轴承钢TD渗金属及其最终热处理的工艺优化问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究对象是用GCr15钢制造的冷作模具。冷作模具的失效形式主要是表面磨损。要显著提高模具使用寿命,最适用的方法之一就是用TD法对模具表面进行渗钒处理,同时对模具基体淬火,使其达到较高硬度,以支撑其表面VC覆层。由于TD渗钒处理是一种扩散过程,需要在较高的温度(960℃左右)条件下才能得到经济实用的VC覆层,而GCr15钢的淬火加热温度仅为810℃~850℃。由于TD渗钒温度与淬火加热温度间的较大差别,以及模具表面VC覆层在400℃以上很容易被氧化,导致GCr15钢的表面渗钒处理工艺与基体淬火强化工艺很难协调一致。常用的先TD渗钒处理再加热淬火的方法由于VC覆层在淬火加热和冷却时很快被破坏,所以在缺乏真空淬火炉的条件下很难取得实际效果。
     本文针对上述问题进行研究。研究目标是,在缺乏真空淬火炉的情况下,优化整合GCr15钢制冷作模具的TD渗钒处理工艺与基体淬火工艺,取得经济实用及显著提高模具使用寿命的效果。
     本文的研究内容主要有:1) GCr15钢的TD渗钒处理;2) GCr15钢的淬火工艺;3) GCr15钢TD渗钒处理工艺与淬火工艺的优化整合;4) GCr15钢的TD渗铬工艺。
     本文研究结论为:1) 960℃TD渗钒后油淬虽然可以满足扩口模和滚圆模的使用要求,但是得到的基体晶粒较大,脆性大;2) 960℃TD渗钒后随炉冷却至830℃,然后在100℃沸水中淬硬,及时回火,能够得到比较厚的覆层,基体硬度达HRC57以上,晶粒也得到细化,具备较高的工业应用价值;3)使用TD渗铬工艺也可以使模具表面硬度、耐磨性大大提高,也可以应用于GCr15钢制冷作模具的表面强化。
     本文研究成果已得到工业应用,对淬火加热温度在800℃~850℃的冷作模具钢的表面渗钒及基体淬硬工艺具有普遍意义。
The research object of this study is the cold molds made of GCr15 steel. The main failure form of cold molds is surface wear. To significantly improve die life, one of the most appropriate ways is to vanadizing mold surface use TD method, while quench the matrix to achieve a higher hardness, in order to support the VC surface coating. As the TD vanadizing treatment is a diffusion process that requires a higher temperature (around 960℃) to get economical and practical VC coating, while the heating temperature of quenching for GCr15 steel is only 810℃~850℃. As the difference between the temperature of TD vanadizing and quenching heating is very large, and the VC coating can easily be oxidized above 400℃, resulting in the TD vanadizing process of GCr15 steel and the substrate quenching process is difficult to strengthen the coherence. As the VC coating can soon be destroyed during the heating and cooling in the quenching, the common process of TD vanadizing and then quenching method is difficult to achieve practical results without vacuum quenching furnace.
     In this paper, we study the above issues. The research goal is, in the absence of vacuum quenching furnace case, optimize and integrate the TD vanadizing treatment process and the substrate quenching process of cold work die made of GCr15 steel, achieve economic and practical effect, and significantly increase the mold life.
     This study mainly are: 1) TD vanadizing processing of GCr15 steel; 2) Quenching processes of GCr15 steel; 3) Optimization and integration between TD vanadizing process and the quenching process of GCr15 steel; 4) TD chromizing process of GCr15 steel.
     This study concludes that: 1) Oil quenching after TD vanadizing at 960℃can basically meet the requirement of the spheronization die and expansion die, but it will get larger matrix grain and make the matrix brittle; 2) Cooled to 830℃with the furnace after TD vanadizing at 960℃, and then hardened at 100℃boiling water, promptly tempering, can get thick coating, and matrix hardness can reach HRC57,the matrix grain have also been refined, and this method have a high industrial value. 3) The use of chromizing process also allows mold surface getting much harder, and gets the wear resistance increased, it can be applied to surface strengthening of cold-working die made of GCr15 steel.
     This research fruit has been applied to industrial applications, has universal significance for the surface vanadizing and matrix quench hardening process of cold-working die steel whose quenching heating temperature is 800℃~850℃.
引文
[1]徐滨士,刘世参.中国材料工程大典,第16卷[M].北京:化学工业出版社,2006.
    [2]程培源.模具寿命与材料[M].北京:机械工业出版社,1999.
    [3]M.Aghaie-Khafri,Fazlalipour F.Kinetics of V(N,C) coating produced by a duplex surface treatment[J].Surface & Coatings Technology.2008:4107-4113.
    [4]潘邻.表面改性热处理技术与应用[M].北京:机械工业出版社,2006.
    [5]Xiujuan Liu,Huachang Wang,Etc.Study on kinetics of carbide coating growth by thermal diffusion process[J].Surface & Coatings Technology.2006:2414-2418.
    [6]S.B.Fazluddin,A.Koursaris,Etc.Is a coating part of the substrate?The case of vanadium carbide on steel[J].Hyperfine Interactions.1994:1323-1327.
    [7]Matijevic B.,Stupnisek M.Application of vanadizing process for tools and dies[C].Proceedings-15th IFHTSE-International Federation for Heat Treatment and Surface Engineering Congress:2006.:278-282.
    [8]United States Patent,NO.4440581[Z].
    [9]内田宪正.日本专利,特公昭61-38260[Z].
    [10]张来启,孙希泰.盐浴渗金属工艺发展概况[J].金属热处理.1993(1):3-14.
    [11]Arai Tohru,Komatsu.Canadian Patent.Patent Number:983827[Z].
    [12]张来启.内热式中性盐浴渗钛和渗钒的研究[D].山东:山东工业大学,1992.
    [13]Baranov A.A.,Li Tsyan,Alimov V.I.Vanadising of tools for cold drawing of tubes[J].Steel in the USSR.1990,20(1):41-43.
    [14]周超梅,冯宝全,齐云飞.盐浴渗钒在工模具中的应用[J].模具工业.2008,34(8):69-71.
    [15]李竹君,谷志刚,杨建新.中温盐浴渗钒工艺及其应用的研究[J].热加工工艺.1995(1):38-40.
    [16]齐宝森,陈路宾,王忠诚等.化学热处理技术[M].北京:化学工业出版社,2006.
    [17]Wang Biao,Wang Yudong,Zhang Zihua.Preparation and Its Properties of Vanadium Carbide Coating Through B_4C Reducing V_2O_5[J].Engineering Sciences.2005,3(1):46-50.
    [18]隋金玲,李木森,孙希泰.盐浴渗钒技术的发展概况[J].中国表面工程.1995(2):37-42.
    [19]司兆维,孙希泰.盐浴渗钒的物理化学过程分析[J].山东大学学报(工学版).1991,21(2):10-17.
    [20]司兆维.非硼砂为主中性盐浴渗钒的研究[D].山东:山东工业大学,1988.
    [21]石福占.熔盐被覆金属碳化物工艺[J].金属热处理.1986(7):50-57.
    [22]T Arai.New Carbide Coating Process by Use of Molten Salt Bath-TD process:International Congress On Surface Technology[Z].1981.
    [23]刘秀娟.模具钢表面TD法制备碳化钒覆层的研究[D].武汉:武汉理工大学,2007.
    [24]R L.Samnel.Principle and profile of surface alloying[J].Chemical heat treatment.1966(2):63.
    [25]张振信,单联义.盐浴渗钒[J].金属热处理.1979(9):18-24.
    [26]Chen Donghuo,Lin Qin,Guo Feng.Effect of high-La rare earth additives on properties of 16Mn steel[J].Journal of University of Science and Technology Beijing.2004,26(6):600-603.
    [27]毕振宇.稀土为还原剂渗钒的研究[C].全国第三届渗金属渗硼学术讨论会论文集.
    [28]彭日升,刘智勇,刘杰.稀土盐浴渗钒的研究[J].热加工工艺.1991(1):13-16.
    [29]X.J.Liu,H.C.Wang,Y.Y.Li.Effects of rare earths in borax salt bath immersion vanadium carbide coating process on steel substrate[J].Surface & Coatings Technology.2008:4788-4792.
    [30]王世清,王立铎,杨爱华.稀土元素在化学热处理中的应用[J].金属热处理.1988(3):52-59.
    [31]韦永德,刘志如,王春义,等.稀土对碳氮共渗过程的活化催渗及微合金化研究[J].中国稀土学报.1986(1):47-52.
    [32]钟顺思,王昌生.轴承钢[M].北京:冶金工业出版社,2000.
    [33]王林梅.提高轴承钢性能的热处理工艺研究[D].成都:西南交通大学,2006.
    [34]崔中圻.金属学与热处理[M].北京:机械工业出版社,1999.
    [35]陈曦.工程材料[M].武汉:湖北辞书出版社,2001.
    [36]Chicco B.,Borbidge W.E.,Summerville E.Experimental study of vanadium carbide and carbonitride coatings[J].Materials Science and Engineering.1999,266(1-2):62-72.
    [37]宋涛,顾军.热处理技术[M].北京:化学工业出版社,2003.
    [38]钟华仁.热处理质量控制[M].北京:国防工业出版社,1990.
    [39]中国机械工程学会热处理学会.热处理手册:第3版第1卷[M].北京:机械工业出版社,2002.
    [40]郭淑玲,彭德康.双液淬火在GCr15热处理中的应刚[J].机械工人.热加工.2000(04):32.
    [41]徐佐人,许国英,郁金星.轴承钢马氏体等温处理的研究[J].上海交通大学学报.1985,19(3):38-48.
    [42]汪建利.预淬火对GCr15钢M/B复合组织及性能的影响[J].安徽机电学院学报.1999,14(3):1-4.
    [43]林秀珍.等温淬火对GCr15钢力学性能的影响[J].机械工程材料.2000,24(2):40-44.
    [44]赵步青.硝盐在热处理中的应用[J].机械加工加工人.2000(11):57.
    [45]戚正风,汪元柱.轴承钢的双细化处理[J].金属热处理.1983(10):41-47.
    [46]JB/T 6955-1993.中华人民共和国机械行业标准-热处理常用淬火介质技术要求.北京:机械科学研究院,1994.
    [47]Luty W.C.HTM.1977(5):210.
    [48]Stickels C.A.Met,Trans.1974:865.
    [49]江涛,陈君豪.GCr15轴承钢晶粒和碳化物细化工艺的研究[J].轴承.1985(5):22-69.
    [50]周立荣,彭澎,廖丕博.GCr15钢制冷冲模的双细化处理[J].热加工工艺.2004(10):24-25.
    [51]邹敢锋,黄元盛,袁叔贵.T10钢低温盐浴渗铬工艺的研究[J].金属热处理,2000.(4):28-29.
    [52]伍翠兰,邹敢锋,袁叔贵,叶金玲.Cr12MoV钢低温盐浴渗铬复合处理[J].Hot Working Technology,2002.(4):26-28.
    [53]陈灵,邹敢锋,于小勇.稀土盐浴渗铬时间对45钢和T10A钢渗层的影响[J].Hot Working Technology,2005.(11):30-32.
    [54]黄元盛,邹敢锋,袁叔贵.钢含碳量对低温盐浴渗铬层的影响[J].热加工工艺,2000.(2):36-37.
    [55]黄元盛,邹敢锋,袁叔贵,伍翠兰.合金元素对低温盐浴渗铬层的影响[J].金属热处理,2001.(1):35-37.
    [56]叶金玲,邹敢锋,于小勇.稀土对45钢低温盐浴渗铬的影响[J].热加工工艺,2004.(3):49-50.
    [57]于小勇,邹敢锋,叶金玲.渗剂粒度和稀土元素对H13钢低温盐浴渗铬的影响.广东有色金属学报,2004.14(1):64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700