Al_2O_3弥散铜/T2铜真空扩散焊研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al_2O_3弥散强化铜软化温度高达930℃,抗拉强度可达600MPa以上,电导率最高可达86.49%IACS,使用寿命为铬锆铜合金电极的4~10倍。以Al_2O_3弥散强化铜合金替代铬锆铜电极,与T2铜用扩散焊方法连接在一起制成复合构件,不仅能提高工效,而且能节约大量能源。
     本文采用真空扩散连接工艺,对Al_2O_3弥散强化铜/T2铜的连接进行了试验研究。用金相显微镜和扫描电镜分析了Al_2O_3弥散强化铜/T2铜扩散界面组织结构,研究了工艺参数对界面结合状态和组织结构的影响。观察接头界面组织可分为靠近T2铜侧的I区和焊缝中心区的II区以及靠近Al_2O_3弥散铜侧的III区。加热温度越高,Al_2O_3弥散铜/T2铜接头界面过渡区的宽度越大,界面过渡区组织越粗化。采用能谱分析界面结构成份组成以及元素分布情况,结果表明,接头界面I区为Cu(Ti)固溶体和少量Cu-Ti化合物,II区主要为Cu-Ti化合物,III区为Cu(Ti)固溶体和Cu-Ti化合物以及极少量Ti-Al化合物。界面区Al_2O_3弥散铜侧和T2铜侧Ti元素都有聚集。
     通过正交结果判断各因素对Al_2O_3弥散铜/T2铜固相扩散连接接头拉伸强度影响的主次关系为:扩散温度>压力>保温时间,即扩散温度是最重要的影响因素,其次是压力,影响最小的因素是保温时间。正交试验结果表明:最优的工艺参数方案是5号:焊接温度为550℃,保温时间为3h,压强为25MPa,观察在此参数下的Al_2O_3弥散铜/T2铜接头微观组织形貌,连接界面连续性非常好,基本不存在孔洞,接头冶金结合也最好,所得组织致密均匀。
     本文对Al_2O_3弥散强化铜/T2铜扩散连接界面结构、界面反应机理、界面断裂等进行了研究,该研究工作为Al_2O_3弥散强化铜/T2铜的推广应用提供了试验依据和理论基础,为Al_2O_3弥散强化铜/T2铜扩散连接提供了研究思路。
Softening temperature of Al_2O_3 dispersion-strengthen copper is up to 930℃, it’s tensile strength is up to 600MPa and good conductivity of 86.49%IACS. The lifetime of Al_2O_3 dispersion-strengthen copper is 4 to 10 times more than CuCrZr alloy electrode. Using Al_2O_3 dispersion-strengthened copper alloy to replace the CrZrCu alloy electrode to make composite components with T2 copper, through diffusion welding process, can improve working efficiency and save alot of energy.
     In this paper, Al_2O_3 dispersion-strengthen copper/T2 copper was bonded together by vacuum diffusion bonding technology. The microstructure feature of the joint interface was investigated by optical microscope and scanning electron microscope. The influence of diffusion bonding parameters on interface combining state and microstructure of Al_2O_3 dispersion-strengthen copper/T2 copper interface was studied. The jiont consists of three parts: I area is near T2 copper; II area is in the seam center; III area is near Al_2O_3 dispersion-strengthen copper. With the increase of heating temperatuer the transition zone width of the Al_2O_3 dispersion-strengthen copper/T2 copper interface broadened and the The Grain Growth in transition zone. Ti aggregated at the edge of Al_2O_3 dispersion-strengthen copper and T2 copper in the brazing process, and it’s much more obvious at the Al_2O_3 dispersion-strengthen copper side.
     The most influential factor on the adhensive strength of the joint was difussion temparature,followed by pressure and holding time, analysised by orthorhombic-experiment method.and the means of orthogonal result show that the optimized paramenters for the joint were gained as fellows: diffusion temperature was 550℃, holding time was 3 h, pulse pressure was25MPa. The jointstrength under the optimum condition was 166.9MPa. The microstructure feature of the Al_2O_3 dispersion-strengthen copper/T2 copper joint interface was investigated by optical microscope and scanning electron microscope in the optimized paramenters and the joint interface bounding well.There is no Confucianism and crack.
     Compositions in I district of the joint interface were the Cu(Ti)solid solution and a small amount of Cu-Ti compounds, Cu-Ti compounds in II district mainly, Cu(Ti)solid solution, Cu-Ti compounds and a very small amount of Ti-O compounds in III district The microstructuer, interface formation mechanism and interface fracture of Al_2O_3 dispersion-strengthen copper/T2 copper diffusion bonding joint were sdudied in the paper. The studies can provide experiental basis and theoryfoundation for the wide application of Al_2O_3 dispersion-strengthen copper/T2 copper.
引文
[1]亢若谷.弥散强化铜合金的现状与发展[J].云南冶金.1995,5:1-5.
    [2]王孟君,娄燕.弥散强化铜电阻焊电极材料的研制[J].冶金工程.2000,2(20):54-56.
    [3]程建奕,汪明朴.高强高导高耐热弥散强化铜合金的研究现状[J].材料导报.2004,18(2):38-41.
    [4]刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005.
    [5]刘平,赵冬梅,田保红.铜合金功能材料[M].北京:科学出版社,2004.
    [6]方善锋.高强高导Cu-Cr-Zr系合金材料的研究进展[J].材料导报.2003,17(9):21-24.
    [7] Tu J P. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J]. Wear, 2002, 249: 1021~1027.
    [8]陈一胜,韩宝军.高强高导铜合金的研究进展[J].南方冶金学院学报.2004,25(2):17-21.
    [9]苏娟华,刘平.Cu-Cr-Zr合金时效强化机理[J].材料热处理学报.2005,6(26):62-65.
    [10]訾进蕾,张雅妮.微量元素Cr、Zr对铜合金性能的影响[J].材料开发与应用.2002,4(22):1-4.
    [11]苏娟华,董企铭.Cu-0.3Cr-0.15Zr-0.05Mg合金形变时效强化与再结晶[J].金属热处理.2004,2 (29):18-21.
    [12] Wang Zhiqiang, Zhong Yunbo. Microstructure and electrical conductivity of Cu–Cr–Zr alloy aged with dc electric current[J]. Journal of Alloys and Compounds. 2008, 5(7): 38-41.
    [13]康布熙.时效与形变对Cu-Cr-Zr合金性能的影响[J].特种铸造及有色合金.2004,(6):25-26.
    [14] Jeong-Yong Park, Jung-Suk Lee. Effect of cooling rate on mechanical properties of aged ITER-grade CuCrZr[J]. Fusion Engineering and Design, 2008, 4(6): 55-60.
    [15] Y. Zhan, J. Zeng. Tribological properties of Al2O_3/CuCrZr composites[J]. Tribology Letters, Vol. 20, 2005, 20(2): 163-170.
    [16]张启运,庄鸿寿.钎焊手册(第二版)[M].机械工业出版社,2008.
    [17]赵越.钎焊技术及应用[M].北京:化学工业出版社,2004.
    [18]鲍力生.铜及铜合金的氧—乙炔焰钎焊工艺[J].湖北航天科技.1995,(3):39-40.
    [19]汪永东,史文卿,呼义通,等.交直流电机转子铜条与端环中频感应钎焊工艺方法的研究[J].大电机技术.2003,(1):5-7.
    [20]刘淑健,李凌宇.铜散热器高频感应钎焊专机的研制[J].焊接技术.2002,(2):37-38.
    [21]邹家生,赵其章.SiC颗粒增强铝基复合材料钎焊技术研究[J].轻合金加工技术.2004,32(3):48-51.
    [22]刘中青,邸斌著.异种材料焊接[M].科学出版社,1990.
    [23] Hao Hongqi, Wang Yonglan, Jin Zhihao etal. Interfacial morphologies between alumina and silver-copper-titanium alloy [J]. Journal Materials Science, 1997, 32: 5011-5015.
    [24] Sudipta Mandal, Ashok Kumar Ray, Ajoy Kumar Ray. Correlation between the mechanical properties and the microstructural behavior of Al_2O_3-(Ag-Cu-Ti) brazed joints[J]. Materials Science and Engineering A, 2004, 383:235-244.
    [25]张春光,乔冠军.Ni-Ti活性钎焊高纯Al_2O_3界面反应微观机理[J].稀有金属材料与工程.2002,31(5):371-374.
    [26] Yoshikuni Nakao,Kazutoshi Nishimoto,Kazuyoshi Saida,et al.Improvement in Bonding Strength of Si3N4 to Metals Joints by Controlling Reaction Layer Thickness[J]. Quarterly Journal of the Japan Welding Society.1993,11(2):294.
    [27]段宇,邹增大.复相Al_2O_3/SiCw陶瓷与不锈钢的钎焊工艺[J].焊接.2002,(3):37-39.
    [28]于治水,吴铭方.Al_2O_3/Cu基复合材料与Nb的钎焊[J].焊接.2004,(3):36-38.
    [29]吴铭方,张超.弥散强化铜基复合材料钎焊接头强度[J].焊接技术.2005,34(3):46-47.
    [30]朱元伟,王海龙.Al_2O_3弥散强化铜与T2铜的真空钎焊研究[J].热加工工艺.2009,28(3):108-113.
    [31]任耀文.真空钎焊工艺[M].北京:机械工业出版社,1993.1-29,126-133.
    [32]中国机械工程学会焊接学会.焊接手册(第一卷焊接方法及设备)[M].北京:机械工业出版社,2001.81~490.
    [33]庄鸿寿,E.罗格夏特.高温钎焊[M].北京:国防工业出版社,1989.
    [34]宋家奇,张建国,从培武.真空热处理现状与展望[J].北京机电研究所.2006(4):16-18.
    [35]刘红,李文,张世航,等.马氏体不锈钢真空钎焊与真空热处理一体化工艺[J].沈阳工业学院学报.1999,18(2):37-41.
    [36]虞翔民.真空高温钎焊+真空淬火复合工艺的探讨[J].现代机械.1989,2:65-66.
    [37]张建华.操纵杆组件真空钎焊热处理技术应用[J].机械工人.2004,9:47-49.
    [38]谭明照,谭朝鑫.真空钎焊热处理X12Cr13不锈钢组织和性能的研究[J].国外金属热处理.2005,26(3):42-46.
    [39] D.V.R.K.Sastry,M.Govindaraju,K.Balasubramanian. Vacuum Brazing of Copper Alloys with Stainless Steels[Z]. Vacuum Science & Technology and Vacuum Metallurgy, Mumbai, 2003: 445-450.
    [40]邹僖.钎焊[M].北京:机械工业出版社,1995.
    [41]娄燕.电阻焊电极材料热变形行为的研究[J].金属成型工艺.2002.3:31-33.
    [42]尹志民,张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程.2002,22(2):1-6.
    [43]贾燕民,丁秉钧.制备弥散强化铜的新工艺[J].稀有金属材料与工程,2000,29(2).141-142.
    [44]胡锐,商宝禄,李华伦,等.高强高导Cu基复合材料的新型制造技术[J].兵器材料科学与工程.1998,21(6):40-43.
    [45] Jin Y, Adachi K, Takeuchi T etal. Aging characteristics of Cu-Cr in situ composites. Journal of materials science, 1998:1333-1341.
    [46]孙世清,毛磊,刘宗茂,等.Al_2O_3-Cu和C-Cu复合材料研究进展[J].河北科技大学学报.2001,22(1):7-11.
    [47]韩胜利,田保红,刘平.点焊电极用弥散强化铜基复合材料的进展[J].河南科技大学学报.2003,4(24):17-19.
    [48]王孟君,娄燕.弥散强化铜电阻焊电极材料的研制[J].冶金工程.2000,2(20):54-56.
    [49] Li Yulong, Feng Jicai, He Peng. Vacuum brazing of TiAl to 42CrMo steel with Ag-Cu-Ti filler metal[C]. Trans. Nonferrous Met, China, 2005, 15(3): 331-334.
    [50] Casper van der Eijk, Zuhair K. Sallom and Odd M. Akselsen. Microwave brazing of NiTi shape memory alloy with Ag–Ti and Ag–Cu–Ti alloys[J]. Scripta Materialia, 2008, 58: 779-781.
    [51] Lin Guobiao, Huang Jihua, Zhang Hong. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers[J]. Journal of Materials Processing Technology, 2007, 189: 256-261.
    [52] Chen Ruibin, Ren-kea Shiue. The microstructural observation and wettability study of active brazing beryllium copper and 304 stainless steel [J]. Journal of Materials Science Letters. 2001, 20: 1435-1437.
    [53]高汉文.金相分析技术[M].上海:上海科学技术文献出版社,1987.
    [54]姚启均.金属机械性能试验常用数据手册[M].第2版.北京:机械工业出版社,1985.
    [55]束德林.金属力学性能[M].第2版.北京:机械工业出版社,1999.
    [56] KoKawa H,Lee C H,North T H. Effect of gain boundaries on isothermal solidification during transient liquid phase brazing[J]. Metallurgical and Materials Transactions A, 1991, 22(7): 1627-1631.
    [57] A Krzynska, W Wlosinski, M Kaczorowski etal. About the structure Cu-Al_2O_3 joints obtained by diffusion bonding [J]. Engineering Manufacture, 2006, 220: 439-445.
    [58] Barbier. Microstructure study the brazed joint between alumina and Ti-6Al-4V alloy[J]. J Am Ceram Soc, 1990, 73(6): 1582-1586.
    [59]乔冠军,张春光,金志浩.Al_2O_3/Ni-Ti/Kovar钎焊接头热循环试验[J].过程工程学报.2002,2(1):71-74.
    [60] T. Enjo,K. I keuchi,H. Yoshikawa.Behavior of Superficial Oxide Film in Diffusion Bonding of Al-Si-Mg Series 6063 Alloy[C].IIW Doc.No. IX-1561-89.
    [61]长崎诚三,平林真著(刘安生译).二元合金状态图集[M].北京:北京冶金工业出版社,2004.
    [62] Duvall D S,Czarski O W,Panlonis D F.TLP bonding: a new method for joining heat resistantalloys[J].Welding Journal.1974,53 (4):203-214.
    [63] D.V.Dunford,P.G. Patridge.Interlayers and Interfaces in Diffusion Bonded Joints in Metal Matrix Composites[J].Scientific commons.1998,26:2625-2629.
    [64]及川初彦,斉藤亨,吉村尚.鋼板とアルミニウム板の固相接合に及ぼす酸化膜の影響[J].鉄と鋼.1997,83(10):25-30.
    [65]都述虎,金继曙.正交实验法的微机化及应用研究[J].今日应用医学,1997,2(4):41,50-50.
    [66]何康生,曹雄夫.异种金属连接[M].北京:机械出版社,1986.
    [67]张贵峰,张建勋,包亚峰.日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接,2001,(10):14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700