一步提高硅片加工表面层质量、面型精度和加工效率仍然是目前急需解决的主要问题。所以,必须针对这些问题深入系统地研究硅片自旋转磨削平整化理论和关键工艺技术。
     本文建立了硅片自旋转磨削的运动学理论模型,并通过分析砂轮与硅片之间的相对运动,给出了硅片自旋转磨削的运动轨迹参数方程;通过引入节点和节圆等概念,并在运动几何学的基础上推导了磨纹长度、数量以及磨削稳定周期公式;分析了磨纹间距、密度与磨削表面质量的关系;在Windows2000/XP平台上,开发了硅片自旋转磨削的磨削纹理仿真软件,对几种典型速比下的硅片磨削纹理及其对表面质量的影响进行了预测和理论分析,并通过硅片磨削实验,对仿真和理论分析结果进行了试验验证;通过理论和试验研究,从运动学角度,提出提高磨削表面质量的工艺措施。
     综合考虑硅片自旋转磨削时硅片夹持系统中真空吸盘修整参数以及硅片磨削参数等多种因素,建立了硅片面型的理论模型;在此模型的基础上,推导了硅片磨削面型的方程以及表征硅片面型精度的重要指标—硅片总厚度变化(Total Thickness Variation,TTV)的计算公式;应用VC++6.0编程技术和OpenGL三维图形库开发了磨削面型仿真软件,对真空吸盘修整面型以及硅片磨削面型进行了计算机仿真和预测,分析了真空吸盘修整面型、砂轮转速、工作台转速、砂轮轴向进给速率、磨床砂轮主轴摆动角和偏摆角等因素对硅片磨削面型的影响规律,并以VG401型超精密磨床为试验平台对硅片磨削面型的仿真预测结果和理论分析结果进行了磨削试验验证。
     提出了利用软磨料砂轮低损伤磨削加工硅片的新方法;研制出了通过释放填充料提供良好加工环境的高自锐性的#3000二氧化铈软磨料砂轮,并设计了用于硅片自旋转磨削的可拆卸互换式砂轮结构;研究了软磨料砂轮的低成本制备方法和修整方法,开发了砂轮的修整工具。进行软磨料砂轮的干式和湿式磨削试验,应用XPS检测磨削后硅片表面的成份,分析砂轮磨料和填充料与硅片之间的化学反应,揭示了软磨料砂轮磨削硅片时利用化学机械复合作用的材料去除机理。进行了软磨料砂轮磨削性能试验,利用AFM、SEM、TEM等仪器检测表面粗糙度、表面形貌、表面缺陷和表面层损伤,试验表明,软磨料砂轮磨削不仅能够保证硅片加工精度,加工成本低,而且磨削后的硅片表面经检测未发现划痕,硅片亚表面未发现微裂纹和位错。
     以兼顾加工效率和表面质量为目标,提出了采用#325和#2000金刚石砂轮以及#3000软磨料砂轮,利用硅片自旋转磨床,分别进行粗磨、精磨和低损伤磨削的硅片超精密平整化加工工艺方案。针对粗磨、精磨和低损伤磨削加工,选择砂轮转速、硅片转速、砂轮进给速度、冷却液流量4个主要因素进行了正交试验,分别针对不同的单项磨削工艺指标优化了磨削工艺参数。通过灰关联分析,将多项工艺指标的优化问题转化为优化单项灰关联度,实现了多项工艺指标的优化,确定了硅片超精密磨削平整化的最佳优化工艺参数。
With fast developing of the integrated circuit (IC) manufacturing technology, the devicefeature size continues reducing in order to increase the density of integration. On the otherhand, the diameter of the silicon wafer tends to be larger and larger in order to increase theyields of chips and decrease the cost per bit. While the diameter of the wafer increase, thethickness of wafer is also increased to ensure the strength of the wafer. Contrarily, the chipthickness is decreased to be thinner and thinner to meet the requirements of the advanced ICpackage technology. With the increase of the diameter and thickness of the wafer and thedecrease of the chip thickness, the current flattening process of the wafer is facing many newtechnology problems. The high machining accuracy is difficult to achieve because the largesized wafer is easy to warp, and the high machining efficiency is required because sizechanges of the wafer and the chip result in the increase of the material removal amount.Therefore, the ultra-precision grinding with fixed abrasive wheel, which is taking the place oflapping with loose abrasive, becomes the main trend of development for ultra-precisionflattening process for the large-sized silicon wafer. Although wafer rotation grinding methodis especially considered as the most promising processing technology and has been used inmanufacturing of the blank wafer, back thinning of the pattern wafer and reclaiming the rejectwafer, how to further improve surface layer quality and flatness of the ground wafer andenhance machining efficiency are still main problems to be solved. Thus, it is very necessaryto deeply and systematically research the flattening theory and key process technology basedon wafer rotation grinding.
     In this paper, according to relative motion between the cup grinding wheel and the siliconwafer, a kinematic model of the wafer rotation grinding is established, the kinematic equationof the grit trajectory is derived based on the concept of pitch point and pitch circle etc. Theformula of the length and number of the grit trajectories and the stable grinding period arededuced. The influence of the interval and the density of the grinding marks, formed on thewafer surface by the many grits, on surface quality of the ground wafer are analyzed.Simulation software of the grinding marks on the wafer surface is developed on operatingsystem Windows 2000/XP, and the grinding marks on the wafer ground with differentvelocity ratio of the grinding wheel to wafer are predicted and analyzed by computersimulation. The results of simulation and theoretical analyses are verified by experiments, which are conducted on a grinding machine VG401. Through theoretical and experimentalstudies, the available technique ways to improve the surface quality of the ground wafer areprovided from kinematic point of view.
     A theoretical model for the ground wafer surface profile is developed, in which manycritical factors, including dressing parameters of the porous ceramic vacuum chuck systemand grinding parameters of the wafer, etc., are considered. From the model, the equation ofthe ground wafer surface and the formula of the total thickness variation(TTV) that is animportant data of the wafer surface flatness, are derived. By using a computer simulationsoftware on the ground wafer surface developed with Visual C++(VC++) and Open GraphicLibrary (OpenGL), the 3D surface profile of the dressed vacuum chuck and the ground waferare predicted, and the effects of the dressed vacuum chuck surface and the wafer grindingparameters, including the rotational speed of the grinding wheel, the down feed rate of thegrinding wheel, the rotational speed of the wafer, the roll angle and pitch angle of the grindingwheel spindle, on the 3D surface profile of the ground wafer are theoretically analyzed. Theresults of theoretical analysis and computer simulation are verified through a series ofgrinding experiments on a grinding machine VG401.
     An innovative low damage grinding method for silicon wafers using a soft abrasivegrinding wheel (SAGW) is put forword. The SAGW with #3000 CeO_2 abrasive, which hascapability of good self-dressing and releasing active additives to provide particular machiningcondition, is developed. A detachable and interchangeable structure of the SAGW is designed.The low cost manufacturing and dressing method of the SAGW are studied, and the dressingtools for the SAGW are developed. The grinding experiments using the SAGW on thecondition of dry and wet grinding are conducted and chemical reaction between the abrasiveand additives of grinding wheel and the wafer is testified by XPS inspection of productcomponent on the ground wafer surface. The mechanism of material removal on the wafersurface can be explained as chemical and mechanical recombination action. The grindingperformances of the developed SAGW are studied in terms of surface roughness, surfacetopography and surface defect and surface/subsurface damage of the ground wafers by use ofAFM, SEM and TEM. The experiment results show that the grinding method for siliconwafers using the SAGW has not only high machining accuracy and low machining cost, butalso hardly results in such damage as scratch, crack and dislocation in the surface andsubsurface of the ground wafer.
     Aiming at the surface quality and material removal rate, an innovative ultra-precisionflattening process for large-sized silicon wafer, which is a procedure processing system,integrating the rough grinding with #325 diamond grinding wheel, fine grinding with #2000diamond grinding wheel, and the low damage grinding with #3000 CeO_2 SAGW on a precision grinding machine based on wafer rotating grinding method, is put forward. TheTaguchi experiment programme of four factors, including the rotational speed of the grindingwheel, the rotational speed of the wafer, the down feed rate of the grinding wheel, and theflux of cooling fluid, is designed. The optimum process parameters of the wafer rotationgrinding are obtained according to the different single machining performance characteristics.The optimum of multi performance characteristics is realized by converting the optimumproblem of multi performance characteristics to a sequencing problem of grey relational gradethrough grey system theory. And optimum process parameters for the rough grinding, finegrinding and low damage grinding are separately given.
引文
[1] Hahn P. O, The 300 mm silicon wafer-A cost and technology challenge, Microelectronic Engineering, 2001, 56: 3-13.
    [2] Shayne La Force. Meeting market Requirements through innovation: The new DBC Process, TAP technology, (2001) 71-73.
    [3] Ernst Gaulhofer, Heinz Oyrer. Wafer thinning and strength enhancement to meet emerging packaging requirements, IEMT Europe 2000 Symposium, April 06-07, Mynich, Germany.
    [4] 刘志杰,郑安生.半导体材料.北京:化学工业出版社,2004.7.
    [5] Quirk M.,Serda J.[著],韩郑生等[译],半导体制造技术,北京:电子工业出版社,2004.1.
    [6] 张厥宗.硅单品抛光片的加工技术.北京:化学工业出版社,2005.8.
    [7] 郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术.世界制造技术与装备市场,2003(1):35-40.
    [8] 廉子丰.大直径硅片加工技术.电子工业专用设备.1997,3
    [9] 孙泉.解读摩尔定律.集成电路应用,2004(8):3-4
    [10] 杨杰,硅晶圆制造业导读,元富证券(香港)有限公司上海代表处,2003.
    [11] 刘玉岭,檀柏梅,张楷亮,超大规模集成电路衬底材料性能及加工测试技术工程,冶金工业出版社,2002.
    [12] 阙端麟,陈修治.硅材料科学与技术,杭州:浙江大学出版社,2000.12.
    [13] Tonshoff H K, Schmieden W V, et al. Abrasive Machining of Silicon, Annals of CIRP, 1990, 39(2): 621-634.
    [14] J. Corbett, P. Morantz, D.J. Stephenson and R. F. Read, An advanced ultra precision face grinding machine, AC'01, VI International Conference on Monitoring and Automatic Supervision in Manufacturing, 2001.
    [15] 王文瑞,晶圆超精密論磨技术探计,机械工业杂志(台湾),255(2004):115-122.
    [16] 《国际半导体技术路线指南International Technology Roadmap Semiconductors》(ITRS)1999年-(ITRS)2000年-(ITRS)2001年-(ITRS)2003年.
    [17] International Technology Roadmap for Semiconductors 2005 Edition, Front End Processes. http://www.itrs.org.
    [18] 江瑞生.硅片的几何参数及其测试.上海有色金属,1994,15(4),217-228.
    [19] 康仁科,田业冰,郭东明,金洙吉.大直径硅片超精密磨削技术的研究与应用现状,金刚石与磨料磨具工程,2003,(04):13-18.
    [20] 董志刚,田业冰,康仁科,郭东明,金洙吉.硅片超精密磨床的发展现状,电子工业专用设备,2004,(06):54-59.
    [21] 康仁科,郭东明,霍风伟,金洙吉.大尺寸硅片背面磨削技术的应用与发展.半导体技术,2003,28(9):33-40.
    [22] Z.J. Pei, Alan Strasbaugh, Grinding induced subsurface crack in silicon wafers, International Journal of Machine Tools and Manufacture, 39 1999: 1103-1116.
    [23] Pei Z J, Strasbaugh Alan. Fine grinding of silicon wafers, International Journal of Machine Tools and Manufacture, 41 (2001)659-672.
    [24] Z.J. Pei, A study on surface grinding of 300mm silicon wafers, International Journal of Machine Tools and Manufacture, 42 (2002): 385-393.
    [25] Z.J. Pei, Alan Strasbaugh, Fine grinding of silicon wafers: designed experiments, International Journal of Machine Tools and Manufacture, 42 (2002): 395-404.
    [26] 郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展.机械工程学报,2003,39(10):100-105.
    [27] 陈杨,陈建清,陈志刚,超光滑表面抛光技术,江苏大学学报(自然科学版),24(5),2003.
    [28] 魏昕,杜宏伟,袁慧,解振华,品片材料的超精密加工技术现状,组合机床与自动化加工技术,2004年第3期.
    [29] M. Tricard, K. Subramanian, Overview of abrasive finishing process in the electronics industry, Abrasive Magazine April/May (1998).
    [30] Laertis Economikos, STI Planarization Using Fixed Abrasive Technology, Future Fab., Vol. 12 2002
    [31] Shijian Li, Lizhong Sun, et al, A Low Cost and Residue-Free Abrasive-Free Copper CMP Process With Low Dishing, Erosion And Oxide Loss, IITC 2001/IEEE
    [32] V.A. Muratov, T.E. Fischer. Tribochemical polishing, Annual Review of Materials Science, v 30, 2000
    [33] SAVASTIOUK S,薄厚化3次元実装一,電子材料,(2000),24-28.
    [34] 本多进.电子部品复合化,3次元化,基板内藏化动探,安装技术,2003,19(1):12—19.
    [35] M. Reiche, G. Wagner, Wafer thinning techniques for ultra-thin wafers. Advanced Packaging. Vol. 12, no. 3, 2003:29-30,32-33.
    [36] Sandhya Sandireddy, Tom Jiang, Advanced Wafer Thinning Technologies to Enable Multichip Packages, 2005 IEEE.
    [37] 何雅全,吴明根编著,超精密加工技术基础,航空机载设备制造中心国家超精密加工实验室,1993.
    [38] W.J. Liu, Z.J. Pei, X.J. Xin, Finite element analysis for grinding and lapping of wire-sawn silicon wafers, Journal of Materials Processing Technology 129(2002): 2-9. S. Matsui, An experimental study on the grinding of silicon wafer—the wafer rotation grinding method (1st report). Bull. Japan Soc. Prec. Eng. 22(4)(1988) 295-300.
    [39] S. Matsui, T. Horiuchi, Parallelism improvement of ground silicon wafers, Journal of Engineering for industry, 113(1991): 25-28.
    [40] Tricard M, Subramanian K. Overview of abrasive finishing process in the electronics industry, Abrasive Magazine April/May (1998).
    [41] Takada K, yamagishi H, Minami H, Imai M. Research and development of super silicon wafer, Proceedings of the 7th Int. Symposium on Silicon Materials Science and Technology The Electrochemical Society, Inc., 1998,376-395.
    [42] Z.J. Pei, S. Kassir, Milind Bhagavat, Graham R. Fisher, An experimental investigation into soft-pad grinding of wire-sawnsilicon wafers, International Journal of Machine Tools and Manufacture, 44 (2004): 299-306.
    [43] Z.J. Pei, X.J. Xin, W. Liu, Finite element analysis for grinding of wire-sawn silicon wafers: a designed experiment, International Journal of Machine Tools and Manufacture, 43 (2003): 7-16.
    [44] X.J. Xin, Z.J. Pei, Wenjie Liu, Finite Element Analysis on Soft-Pad Grinding of wire-sawn silicon wafers, Journal of Electronic Packaging Voi. 126 (2004): 177-185.
    [45] X.K. Sun, Z.J. Pei, X.J. Xin, Mandy Fouts, Waviness removal in grinding of wire-sawn silicon wafers: 3D finite element analysis with designed experiments, International Journal of Machine Tools and Manufacture, 44 (2004): 11-19.
    [46] Pei Z.J., Xin X.J, Sun Xuekun Soft-pad grinding of 300mmwire-sawn silicon wafers: effects of soft pad parameters, Proceedings of the 6th International Conference on Frontiers of Design and Manufacturing (ICFDM). June 21-23, 2004, Xi' an, China. Science Press and Science Press USA Inc: 16-18.
    [47] Bismayer U, Brinksmeier E, Guttler B et al. Measurement of subsurface damage in silicon wafers. Precision Engineering, 1994,16(2): 139-143.
    [48] Zhang J M, Pei Z J, Sun J G. Mesurement of subsurface damage in silicon wafers. 6th International Conference on Progress of Machining Technology, Xi'an, China, 002:715-720.
    [49] 张银霞 单晶硅片超精密磨削加工表面层损伤的研究:(博士学位论文).大连:大连理工大学,2006.
    [50] Hadamovsky H F. Werstoffe der hableitertechnik. Leipzig: Deutscher Verlag fur Grundstofftechnik, 1990(in German).
    [51] 陈志恭.硅片制备中的损伤问题.物理,1999,14(5):285-290.
    [52] 于栋利,李东春,何巨龙等.硅片的在线电解修整超精密磨削.中国机械工程,1999,10(5)566-569.
    [53] Zhang L C, Zarudi I. Towards a deeper understanding of plastic deformation in monocrystalline silicon. International Journal of Mechanical Sciences, 2001,43:1985-1996.
    [54] Zarudi I, Zhang L C. Subsurface damage in single-crystal silicon due to grinding and polishing. Journal of Materials Science Letters, 1996,15:586-587.
    [55] Zarudi I, Zhang L C. Effect of ultraprecision grinding on the microstructural change in silicon monocrystals. Journal of Material Processing Technology, 1998,84:149-158.
    [56] Zarudi I, Zhang L C. Structure changes in monocrystalline silicon subjected to indentation-experimental findings. Tribology International, 1999,32:701-712.
    [57] H. Ohmori, T. Nakagawa, Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels, Annals of CIRP 44 (1) (1995) 287-290.
    [58] Ohmori H, Nakagawa T, Mirror surface grinding of silicon wafers with electrolytic in-process dressing, Annals of CIRP, 1990, 39(1): 329-332.
    [59] H.T. Young, Hsi-Tien Liao and Hong-Yi Huang Novel method to investigate the critical depth of cut of ground silicon wafer, Journal of Materials Processing Technology, 2007, 182 (1-3): 157-162.
    [60] 黄弘毅 矽晶圆超精密輪磨之研究:(硕士学位论文)台北:国立台湾大学,2003.
    [61] B. S. Hosseini, L.B. Zhou, T. Tsuruga, J. Shimizu, H. Eda, Study on subsurface Damage generated in ground Si wafer, Proceeding of The 2nd Int. Student Conf. At Ibaraki Univ. Japan, 2006: 309-313.
    [62] 野沢 公夫.半導体製造方法.日本专利,特開2003—229385.
    [63] 橘井 友裕.半導体製造方法.日本专利,特開2002—124490.
    [64] W.P. Sun, Z.J. Pei, Graham R. Risher, Fine grinding of silicon wafer: machine configurations for spindle angle adjustments, International Journal of Machine Tools and Manufacture, 45 (2005): 51-61.
    [65] S. Chidambaram, Z.J. Pei, S. Kassir, Fine grinding of silicon wafers: a mathematical model for grinding marks, International Journal of Machine Tools and Manufacture, 43(2003) 1595-1602.
    [66] W.P. Sun, Z.J. Pei, G.R. Fisher, Fine grinding of silicon wafers: a mathematical model for the wafer shape, International Journal of Machine Tools and Manufacture, 44 (2004): 707-716.
    [67] Tadahiro Kato, Fukushima, Hisashi Oshima et al. Processing Method for A Wafer. US Patent 6,358,117, 2002.
    [68] L.B. Zhou, H. Eda, J. Shimizu, State-the-art technologies and kinematical analysis for one-stop finishing of φ300mm Si wafer, Materials Processing Technology, 129 2002: 34-40.
    [69] Libo Zhou, Jun Shimizu, Kazuhiro Shinohara, Hiroshi Eda, Three-dimension kinematic analyses for surface grinding of large scale substrates, Precision Engineering 27(2003) 175-184.
    [70] Pei-Lum Tso, Chieng-Chung Teng, A study of the total thickness variation in the grinding of ultra-precision substrates, Materials Processing Technology, 116(2001): 182-188.
    [71] A. J. Shih, N. L. Lee, Precision cylindrical face grinding, Precision Engineering. 1999 Vol. 23(3): 177-184.
    [72] H. K. Tonshoff, B.Karpuschewski, M. Hartmann et al. Grinding and slicing technique as an advance technology for silicon wafer slicing. Mach. Sci. Technology, 1997,1(1): 33-47.
    [73] S. Chidambaram, Z. J. Pei, S.Kassir, Fine grinding of silicon wafers: a mathematical model for the chuck shape, International Journal of Machine Tools and Manufacture, 43 (2003): 739-746.
    [74] I. D. Marinescu, C. Miyakawa, H. Ohmori, J. Shibata, ELID grinding characteristics of silicon wafer, in: Proceedings of the first International Conference of Precision Engineering Nanotechnology 1 (1999) 380-383.
    [75] M. M. Islam, A. S. Kumar, S. Balakumar, H. S. Lim, M. Rahman, Advanced ELID process development for grinding silicon wafers, in: Proceedings of Materials Research Society Symposium, Vol. 867, 2005, pp. 97 - 104.
    [76] H. Ohmori, Method and apparatus for grinding with electrolytic dressing, US Patent 5,547,414, 1996.
    [77] N. Itoh, H. Ohmori, S. Moriyasu, T. Kasai, T. K. Doy, B. P. Bandyopadhyay, Finishing characteristics of brittle materials by ELID-lap grinding using metal - resin bonded wheels, International Journal of Machine Tools & Manufacture 38 (7) (1998) 747 - 762.
    [78] J. H. Liu, Z. J. Pei and Graham R. Fisher ELID grinding of silicon wafers: A literature review, International Journal of Machine Tools and Manufacture, Volume 47, Issues 3-4, March 2007, Pages 529-536.
    [79] P. S. Sreejith, B. K. A. Ngoi, Material removal mechanisms in precision machining of new materials, International Journal of Machine Tools and Manufacture, 41(2001) 1831-1843.
    [80] N. s. Ong, V. C. Venkatesh, Semi-ductile grinding and polishing of Pyrex glass, Journal of Materials Processing Technology 83(1998): 261-266.
    [81] Thomas G. Bifano, Paul A. Bierden, Fixed-abrasive grinding of brittle hard-disk substrates, International Journal of Machine Tools and Manufacturing Vol. 37. No. 7 (1997) 935-946.
    [82] Ming Zhou, B. K. A. Ngoi, Z. W. Zhong, et al. Brittle-ductile transition in diamond cutting of silicon single crystals. Materials and Manufacturing Processes. 2001, 16(4): 447-460.
    [83] Keith Puttick. Brittle to ductile transition in machining. Key Engineering Materials. 2003, 233-234:59-70.
    [84] A. D. Thomas and R. 0. Scattergood. Ductile/brittle transition and development of ductile mode grinding technology. 精密式学会誌, 1990, 56(5): 18-22.
    [85] 霍凤伟 硅片延性域磨削机理研究:(博士学位论文).大连:大连理工大学,2006.
    [86] http://www.disco.co.jp/eg/news/press/20041124_2.html
    [87] 宫崎 生成,薄化技衍(3)研磨摇動手法独自技衍,Nikkei Microdevices,2005.No.11.
    [88] Chao-Chang A. Chen, Li-Sheng Shu, Shah-Rong Lee, Mechano-Chemical Polishing of Silicon Wafers, J. Materials Processing Technology, Vol. 140, PP. 373~378, 2003.
    [89] 周 立波 河合真二 本田将之 清水 淳等Si Chemo-Mechanical-Grinding(CMG)関研究-第1报:CMG砥石開発,精密工学会誌,Vol.68,12(2002)1559.
    [90] 周 立波 清水 淳 江田 弘 等Si Chemo-Mechanical-Grinding(CMG)関研究-第2报:固定砥粒φ300mm Si完全表面創成,精密工学会誌,Vol.71,4(2005)466-470.
    [91] Libo Zhou, Jun Shimizu, Hiroshi Eda, A novel fixed abrasive process: chemo-mecbanical grinding technology, International Journal of Manufacturing Technology and Management, Vol. 7, No. 5~6, 2005: pp. 441-454.
    [92] 詹捷,白俊.半导体材料表面超精密加工技术,机械工艺师,1999,(6):3-5.
    [93] 刘娟,黄辉,于怡青,徐西鹏,固结磨料加工硅片的技术进展.珠宝科技.2004,16(53):5-8.
    [94] Eda H, Zhou L, et al., Development of single step grinding system for large scaleo 300 Si wafer: A total integrated fixed-abrasive solution, Annals of CIRP, 2001, 50(1):225-228.
    [95] J. Corbett, P. Morantz, D.J. 8tephenson and R.F. Read, An advanced ultraprecision face grinding machine, International Journal of advanced manufacturing technology, 20(2002): 639-648.
    [96] 机部章,富田良幸,岩濑昭雄.工程别加工技术:两頭研削,机械工具,52000(5):50-53.
    [97] 村井 史朗.頭研削装置加工特性.械工具.2002,(5):29-38.
    [98] 阿部耕三,狛豊,磯部章.超精密研削用三角柱型五面体构造提案装置開発.砥粒加工学会誌.2001,45(6):266-268.
    [99] E Ahearne, G Byrne Ultraprecision grinding technologies in silicon semiconductor processing, Proc. Instn Mech. Engrs, 2004, Vol. 218 Part B: J. Engineering Manufacture: 253-267.
    [100] Elmar, Kenichi SeKiya, Apparatus and method for machining workpieces by flushing working liquid to the tool-and-workpieces interface, US Patent 6,095,899. Aug. 1, 2000.
    [101] Yutaka Koma, Motomi Kitano, Takashi Kouda, Semiconductor wafer grinding apparatus, US Patent 6,159,071. Dec. 12, 2000.
    [102] Kazuhisa Arai, Semiconductor wafer grinding method, US Patent 6,527,627B2. Mar. 4, 2003.
    [103] Arai Kazuhisa, Semiconductor wafer grinding method and machine, European Patent Application, EP1170088A3, Sep. 1, 2002.
    [104] E Ahearne, G Byrne Ultraprecision grinding technologies in silicon semiconductor processing, Proc. Instn Mech. Engrs, 2004, Vol. 218 Part B: J. Engineering Manufacture: 253-267.
    [105] A. Une, Y. Kai, M. Mochida, S. Matsui, and F. Ohira, Influence of Wafer Chucking on Focus Margin for Resolving Fine Patterns in Optical Lithography, Microelectronic Engineering 61-62 (2000) 137-140
    [106] A. Une, Y. Rai, M. Mochida, S. Matsui, Flatteningability of avacuum pin chuck around the periphery of a processed wafer, Microelectronic Engineering 57-58 (2001)
    [107] L. Bendfeldt, H. Schulz, N. Roos, H.-C. Scheer, Groove design of vacuum chucks for hot embossing lithography, Microelectronic Engineering 61-62 (2002) 455-459
    [108] Mikolaj Szafran, Pawel Wisniewski, Effect of bonding ceramic material on the size of pores in porous ceramic materials, Colloids and Surfaces A: Physicochemical and Engineering Aspects 179 (2001) 201-208.
    [109] 杨利军 大尺寸硅片真空夹持系统的研究:(硕士学位论文)大连:大连理工大学,2005.
    [110] J.H. Liu, Z.J. Pei and Graham R. Fisher, Grinding wheels for manufacturing of silicon wafers: A literature review, International Journal of Machine Tools and Manufacture, Volume 47, Issue 1, January 2007, Pages 1-13.
    [111] 江田弘,周立波等,合成砥石,日本专利,JP2002-355763,A,平成14年12月10日(2002.12.10).
    [112] 江田弘,周立波等,工作物表面加工方法,日本专利,JP2005-136227,A,平成17年5月26日(2005.5.26).
    [113] 安永暢男,固定砥粒研磨加工技衍実用化条件课题,机械工具,46,5(2002)11.
    [114] J.D. Wu, C.Y. Huang, C.C. Liao, Fracture strength characterization and failure analysis of silicon die, Microelectronics Reliability 43(2003) 269-277.
    [115] Mcguire K, Danyluk S, Barker T Let al. The influence of backgrinding on the fracture strength of 100 mm diameter (111) p-type silicon wafers. Journal of Materials Science, 1997,32:1017-1024.
    [116] Jan J.Tuma,Ronald A.Walsh[著],欧阳芳锐,张玉平[译],工程数学手册.北京:科学出版社,2002.
    [117] 任敬心,华定安.磨削原理,西安:西北工业大学出版社,1988.6.
    [118] S.马儿金[著],蔡光起,巩亚东,宋贵亮[译],磨削技术理论与应用,沈阳:东北大学出版社,2002.8.
    [119] 任敬心,康仁科,史兴宽.难加工材料的磨削,北京:国防工业出版社,1999.2.
    [120] 王文男.计算机仿真方法初探.江汉大学学报(自然科学版),2002,19(3),67-70.
    [121] 凌维业,芮执元,杨萍,计算机仿真在制造业的应用与发展,机械研究与应用,2001.
    [122] 齐舒创作室.Visual C++6.0开发技巧及实例分析[M].北京:清华大学出版社,1999
    [123] 侯俊杰.深入浅出MFC.华中科技大学出版社(第二版),1998,9.
    [124] Richard S.Wright,Jr.Michael Sweet.OpenGL超级宝典(第二版)[M].北京:人民邮电出版社,2001.
    [125] 向世明.OpenGL编程与实例[M].北京:电子工业出版社,1999.
    [126] 乔林,费广正,杜林等.OpenGL程序设计.清华大学出版社,2000,4.
    [127] Jianfeng Luo. Integrated modeling of chemical mechanical planarization/polishing (CMP) for intergrated circuit fabrication: from particle scale to die and wafer scales:(博士学位论文), University of California, Berkeley. 2003.
    [128] Lee M. C. Chemical processes in glass polishing. Journal of Non-crystalline Solids, 1997,7:169-175.
    [129] 赵永武,刘家浚.半导体芯片化学机械抛光过程材料去除机理研究进展,摩擦学学报,2004,24(3):283-287.
    [130] 邹文俊.有机磨具制造.北京:中国标准出版社,2001.9
    [131] 华勇 李亚萍.磨料磨具导论 北京:中国标准出版社,2004.9
    [132] 张惠民.普通磨料制造 北京:中国标准出版社,2001.3.
    [133] 李岗,熊猛.浅析灰色系统的发展及其展望.四川建筑科学研究,2004,30(1),124-126.
    [134] 吕锋.灰色系统关联度之分辨系数的研究.系统工程理论与实践,1997,6:49-54.
    [135] 邓聚龙,灰色控制系统.第二版.武汉:华中理工大学出版社,1993.
    [136] Lin J. L, Lin C. L. The use of the orthogonal array with grey mlafional analysis to optimize the eleclrical discharge machining process with multiple performance characteristics. International Journal of Machine Tools & Man ufacture. 2002. 42: 237-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700