小间隙真空电弧的数值仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随我国电网电压等级和系统容量的不断提升,人们对电力系统控制和保护的核心设备一高压断路器的工作性能、可靠性和智能化都提出了更高的要求。采用多断口技术和相控技术相结合的真空开关因能承受很高的暂态恢复电压和具有很大的开断能力,且对环境友好,可替代目前占主导地位的、使用温室气体的SF6断路器,从根本上提高开关的工作性能和可靠性,是超高压、大容量开关的发展方向。小间隙真空电弧物理过程研究涉及多断口技术和相控技术的核心理论,也是目前制约这种新型真空开关发展的瓶颈问题。为此,本文采用数值仿真技术与实验研究相结合,对小间隙真空电弧燃弧过程中等离子体参数分布、形态演变及对阳极热物理过程的影响展开研究,为智能高压真空开关的研发扫除理论障碍。
     首先根据质量守恒、动量守恒和能量守恒等流体动力学方程,结合麦克斯韦电磁方程,推导了适用于全电离气体的双温磁流体动力学(MHD)方程组,进一步考虑电弧实际流动状态,增加适用于超音速电弧的标准k-ε湍流方程,发展成真空电弧MHD模型。并在上述基础上,引入小间隙真空电弧边界条件,采用CFD工具COMSOL对大电流超音速和亚音速电弧进行了数值仿真。得到了超音速和亚音速电弧的流场、温度场分布和电磁物理特性,深入讨论了电弧电流、触头半径、触头开距和纵向磁场等燃弧参数变化对电弧等离子体流动和阳极边纵向电流密度正以及阳极表面能流密度s等重要特性参数的影响。研究结果表明超音速和亚音速电弧的流动存在显著差异,从阴极到阳极,超音速电弧压力逐渐增大,速度却逐渐减小;而亚音速电弧则相反。电弧电流的增大和触头半径的缩小,均使j-和s显著增大且向中心区域收缩加剧;触头开距增加,也加剧了j-和s向弧心收缩,但在边缘区域有所降低。增大纵向磁场能有效抑制电弧收缩,使j-和s的径向分布更加均匀,减轻了对阳极局部区域的烧蚀,是电弧调控、提高开关开断能力的重要手段。此外,计算得到的s还可作为阳极热过程模拟的热流边界条件。
     采用CMOS高速摄像机对触头分离“拉弧”以及高压脉冲触发“引弧”产生的电弧宏观形态的演变过程进行了较深入的对比研究,验证了提高触头初始分闸速度和施加纵向磁场等调控手段,可加快电弧由集聚型向扩散型转变。数值计算了实验条件下的电弧光强变化、电弧直径变化和电弧伏安特性,进一步从微观参数层面分析电弧宏观特性,计算结果与实验结果是一致的,验证了数值模型的有效性。
     为定量分析极间等离子体对阳极的加热作用,建立了考虑阳极熔化和相变、电流焦耳加热、热传导和热辐射等作用的2D阳极热物理模型,利用电弧数值仿真结果s作为阳极表面的热流边界条件,对阳极热物理过程进行数值模拟。分析阳极温度和熔池深度随燃弧时间和峰值电流的变化表明阳极峰值温度出现时刻相对于峰值电流时刻滞后2-3ms。深入讨论了触头半径、触头开距、触头片厚度和纵向磁场等燃弧参数变化对阳极热过程的影响。依据电流过零时阳极温度和状态,推导出开关极限开断能力与燃弧参数之间的关系。
     通过本文的数值仿真与实验研究,得到了电弧等离子体参数极间分布、宏观形态演变及对阳极热过程的作用,推导出开关极限开断电流与燃弧参数的关系;提出了抑制电弧收缩,加快电弧由集聚型向扩散型转变,从而提高开关开断能力的调控策略。论文的研究工作可为研发高性能多断口真空开关和相控真空开关提供理论指导和借鉴,推进其在高电压、大容量领域的应用,具有重要的理论价值和实际意义。
The rapid raise of the voltage level and system capacity requires the high voltage interrupters, which are the most important apparatus used to control and protect the power delivery system, have better operation performance and higher reliability. The vacuum circuit breakers (VCBs) adapting the multi-break technology combined with the phasing switching technology can withstand high transient recovery voltage (TRV) and interrupt high current upto200kA, moreover, they are environmentally friendly, so they have the potential to replace the SF6interrupters, though which still play a great role in the high voltage area, use the greenhouse gas SF6, to essentially impove the operation performance and reliability of interrupters. Therefore, they are the development trend of extra high voltage and high capacity switchgears. The investigation of the physical process of vacuum arc in short gaps is related to the essential theories of the multi-break and the phasing switching technologies, and is also the key problem which seriously restricts the development of the new type of VCBs. In order to discreate the theorical impediment for the reasearch and development of high voltage and intelligent VCBs, this dissertation used the numerical simulation method combined with the experimental research to investigate the distributions of plasma parameters, the variations of arc appearance and their influence on the anode thermal process during the arcing period.
     According to the basic fluid dynamics equations consisting of mass conservation, momentum conservation and energy conservation, combined with the Maxwell equations, a two-temperature Magneto Hydro Dynamic (MHD) model related to the fully ionized gas was establised firstly. Then, a vacuum arc MHD model was developped based on the two-temperature MHD model. The new model took the actual flowing status of arc into account and added in the standard k-ε turbuence equations which is suitable for the supersonic arc. After loading the boundary conditions and initial conditions, the supersonic arc and subsonic arc were numerically simulated using the CFD software—COMSOL. The flow field, temperature field and electromagnetic physical characteristics of the two types of arc were calculated and analyzed. Calculation results shown that the flow of supersonic arc is significant different with that of subsonic arc. From the cathode to the anode, for the supersonic arc, the plasma pressure increase gradually, but the velocity decrease gradually; the variations of these paramters of subsonic arc are in contrast with those of supersonic arc. The influence of arcing parameters, such as arc current, contact radius, gap length and axial magnetic field (AMF), on the flow of plasma and the radial distributions of axial current density jz at the anode side and energy flux density s on the anode surface were further discussed in detail. Both of the increasing of arc current and the decreasing of contact radius make the jz and s increase significiately and intensify their constrictions toward the center of arc column. The extension of gap length also aggravates the constrictions of jz and s in the central region of arc, but reduces them in the radial edge of arc. The enhancement of AMF restricts the constriction of arc obviously and makes the radial distributions of the jz and s more homogeneous, thus subdues the erosion of anode efficiently. Therefore, it is an importance method to control vacuum arc and improve the interruption capacity of VCBs. In addition, the simulation result s could be used as a boundary condition of the anode thermal process model.
     Utilizing the CMOS high-speed camera, the appearance variations of arc which were generated by the separation of contacts and the ignition of high voltage pulse discharge were contrasted and analyzed in detail. It is valided that the raise of initial opening speed of contacts and the application of AMF could accelerate the transition from constricted arc to diffuse arc. The variations of arc light intensity, the diffusion of arc diameter, and the voltage-current characteristic of arc were calculated with the same conditions of experiments, thus it is possible to analyze the macroscopical appearance variation of arc from the microcosmic level of plasma parameters. The comparative analysis illustrated that the calculation results are in reasonable agreement with those of experiments.Thus the vacuum arc MHD model is feasible.
     In order to quantificationally investigate the influence of inter-electrode plasma on the thermal process of anode, a two-dimension anode thermal model was built. The model taken into account the molten and phase change of anode, the effection of Joule heating, the thermal conduction and the heat radiation. Using the arc simulation result s of chapter3as the heat flux density boundary condition on the anode surface, calculation of the variations of anode temperature distribution and the molted pool depth during the arcing period were then conducted. The calculation results indicated that the time of peak anode temperature has about2-3ms delay relative to that of peak current. Next, the impact of arcing parameters including the thickness of anode on the anode thermal process was further discussed. According to the temperature and the status of anode at current zero, the dependence of the arcing parameters on the maxium interruption capacity of VCB was derived.
     All in all. in this dissertation, the spatial distributions of inter-electrode plasma parameters, the variations of arc appearance, and their influence on the anode thermal process were further investigated, the arc controlling methods about the restraining of arc constriction, the fast transition of arc mode, and the improvement of the interruption capacity of VCB were then proposed. The research work contributes to supply the theoretical support for the optimization designs of multi-break VCBs and phasing switching VCBs, and to promote the application of them in the supervoltage and high capacity field, thus it has an important theoretical value and practical signification.
引文
[1]Greenwood A. Varruum Switchgear[M]. London: The Institution of Flevtrical Engineering, 1994.
    [2]王季梅.真空开关技术与应用[M].北京:机械工业出版社,2007.
    [3]Natsui K. , Kurosawa Y.,Y. Hakamata, etr. VoJtage distribution characteristirs of series connected SF6 gas and vacuum interrupters immediately after a large AC Current interruption[J]. IEFE Transaction on Power Delivery, 1988, 3(1):241-247.
    [4]Yan J. D. , Hall W. B., Fang M. T. C. Experimental and theoretical investigation of an enclosed free burning are in SF6[J]. Journal of Physics D: Applied Physics, 2000, 33 (9): 1070-1080.
    [5]Yan J. D. , Fang M. T. C.,Liu Q. S. Dielectric recovery of a residual SF6 plasma between two parallel plane electrodes[J]. IEEE. Transactions on Dielectries and Fleetrical Insulation, 2001, 8(1):129-136.
    [6]王章启,何俊佳,邹积岩,等.电力开关技术[M].武汉:华中科技大学出版社,2003.
    [7]李建基.真空断路器技术的进步[J].电器工业,2001,7(7)14-15.
    [8]董华军,吴延洁,向川,等.真空开关关键技术及发展趋势的分析[J].电气应用,2008,27(13):10-13.
    [9]廖敏夫,邹积岩,段雄英.双断口真空断路器开断能力的探讨[J].高压电器,2002,38(3):34-36.
    [10]廖敏夫.多断口真空开关技术的发展与研究现状[J].高压电器,2006,42(6):456-459.
    [11]方在恩.同步真空开关的相关理论及其应用研究[D].大连:大连理工大学,2003.
    [12]段雄英,廖敏夫,丁富华,等.相控开关在电网中的应用及关键技术分析[J].高压电器,2007,43(2):113-117.
    [13]邹积岩,黄智慧,段雄英,等.基于自具电源的光控真空断路器模块研制[J].电力自动化设备,2010,30(10):114-117.
    [14]Lafferty J. M. Vacuum Ares Theory and Application[M]. New York: John Wiley & Sons Inc. 1980.
    [15]方春恩,邹积岩,丁富华,等.相控真空开关中短间隙电弧介质恢复研究[J].大连理工大学学报,2003,43(5):659-662.
    [16]Juttner B. The dynamics of are cathode spots in vacuum[J]. J. Phys. D: Appl. Phys. 1995, 28:516-522.
    [17]Beilis I. I.,Djakov B. F.,Jut tner B., ete. Structure and Dynamies of high current are cathode spots in vacuum[J]. J. Phys. D: Appl. Phys, 1997, 30:119-130.
    [18]Boxman R. L, Goldsmith S., Greenwood A. Twenty-five years of progress in vacuum arc research and utilization[J]. IEEE Transactions on Plasma Science,1997,25 (6): 1174-1186.
    [19]Sherman J. C., Webster R., Holmes R. Cathode spot motion in high current vacuum arc on copper[J]. J. Phys. D:Appl. Phys.,1975,8:696-702.
    [20]Siemroth P., Schulke T., Witke, T.. Investigation of cathode spots and plasma formation of vacuum arcs by high speed microscopy and spectroscopy[J]. IEEE Transaction on Plasma Science,1997,25 (4):571-579.
    [21]Rakhovsky V. I. Current Density Per Cathode Spot in Vacuum Arcs[J]. IEEE Transactions on Plasma Science,1984,12 (3):199-203.
    [22]Rakhovskii V. I. Experimental study of the dynamics of cathode spots development[J]. IEEE Trans. Plasma Sci.,1976,4:81-102.
    [23]Anders A., Anders S., Juttner B., etc. Pulsed dye laser diagnostics of vacuum arc cathode spots[J]. IEEE Transactions on Plasma Science,1992,20 (4):466-472.
    [24]Davis W. D., Miller H. C. Analysis of the Electrode Products Emitted by dc Arcs in a Vacuum Ambient[J]. Journal of Applied Physics,1969,40 (5):2212-2221.
    [25]Brown I. G. Vacuum arc ion sources[J]. Review of Scientific Instruments,1994,65 (10): 3061-3081.
    [26]Kimblin C. W. Erosion and ionization in the cathode spot region of vacuum arcs[J]. J. Appl. Phys.,1981,44:3074-3081.
    [27]Mesyats G. A., Proskurovsky D.1. Pulsed electrical discharge in vacuum[M]. Berlin: Springer,1989.
    [28]Boxman R. L.,Sanders D. M..Martin P. J., etc. Handbook of vacuum arc science and technology fundamentals and applications[M]. New Jersey:Noyes Publications,1996.
    [29]Beilisl. I. State of the theory of vacuum arcs [J]. IEEE Transactions on Plasma Science, 2001,29 (5):657-670.
    [30]Fowler R. H., Nordheim L. Electron emission in intense electric fields[J]. Proc. R. Soc. London,1928,119:173-181.
    [31]Lee T. H., Greenwood A. N. Theory for the cathode mechanism in metal vapor arcs[J]. Journal of Applied Physics,1961,32 (5):916-923.
    [32]Boxman R. L. Interferometric Measurement of Electron and Vapor Densities in a High-Current Vacuum Arc[J]. Journal of Applied Physics,1974,45 (11):4835-4846.
    [33]Schellekens H. Modelling of the diffuse arc in a vacuum circuit breaker[D]. Eindhoven: Eindhoven University of Technology,1983.
    [34]Puchkarev V. Estimating the electron temperature from fluctuations in a vacuum arc plasma[J]. J. Phys. D:Appl. Phys.,1991,24:685-691.
    [35]Klajn A. Langmuir probes in a switching vacuum arc measurements[J]. IEEE Trans. Plasma Sci., 2005, 33 (5):1611-1617.
    [36]武建文,王季梅,王尔智,等.真空电弧电子密度分布的双探针阵列测试方法的研究[J].高压电器,1994,(4):14-17.
    [37]武建文.真空开关的智能控制及其电弧图象观测[D].武汉:华中科技大学,1997.
    [38]董华军,廖敏夫,邹积岩,等.基于CCD真空开关电弧等离子体参数诊断方法[J].电工技术学报,2007,22(6):65-68.
    [39]邹积岩,董华军,丛吉远,等.真空开关电弧电子温度诊断的实验研究[J].真空科学与技术学报,2008, 28(6):531-534.
    [40]KIMBLINC. W. Anode Voltage Drop and Anode Spot Formation in de Vacuum Ares[J]. Journal of Applied Physics, 1969, 40(4):1744-1752.
    [41]Boxman R. L.,Goldsmith S., Izraelii I., etc. A Model of the Multicathode Spot Vacuum Are[J]. IEEE Transactions on Plasma Science, 1983, 11 (3): 138-115.
    [42]Boilis I. I., Keidar M., Boxman R. L., etc. Theoretical study of plasma expansion in a magnetie field in a disk anode vacuum are[J|. J. Appl. Phys. , 1998, 83 (2): 709-717.
    [43]Mitchell G. R. ,Harris L P. The structure of vacuum arcs and the influenee on the design of vacuum internipters[J].IEEE Power Eng. Soc. Winter Meet., 1975:C750674.
    [44]Jolly D. C Anode surface temperature and spot formation model for the vacuum are[J]. J. Appl. Phys. , 1982, 53: 6121-6136.
    [45]Dyuzhev G. A. , Lyubimov G. A. ,Shkol Nik S. M. Conditions of the anode spot formation in a vacuum arc[J]. IEEE Trans. Plasma Sci., 1983,11(1):36-45.
    [46]Mitchell G. R. High current vacuum arcs: Part 1 An experiment study[J]. Proc. lust. Elee. Eng., 1970, 110:2315-2332.
    [47]Klapas D., Holmes R. Anode Spot Temperatures in Vacuum Ares[C] In XI Int. Conf. Phen. Jon. Gases, 1973:
    [48]Schellekens H., Schulman M. B. Contact temporature and erosion in high current diffuse vacuum arcs on axial magnetic field contacts[J]. IEEE Transact ions on Plasma Science 2001, 29(3):452-461.
    [49]Watanabe K. , Kaneko F. , S. Yanabu. Technological Progress of Axial Magnet ic Field Vacuum Interrupters[J]. IEEE Transaction on Plasma Science, 1997, 25 (4): 609-616.
    [50]Heberlein J. , Goran J. The High Current Metal Vapor Are Column Between Separating Electrodes[J]. IEEE Trans. Plasma Sci., 1980, 8(4):283-288.
    [51]Schellekens H. The high current vacuum arc in an axial magnetic field: An experimental investigation[J]. Journal of Applied Physics, 1983, 54(1):144-149.
    [52]Schulman M. B.,Schel1ekens H. Visualization and characterization of high current diffuse vacuum arcs on axial magnetic field contacts[J]. IEEETransactions on Plasma Science, 2000,28(2):443-451.
    [53]Schade E., Leonidovich, Shmelev D. Numerical simulation of high-current vacuum arcs with an external axial magnetic field[J]. IEEE Transactions on Plasma Science,2003,31 (5): 890-901.
    [54]王仲奕,王季梅,金黎.真空电弧的磁场效应[J].高压电器,1998,(3):3-12.
    [55]Reece M. P. A review of the development of the vacuum interrupter[J]. Phil. Trans. R. Sco. Lond, A,1973, (275):121-129.
    [56]Emtage P. R., Kimblin C. W.,Gorman J. G., etc. Interaction between vacuum arcs and transverse magnetic fields with application to current limitation[J]. IEEE Trans. Plasma Sci.,1980,8 (4):314-319.
    [57]Alferov D. F.,Belkin G. S., Yevsin D. V. DC Vacuum Arc Extinction in a Transverse Axisymmetric Magnetic Field[J]. IEEE Transactions on Plasma Science,2009,37 (8): 1433-1437.
    [58]Ito T., Ohkura T. High Current Interruption Phenomena in Vacuum Interrupters[J]. Mitsubishi Denki Giho,1967, (11):1409-1414.
    [59]Yanabu S., Homma M., Kaneko E., etc. Post Arc Current of a Vacuum Interrupter [J]. IEEE Trans. Power Appar.Syst.,1985,104 (1):166-172.
    [60]Kimblin C. W., Voshall R. E. Interruption ability of vacuum interrupters subjected to axial magnetic fields [J]. Proceedings of the Institution of Electrical Engineers,1972, 119 (12):1754-1758.
    [61]Rondeel W. G. J. The vacuum arc in an axial magnetic field[J]. Journal of Physics D: Applied Physics,1975,8:934-941.
    [62]Yanabu S., Souma S., Tamagawa T., etc. Vacuum arc under an axial magnetic field and its interrupting ability[J]. Proceedings of the Institution of Electrical Engineers,1979, 126 (4):313-320.
    [63]Chaly A., Logachev A., Shkol'nik S., etc. Current density on the cathode of high current vacuum arc stabilized by axial magnetic field[C]. In Proc. XIX ISDEIV, Xi'an,2000: 286-291.
    [64]Schulman M. B., Slade P. G., Heberlein J. V. R. Effect of an Axial Magnetic-Field Upon the Development of the Vacuum-Arc between Opening Electric Contacts [J]. IEEE Transactions on Components Hybrids and Manufacturing Technology, Mar,1993,16 (2): 180-189.
    [65]Chaly A. M., Logatchev A. A.,Zabello K. K., etc. High-current vacuum arc appearance in nonhomogeneous axial magnetic field[J]. IEEE Transactions on Plasma Science,2003, 31 (5):884-889.
    [66]Shang W. Optical Investigations of Dynamic Vacuum Arc Mode Changes With Different AxialMagnetic Field Contacts[J]. IEEE Transactions on Plasma Science,2003,31 (5): 923-928.
    [67]董华军.真空开关电弧形态研究及其等离子体参数诊断[D].大连:大连理工大学,2009.
    [68]修士新,王季梅,付军.一种新型真空灭弧室的触头结构及其纵向磁场计算[J].高压电器,1997,(4):33-35.
    [69]刘志远.谢克松,王仲奕,等.杯状纵磁真空火弧室三维涡流场仿真[J].电工电能新技术,2004,23(2):26-28.
    [70]王仲奕,刘志远,张炫,等.五种纵向磁场真空灭弧室触头磁场特性分析比较[J].电工电能新技术,2006,25(1):21-25.
    [71]Shi Z.,Jia S.,Fu J., etc. Axial Magnetic Field Contacts With Nonuniform Distributed Axial Magnetic Fields[J]. IEEE Transact ions on Plasma Science, 2003, 31(2):289-294.
    [72]Xiu S.,Cheng Y. , Zhang R. Kxperimental investigation of vacuum are characteristic under axial magnetic field[J]. Journal of Physics D: Applied Physics, 2008, (41):1-7.
    [73]陈熙.热等离子体传热与流动[M].北京:科学出版社,2009.
    [74]Boxnian R. L. Magnetic constriction effects in high current vacuum arcs prior to the release of anode vapor[J]. Journal of Applied Physics, 1977, 48 (6):2338-2345.
    [75]Boxman R. L.,Goldsmith S. Model of the anode region in a uniform multi cathode spot vacuum arc[J]. Journal of Applied Physics, 1983, 54(2): 592-602.
    [76]Wieckert C. The expansion of the cathode spot plasma in vacuum arc discharges[J]. Physics of Fluids, 1987,30(6):1810-1813.
    [77]Wieckert C., Fgli W. Theoretical analysis of the current and energy flow to the anode in the diffuse vacuum are[J].IEEE Transactions on Plasma Science, 1989, 17(5): 649-652.
    [78]Hantzsehe E. Theory of the expanding plasma of vacuum arcs[J]. Journal of Physics D: Applied Physics, 1991, 24:1339-1353.
    [79]Hantzsche E. Two dimensional models of expand ing vacuum arc plasmas[J]. IEEE Transactions on Plasma Science,1995,23(6):893-898.
    [80]GavriJov V. N., Litvinov E. A., Mesyats G. A., etc. Two dimensional MHD model of the plasma jet originating from a vacuum are cathode spot[C]. XVI International Symposium on Discharges and Fleetrical Insulation in Vacuum, Moscow St. Petersburg, Russia, 1994: 114-117.
    [81]Keidar M. 2D expansion of the low density interelectrode vacuum arc plasma jet in an axial magnetic field[J]. Journal of Physics D: Applied Physics, 1996, 29(7):1973-1983.
    [82]Keidar M., Beilis I. I., Boxman R. L., etc. Voltage of the vacuum arc with a ring anode in an axial magnetic field[J]. IEEE Transactions on Plasma Science, 1997, 25 (4): 580-585.
    [83]Beilis I. I., Keidar M.,Boxman R. L., etc. Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum are[J]. J. Appl. Phys., 1997, 83 (2): 709-717.
    [84]Beilis I. I., Keidar M. Theoretical study of plasma expansion and electrical characteristics in the high-current vacuum are[C]. In XITth International Symposium on Discharges and Electrical Insulation in Vacuum, xi'an,2000:206-209.
    [85]Shi Z., Jia S., Rong M. Numerical analysis of vacuum arc under nonuniformly distributed axial magnetic fields[J]. IEEE Transactions on Plasma Science,2004,32 (2):775-782.
    [86]Shmelev D. L. MHD model of plasma column of high current vacuum arc[C]. In XIXth International Symposium on Discharges and Electrical Insulation in Vacuum, Xi'an,2000: 214-217.
    [87]Scha.de E., Shmelev D. COMPUTER EXPERIMENTS CONCERNING HIGH CURRENT VACUUM ARCS WITH EXTERNALAXIAL MAGNETIC FIELD[C].20th International Symposium on Discharges and Electrical Insulation in Vacuum, Tours,2002:1-8.
    [88]Schade E.,Shmelev D. Numerical simulation of high-current vacuum arcs in external magnetic fields taking into account essential anode evaporation[C]. XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, Yalta,2004: 411-414.
    [89]Delachaux T., Fritz 0., Gentsch D., etc. Numerical Simulation of a Moving High-Current Vacuum Arc Driven by a Transverse Magnetic Field (TMF) [J]. IEEE Transactions on Plasma Science,2007,35 (4):905-911.
    [90]Shmelev D. L., Delachaux T., Schade E. Computer Simulation of Constricted High Current Vacuum Arc Motion under Action of Transversal Magnetic Field[J]. Beam and Plasma Sources, 2008:43-47.
    [91]Delachaux T., Fritz 0., Gentsch D., etc. Simulation of a High Current Vacuum Arc in a Transverse Magnetic. Field [J]. IEEE Trans. Plasma Sci.,2009,37 (8):1386-1392.
    [92]Langlois Y., Chapelle P., Jardy A., etc. On the modeling of a diffuse vacuum arc in the presence of an axial magnetic field[C].24th International Symposium on Discharges and Electrical Insulation in Vacuum, Braunschweig,2010:355-358.
    [93]Londer Y. I., Ul'yanov K. N. A two-dimensional mathematical model of a short vacuum arc in external magnetic field[J]. High Temperature,2005,43 (6):843-853.
    [94]Londer Y.,U1'yanov K. A two-dimensional mathematical model of a short vacuum arc in external magnetic field:results of numerical calculations[J]. High Temperature,2006, 44 (1):22-28.
    [95]Londer Y. I., Ulyanov K. N. Mathematical Model of the Vacuum Arc in an External Axial Magnetic Field[J]. IEEE Transactions on Plasma Science,2007,35 (4):897-904.
    [96]Fu J., Jia S., Lan T.2-dimensional magneto-hydro dynamics (MHD) model of vacuum arc with AMF[C]. XIXth International Symposium on Discharges and Electrical Insulation in Vacuum, Xi'an,2000:195-198.
    [97]Wang L. J., S. L. J.,Shi Z. Q., etc. MHD simulation of high current subsonic vacuum arc under different distributed axial magnetic fields[J]. Vacuum, 2007, 82 (1): 100-104.
    [98]Jia S., Zhang L. , Wang L, etc. Numerical Simulation of High Current Vacuum Arcs Under Axial Magnetic Fields Wi t.h Consideration of Current Density Distribut ion at Cathode[J]. IEEE Transactions on Plasma Science, 2011,39(11):3233-3243.
    [99]Wang L.,Jia S. ,Zhou X., etc. Three dimensional model and simulation of vacuum ares under axial magnetic fields[J]. Physics of Plasmas, 2012, 19 (013507): 1-10.
    [100]Boxman R. L , Goldsmith S. A model for a uniform steady state vacuum arc with a hot anode[J]. IEEE Transactions on Plasma Science, 1989, 17(5):661-665.
    [101]Rosenthal H. , et al. Heat fluxes during the development of a hot anode vacuum arc[J]. Journal of Physics D: Applied Physics, 1995, 28:353-363.
    [102]Beilis I. I. Steady state model of a refractory hot anode vacuum arc[J]. Journal of Physics D: Applied Physics, 1999, 32(2):128-135.
    [103]Beilis I. I.,Boxman R. I., Goldsmith S. A hot refractory anode vacuum are: Nonstationary plasma model[J]. IKEE Transactions on Plasma Science, 2001, 29(5): 690-691.
    [104]Beilis I. 1., Goldsmith, S. , Boxman, R.L. Intereleetrode plasma evolution in a hot refractory anode vacuum are: Theory and comparison with experiment[J]. Physics of Plasmas, 2002, 9(7):3159-3170.
    [105]Beilis I. I.,Nemirovsky A.,Goldsmith S., etc. Two dimensional thermal model of a refractory anode in a vacuum are[J]. IEEE Transact ions on Plasma Science, 2003,31(5): 958-962.
    [106]Shashurin A., Beilis I. I., Boxman R. L. Heat flux to an asymmetric anode in a hot refractory anode vacuum are[J]. Plasma Sources Science and Technology, 2010, 19 (015002):1-8.
    [107]Shi Z. , Jia S. , Dong 11. , etc. Simulation of the Thermal Process of Anode in Drawn Vacuum Are[J]. IEEE Transactions on Plasma Science, 2007,35(4):920-924.
    [108]Wang L. J.,Jia S. L., Vang D. G., etc. Modelling and simulation of anode activity in high current vacuum are[J]. Journal of Physics D: Applied Physics,2009,42(145203): 1-13.
    [109]Wang L J. , Jia S. L., Liu Y. , etc. Model ing and simulat ion of anode molting pool flow under the act ion of high current vacuum are[J]. Journal of Applied Physics, 2010, 107 (113306): 1-12.
    [110]金佑民.樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983.
    [111]Anderson J. D. Computational fluid dynamics: The basics with applications[M]. New York: McGraw Hill, Inc., 1995.
    [112]Callen J. D. Fundamentals of Plasam Physics, http://homepages.cae.wise.edu/callen/book.html
    [113]Braginskii S. I. Transport processes in a plasma[M]. New York:Consultants Bureau, 1965.
    [114]Schade E., Shmelev D. Numerical modeling of plasma behavior and heat flux to contacts of vacuum arcs with and without external axial magnetic field (AMF)[C].20th International Symposium on Discharges and Electrical Insulation in Vacuum, Tours,2002: 44-51.
    [115]Golant V. E., Zhilinsky A. P., Sakharov I. E. Fundamentals of plasma physics[M]. New York:Wiley,1980.
    [116]Mitchner M. Partially Ionized Gases[M]. New York:Wiley,1973.
    [117]崔海宁.热力学系统理论[M].长春:吉林大学出版社,2009.
    [118]Anders A., Anders S. Emission spectroscopy of low-current vacuum arc [J]. J. Phys. D:Appl. Phys.,1991,24:1986-1992.
    [119]Edminister J. A. Theory and Problems of Electromagnetics[M]. New York:McGraw-Hill Companies,1995.
    [120]Miller H. C. A Review of Anode Phenomena in Vacuum Arcs[J]. Contributions to Plasma Physics,1989,29 (3):223-249.
    [121]吴望一.流体力学[M].北京:北京大学出版社,1982.
    [122]普朗特著,郭永怀,陆士嘉译.流体力学概论[M].北京:科学出版社,1981.
    [123]Cope D. B. Metal vapour vacuum arc switching[D]. Cambridge:Massachusetts Institute of Technology,1983.
    [124]王立军,贾申利,史宗谦,等.大电流真空电弧磁流体动力学模型与仿真[J].中国电机工程学报,2006,26(22):174-180.
    [125]Kutzner J., Miller H. C. Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc[J]. J. Phys. D:Appl. Phys,1992,25 (4):686-693.
    [126]Keidar M., Schulman M. B. Modeling the effects of an axial magnetic field on the vacuum arc[J]. IEEE Transactions on Plasma Science,2001,29 (5):684-689.
    [127]Hermann W., Schade E. Radiative energy balance in cylindrical nitrogen arcs[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1972,12 (9):1257-1282.
    [128]张炫,刘志远,王仲奕.杯状纵磁真空灭弧室磁场特性分析[J].高压电器,2005,41(3):161-169.
    [129]刘志远,王仲奕,张炫,等.线圈式纵向磁场真空灭弧室磁场特性[J].电工技术学报,2007,22(1):47-53.
    [130]刘全.Z-pinch磁流体力学方程组的数值模拟方法[D].北京:中国工程物理研究院,2002.
    [131]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [132]Launder B. E., Spalding D. B. Lectures in Mat hematical Models of Turbulence[Ml. London: Academic Press, 1972.
    [133]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [134]PatankarS. V., Sparrow E. M., I vanovic M. Thermal interaction among the confining walls of a turbulent recireulating flow[J]. Int J Heat Mass Transfer, 1978, 24: 269 274.
    [135]周光炯,严宗毅,许世雄.流体力学[M].北京:高等教育出版社,2000.
    [136]吴翔,荣命哲,杨茜,等.低压空气电弧动态特性仿真及分析[J].中国电机工程学报,2005,25(21):143-149.
    [137]Wang L. ,Jia S.,Shi Z. , etc. High current vacuum arc under axial magnetic field: Numerical simulation and comparisons with experiments[J]. Journal of Applied Physics, 2006, 100 (113304): 1-11.
    [138]Yan J. D., Fang M. T. C. Visualiation of arcing process in an auto expansion eireuit breaker[J]. IEEE Transact ions on Plasma Science, 1999, 27(1): 40-41.
    [139]Zhang J. L., Van J. D. ,Murphy A. B. , etc. Computational investigation of are behavior in an auto expansion circuit breaker contaminated by ablated nozzle vapor[J]. IEEE Transactions on Plasma Science,2002,30(2): 706-719.
    [140]Han P., Chen X. Modeling of the Subsonic Supersonic Flow and Heat Transfer in a DC Arc Plasma Torch[J]. Plasma Chemistry and Plasma Processing, 2001, 21(2):249-264.
    [141]Wang H. X.,Chen X. Numerical modeling of the high intensity transferred arc with a water cooled constrictor tube[J]. Plasma science and Technology, 2005, 7(5): 3051-3056.
    [142]Haynes W. M. CRC Handbook of Chemistry and Physics[M]. Florida: CRC Press Inc., 2011.
    [143]王政,王季梅,刘志远,等.一种新型真空灭弧室纵向磁场电极结构[J].高压电器,1999,(6):35-37.
    [144]徐国政,张节容,钱家骊.高压断路器原理与应用[M].北京:清华大学出版社,2000.
    [145]Schulman M. B., Slade P. G. Sequential modes of drawn vacuum arcs between butt contacts for currents in the 1 kA to 16 kA range[J]. IEEE Transact ions on Components, Packaging, and Manufacturing Technology,1995,18(2):417-422.
    [146]Chen L.,Zhong H. Splitting and motion of diffuse are cathode spots in axia1 magnetic fieldl[J]. IEEE Transaction on CHMT. 1986, 9 (1): 128-133.
    [147]Song X. , Shi Z., Liu C. , etc. Experimental Investigation on the Characteristies of Drawn Vacuum Arc in Initial Expanding Stage and in Forced Current Zero Stage[J]. IEEE Transactions on Plasma Science, 2011,39(6):1330-1335.
    [148]金黎,王季梅.真空灭弧室向高电压大容量发展的关键问题[J].真空电子技术,1996,(1):50-54.
    [149]Shang W. , Damstra G. C. The properties of triggered vacuum gaps[J]. IEEE Transaction on Electrical Insulation, 1993, 28(4):650-656.
    [150]Brandes E. A. , Brook G. B . Smithells Metals Reference Book[M]. Burlington: Elsevier Butterworth-Heinemann, 1998.
    [151]Cagran C. Thermal Conductivity and Thermal Diffusivity of Liquid Copper[D]. Moscow: Institut fur Experimental physik, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700