镁基非晶合金及复合材料的制备与力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用NaCl颗粒作为预制型,采用渗流铸造方法制备了AZ91泡沫合金,样品孔隙之间具有良好的连通性。泡沫密度为0.724g/cm~3,孔隙率为0.602。压缩实验结果表明AZ91镁合金泡沫材料的塑性变形能力明显高于铸态AZ91镁合金。在孔隙被压合的过程中,泡沫材料在低应力条件下发生剪切破坏。这一变形机制在金属泡沫材料中尚未见到报道。
     同时采用渗流铸造法分别制备了不同体积分数Fe丝和钢网增强的AZ91镁合金复合材料。用真空淬火炉迅速加热AZ91镁合金到700℃左右。保温60分钟,待AZ91合金完全熔化后,在2×10~5Pa的Ar气作用下将AZ91镁合金溶液渗流到Fe丝中,并迅速淬入水中,经过快速淬火,形成所要求的试样。该工艺要求严格控制加热温度和保温时间才能取得良好的效果。通过光学显微镜和扫描电镜观察了复合材料的结构和压缩时的断口形貌,并将其与镁合金相对比。结果发现:复合材料的断裂强度较AZ91镁合金断裂强度明显提高,提高的幅度随着Fe丝和钢网体积分数的增加而增加。材料的破坏方式也受Fe丝和钢网数量的影响。
     采用真空铜模浇铸法制备了四种Mg-Cu-Nd系非晶合金。均可以形成直径为2mm的大块非晶合金。其中Mg_(55)Cu_(35)Nd_(11)大块非晶合金具有明显且较高的玻璃转变温度T_g(419K),高的晶化初始温度T_x(472K),宽的过冷液相区△T_x=T_x-T_g(53K),是非晶形成能力和热稳定性较高的合金。Mg_(53)Cu_(37)Nd_(10)室温压缩断裂强度(s_f)高达685MPa。
     采用铜模铸造法制备了直径2mm,3mm的Mg-Ni-Zn-Y系复合材料。经实验测试,由于快速凝固三种成分合金均具有部分非晶特征。断裂方式为脆性断裂。具有很高的断裂强度,在400MPa以上。组织照片显示部分非晶特征。
The AZ91 magnesium alloy foam with a diameter of 9mm were fabricated by using vacuum melt infiltration and water quenching methods. NaCl salt was used as a placeholder in this investigation. The porosity and density were 0.602 and 0.724 g/cm~3 respectively for the AZ91 magnesium foam. The pores were evenly distributed in the material. The plastic strain during compression for the AZ91 magnesium alloy foam is much higher than that of the as-cast AZ91 magnesium alloy fabricated by the same process. The fracture event occurred at low stress during the pores vanishing, which is the first evidence observed in metal foam materials during compression according to our knowledge.
     The AZ91 magnesium based composites reinforced by wire and steel web have been fabricated by melt infiltrating casting method. The volume fraction of wire and steel web are different. An optical microscopy and a scanning electronic microscopy were used to investigate the structure of the composite and the microscopic morphologies of the fracture surface. The compression results show that the yielding strength of the composites is higher than that of the AZ91 magnesium alloy,and the extent is increased with increase of the volume fraction of wire and steel web. In the same time, the volume fraction of wire and steel web also has large effect on the fracture modes of the composites.
     we studied the glass-forming ability of the Mg-Cu-Nd alloy system. It was found that three alloy could be cast into amorphous rods with a diameter of 3mm. The high and obvious observable glass transition temperature(Mg_(55)Cu_(35)Nd_(11)) T_g(419K), remarkable supercooled liquid region△T_x=T_x-T_g(53K) of the amorphous rods, suggest that such a alloy is a good glass former and with high thermal stability. The fracture of Mg_(53)Cu_(37)Nd_(10) alloy strengthσ_f at room temperature is 685MPa.
     Mg-Ni-Zn-Y alloys were prepared by copper mold casting. The microstructure and the mechanical properties of the alloys have been investigated. The results indicate that the compressive fracture strength of alloys is as high as 433MPa.
引文
[1]. H. Haferamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese and M. Niemeyer, Mater trans.,2001, (42): 1160-1166.
    [2].司鹏程,程饶雄,李细,等.大块菲晶合金形成的控制因素与制备技术.材料工程,1998,(11):3—7
    [3]. W. Clement, R. H. Willens and P. Duwez, Nature, 1960, (187): 869-873.
    [4].何德坪,陈锋,张勇.发展中的新型多孔泡沫金属[N].材料导报,1993,(123):25-30.
    [5]. A. L. Drehmen, A. L. Greer and D. Turnbull, Appl. phys. lett.,1982, (41): 76-82.
    [6].左孝青,周芸,赵国宾,等.CaCO_3发泡剂制备泡沫铝工艺研究[J].稀有金属,2004,(1):120—124
    [7].任建富,柴跃声.泡沫铝合金材料的渗流铸造方法初探.中国铸机,1994,(2):42-45
    [8]. A. Inoue, K. Ohtera, A. P. Tsai and T. Masumoto, Appl. phys. lett., 1988, (27): 23-28.
    [9].肖帆,韩明.块体非晶合金的研究进展.材料科学与工程,1999,(2):41-43
    [10]. A. Inoue, K. Kita, T. Zhang and T. Masumoto, mater, trans.,Jpn. Inst. Met., 1989, (30): 722-727.
    [11].周效锋,戴雯,陶淑芬.非晶态金属材料发展及前景展望.云南师范大学学报(教育科学版),2003,(6):251-253
    [12]. C. C. Hays, J. Schroers, U. Geyer, S. Bossuyt, N. Stein and W. L. Johnson, Mater. Sci. Forum, 2000, (3): 103-110.
    [13]. M. Hansen, Constitution of Binary Alloy, pp. 927, 1265, McGraw-Hill, N. Y. (1958).
    [14].卢博斯基F E.非晶态金属合金.(柯成,唐于谌,罗阳,译者).北京:冶金工业出版社,1989.
    [15]. Binary Alloy Phase. Diagrams, ed. T. B. Masumalski (American Society for Metals, Ohio, 1986).
    [16].赵德乾,Shek C H,汪卫华.Zr-Ti-Cu-Ni-Be-Fe大块非晶合金晶化动力学效应.金属学报,2001,(7):754—758
    [17].左孝青,杨晓谭,亭成华.多孔泡沫金属研究进展.昆明理工大学学报:1997,(2):90—93
    [18].余兴泉,何德坪.泡沫金属阻尼性能研究.机械工程材料,1994,(2):26—28
    [19].孙玉峰,张国胜,魏炳忱,等.TiC原位增强大块Cu_(47)Ti_(34)Zr_(11)Ni_8非晶合金复合材料.科学通报,2004,(2):115-119
    [20]. Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Mater Sci Form, 2000, (5): 19-29
    [21]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. trans.,JIM, 1991, (7): 609-616.
    [22]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. trans.,JIM, 1992, (33): 937-945.
    [23]. J. H. Gibbs, and E. A. Dimarzio, J. Chem. Phs., 1958, (28): 373-376.
    [24]. M. H. Cohen, and D. Turnbull, (a) J. Chem. Phs., 1960 (34): 120; (b) Nature, 1964, (203): 964.
    [25].邱克强,王爱民,张海峰,等.用渗流铸造法制备Zr_(55)Al_(10)Ni_5Cu_(30)非晶复合材料.材料研究学报,2002,(4):389-394
    [26]. J. D. Bernal, Nature, 1959 (183) 141; 1960 (185): 68; J. D. Bernal, and J. Mason, ibib, 1960, (188): 910-920.
    [27]. O. Kubaschewski, C. B. Alcock and P. J. Spencer, Mater. Thermochemistry, 6th ed. (Pergamon, New York, 1993). Vol. 63: 25-36.
    [28]. D. Turnbull and J. C. Fisher, J. Chem. Phys., 1949, (17): 71-75.
    [29]. Brothers A H, Dunand D C. Amorphous metal foams. Scripta Materialia, 2006, 54:513-523
    [30]. M. H. Cohen, and D. Turnbull, J. Chem. Phys., 1959, (31): 1164-1170.
    [31].邱克强,王爱民,张海峰,等.钨丝增强ZrAlNiCuSi大块非晶复合材料及其塑性行为.金属学报,2002,(10):1091—1096
    [32]. W. Klement, R. H. Willens, and P. Duwez, Nature, 1960, (187): 869-875.
    [33]. H. S. Chen, J. Chem. Phys., 1968 (48): 2560, J. Appl. Phys., 1967, (38): 3646-3652.
    [34]. P. Duwez, R. H. Willens, and R. C. Crewdson, J. Appl. Phys., 1965, (36): 2267-2272.
    [35]. H. S. Chen, and D. Turnbull, Acta Metall., 1986, (36): 258-264.
    [36].赵迎祥,傅士.金属基复合材料的研究现状与应用.宝鸡文理学院学报,1995,(3):92—95
    [37]. F. Q. Guo, S. J. Pooh and G. J. Shiflet: Mater. Sci. Forum, 2000, (331-337): 31-42.
    [38]. A. K. Gangopadhyay and K. F. Kelton: Philos. Mag. A, 2000, (80): 1193-1206.
    [39]. R. B. Schwarz and Y. He, Mater. Sci. Forum, 1997 (235-238): 231-240. (Academic Press, New York, 1989), Vol. (42): 1-12.
    [40].孔见,陈光.Cu_(47)Ti_(34)Zr_(11)Ni_8块体非晶合金的制备.特种铸造及有色合金,2003,(6):11-14
    [41]. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 1993, (34): 351-360.
    [42]. F.R. de Boer, R. Boom, W. C. M. Martens, A.R. Miedema, and A.K. Niessen," Cohesion in Metals" (North Holland, Amsterdam, 1988). 11-14
    [43]. T. Egami and Y. Waseda, J. Non-Cryst. Sol., 1984, (64): 113-119.
    [44]. H. S. Chen and B.K. Park, Acta Metall., 1973, (21): 395-400.
    [45].邢大伟,孙剑飞,王刚,等.Sn对ZrTiNiCuAl非晶合金玻璃形成能力的影响.特种铸造及有色合金,2002,(6):12-15
    [46]. Y. Li, S. C. Ng, C. K. Ong and H. Jones, J. Mater. Processing Technol. 1995, (48): 489-493.
    [47].孙国元,陈光,刘平.制备Mg基大块金属玻璃的特种铸造方法.特种铸造及有色合金,2004,(1):47—50
    [48]. I. W. Donald and H. A. Davies, J. Non-Cryst. Sol., 1978, (30): 77-80.
    [49]. U. Koster and P. Weiss, J. Non-cryst. Sol. 1975, (17): 359-365.
    [50]. Lee M H, Kim J H, Park J S, et al. Fabrication of Ni-Nb-Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process. Scripta Materialia, 2004, (50): 367-1371
    [51]. Kurz W, Fisher D J. Fundamentals of solidification. Netherland: Trans Tech Publication Ltd, 1989, (50): 93-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700