HCD离子镀生产过程自动控制系统的设计与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心阴极(HCD)离子镀是基于材料表面处理的一种镀膜技术。其生产工艺过程复杂,要求控制的参数众多,同时被控对象存在耦合、非线性和时变特性,无法建立精确的数学模型,难以通过常规控制方法实现生产过程稳定化控制。据此,将先进控制理论、计算机与网络通讯技术应用到HCD离子镀生产过程,实现生产过程综合自动化,对提高产品的质量和生产效率有着极其重要的意义。同时也为其他离子镀设备计算机开发提供宝贵经验。
     论文详细介绍了HCD离子镀生产过程计算机控制系统的研究和设计的方法。在分析HCD离子镀机理的基础上,探讨了温度、气体(N_2、Ar)流量以及真空度对离子镀质量的影响,分析了影响离子镀温度、气体(N_2、Ar)流量和真空度的主要因素。以对离子镀温度有直接影响的基体偏压为被控对象,引入一种改进的模糊控制算法;以气体(N_2、Ar)流量为控制对象,引入变比值双闭环控制系统;以罗茨泵为控制对象,利用变频器,通过调节罗茨泵的转速实现炉子真空度的控制。针对HCD离子镀特点设计了其生产过程计算机控制系统的总体结构和网络结构。利用WinCC组态软件,开发了离子镀生产过程的监控系统。经过调试,系统已投入使用,现场运行结果表明系统稳定性好,可靠性高,达到了设计目标要求。
As a material surface treatment plating technology, Hollow Cathode Discharge (HCD) ion plating is a complex production process with many control parameters, and has the characteristics of coupling, nonlinear and time-varying. It cannot be described with a precise mathematical model and it is difficult to realize process stability control by conventional control methods. Therefore, using advanced control theory, computer and network communication technology, the developed automation control system for HCD ion plating production process can realize the production process comprehensive automation and improve production quality and production efficiency. Moreover, it is of great significance for other's ion plating enterprise to design and develop computer automation control system.
     In this paper, HCD ion plating production process computer control system research and design approach is described in detail. On the basis of the analysis of HCD ion plating, discussed the effects of temperature, gas (N_2, Ar) flow, vacuum on plating quality on ion plating, as well as the main factors affecting the ion plating temperature, gas (N_2, Ar) flow and vacuum. The temperature on ion plating to have a direct impact on the substrate bias is charged with objects. In this paper, we introduced an improved fuzzy control algorithms. Selecting the gas (N_2, Ar) flow as the control objective, a double closed-loop control system with variable ratio is proposed. With the control objective of the Roots pump, the furnace vacuum control is realized by adjusting the pump speed through the inverter.
     Based on HCD ion plating characteristics, the overall structure and network structure of the production process computer control system is designed. Using WinCC configuration software, the monitoring software for ion plating production process is designed and implementation process is analyzed and discussed. After debugging, the system has been put into use and the results of the on-site operation show that system has good stability, high reliability and achieves the design objectives and requirements.
引文
[1]石淼森.耐磨耐蚀涂膜材料与技术[M].北京:化学工业出版社,2006.345
    [2]李荣久.陶瓷—金属复合材料[M].北京:冶金工业出版社,1995.127-129
    [3]W.M.罗森诺[美].传热学基础手册[M].北京:科学出版社,1992.276-280
    [4]韩立民.等离子热处理[M].天津:天津大学出版社,1997.185-220
    [5]黄美,林国强.电弧离子镀基体沉积温度计算[J].材料热处理学报,2001,12(2):12-17
    [6]Perry A J.Adhesion studies of ion-plating TiN on steel[J].Thin Solid Films,1981,8(1):357-366
    [7]刘昕,徐志明.氮气流量、基体温度对反应溅射(TI,AL)N成膜影响[J].矿冶工程,2004,2(3):123-127
    [8]沈延山,陈辉,贾工普.1MGB-24真空镀膜机的计算机控制[J].大连大学学报,1996,6(4):327-332
    [9]周至文.计算机控制在汽车灯具镀膜机中的应用[J].真空,2002,(1):11-13
    [10]王彦,王丹丹,方艾.基于FPGA的真空镀膜机控制系统参数设定和调用模块的设计[J].机械与电子,2004,1(4):47-49
    [11]Perry A J,Tian A F,Treglio J R,Loomis C.Thin TiN and TiB2 coatings with low residual stress deposited at different temperatures by cathodic arc ionplating[J].SurfCoat Technol,1994,68P69:528-535
    [12]李亮,王建.真空电弧沉积薄膜显微硬度与工艺参数的关系[J].机械科学与技术,2002,2(3):128-132
    [13]Ljungcrantz H,Hultman L,Sundgren J E,Karisson L.Ion induced stress generation in the metal vapor vacuum arc[J].J Appl Phys,1995,78:832-837
    [14]Vallee C,Thiery F,Areal Y,etal.Bias voltage waveform influence on the ion energy distribution and its consequence on the properties of α-C:H films obtained from C2H2 plasma[A].Proceedings of 13th lntemat.Colloq[J].On Plasma Process[C].Antibes,France,10-14 June,2001
    [15]Suzuki A.Multiply charged iota by constant voltage arc ion plating and its applications[J].Jpn J Appl Phys,1997,36,Pt.1,3A:1245-1249
    [16]廖常初.S7-300/400 PLC应用技术[M].北京:机械工业出版社,2004.179
    [17]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.345
    [18]桂卫华,周永孝.基于模糊算法的炉料粒级分布优化系统[J].计算技术与自动 化,2001,20(3):37-40
    [19]Cai Zixing.Typical Architecture for Fuzzy Control[J].Journal of Central South University of Technology,1997,4(2):140-145
    [20]Bomard J A.Use of rule-based system for process control[J].IEEE ContrSyst Mag,1988,8(1):3-13
    [21]Lee C C.Fuzzy Logic in Control Systems:Fuzzy Logic.Controller Part Ⅰ,Part Ⅱ.IEEE Trans[J].onSyst,Man,Cybem,1990,20(2):404-435
    [22]郭代仪,雷闻宇,梁山.模糊控制技术及其在冶金工业中的应用[M].北京:机械工业出版社,2000.82-85
    [23]熊朝晖.模糊逻辑在温度控制中的应用[J].计量与测试技术,2002,29(5):16-18
    [24]Zadeh L A.Outline of a New Approach to the Analysis of Complex Systems and Decision Process[J].IEEE Trans.on Syst,Man and Cybernet,1973,3(1):28-44
    [25]Janaka K,Sugeno M.Stability analysis and design of fuzzy control systems[J].Fuzzy Sets and Systems,1992,45(2):135-156
    [26]应浩.关于模糊控制理论与应用的若干问题[J].自动化学报,2001,24(4):591-592
    [27]张化光.何希勤模糊自适应控制理论及其应用[M].北京:北京航空航天出版社,2002.145-149
    [28]陈忠华.可编程序控制器与工业自动化系统[M].北京:机械工业出版社,2006.340-348
    [29]邵裕森.过程控制及仪表[M].上海:上海交通大学出版社,1990.234-237
    [30]陶永华.新型P ID控制及其应用[M].北京:机械工业出版社,2002.234-240
    [31]金以慧.过程控制原理[M].北京:清华大学出版社,1993.345-349
    [32]何克忠,李伟得.计算机控制系统[M].北京:清华大学出版社,1998.65-71
    [33]葛萍,孙志英.基于FUZZY-PID的主汽温控制[J],浙江电力,2003,(2):26-29
    [34]张利辉,孔灵芳,张茂川.简化的模糊自调整PID在主汽温控制的应用[J],2005,20(4):47-49
    [35]R.~M.Tong.Synthesis of Fuzzy Models Derived fron Experimental data[J].Fuzzy Sets Syst.1980,4:1-12
    [36]金以慧.过程控制原理[M].北京:清华大学出版社,1993.78-112
    [37]田秀华,杨顺.几种温度控制方法的特点及应用[J].自动化与仪表,2001,16(6):62-63
    [38]崔涛,赵莉.模糊控制理论和应用的发展概括[J].自动化仪表,2002,23(7):13
    [39]李建平,王晓冲,谢敬华.基于PLC的模糊参数自整定温度控制系统研究[J].控制系统,2007,23(6):21-23
    [40]任义,H_2S焚烧炉酸性气、空气配比燃烧的自动控制[J].化工自动化及仪表,2003,5(12):113-116
    [41]刁翔,李奇.一类比值系统的约束广义预测控制仪[J].器仪表学报,2006,27(6):533-535
    [42]罗建国,武江平,芦翠平.配煤自动化在介休洗煤厂的应用[J].工矿自动化,2004,4(6):77-83
    [43]程,邬钦崇.一种保持真空室真空度稳定的控制系统[J].真空,1999,10(5):78-83
    [44]于蜀毅,朱武.电涡流法检测罐头真空[J].真空科学与技术,2002,1(9):326-328
    [45]徐润泽.粉末冶金电炉及设计[M].长沙:中南工业大学出版社,1990.180-185
    [46]任兴权.电力拖动最优控制[M].沈阳:东北工学院出版社,94.18-23
    [47]王兆义.可编程序控制器教程[M].北京:机械工业出版社,1993.254
    [48]袁佑新,丁一,陈涛等.基于PROFIBUS-DP的煤粉制备分布式控制系统[J].微计算机信息,2006,5(1):46-48
    [49]苏宏英,戚宇恒.基于PROFIBUS现场总线的小型柔性制造实训系统的设计与实现[J].广东技术师范学院学报,2004,6(2):68-71
    [50]Siemens AG.SIMATIC WinCC 系统描述[M].Germany:Siemens,2000.13-17
    [51]Siemens AG.,WinCC v5.The Configuration Manual and the CommunicationManual[M].Germany:Siemens,2000.21-28
    [52]Witold Pedryc.Fuzzy Control and Fuzzy Systems.Research Studies Press LTD[M],1989.120-125
    [53]H J Zimmermann.fuzzy Set Theory and Its Applications kluwer-Nijhoff Publishing[M],1985.55-124
    [54]Ronald R,Yager Lotfi A Zadeh.An Introduction to Fuzzy Logic Applications in Intelligent Systems[M].Kluwer Academic Publishers,1992.235-256
    [55]Frank J Bartors.Fuzzy Logic Widens Its Appeal to Industrial Controls[J].Control Engineering,1993,6:256-160
    [56]Nick Infelise.A Clear Vision of Fuzzy Logic[J].Control Engineering,1991,7:123-126
    [57]Payman Arabshahi.Fuzzy Control of Back-Propagation[M].IEEE'92,234-256
    [58]T J Rrocyk,E H Mamdani.A Linguistic Self-Organizing Process Controller[J].Automatica,1979,15-30
    [59]R M Tong.A Retrospective View of Fuzzy Control System[J].Fuzzy Sets and Syestem.1984,14(3):135-156
    [60]Austrom.Directions in Intelligent Control[J].IFAC International Symposium,ITAC91:35-37
    [61]Michio Sugeno.An Introductory Survey of Fuzzy Control[J].Information Sciences,1985,(36):125-130
    [62]Kicker W J M,Van Nauta Lemke Hr.Application of a Fuzzy Controller in a Warm Plant[J].Automation,1976,(12):23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700