大容量真空断路器永磁操动机构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发电机断路器是安装在发电机与升压变压器之间的保护电器,它不仅对发电机和主变压器起保护作用,而且对发电机组启停、维护以及增大运行灵活性和可靠性等起到积极的作用。由于发电机保护断路器工作场合的特殊性,对其可靠性有极高的要求,永磁操动机构结构简单、零部件少、可靠性高、操作寿命长、动作分散性小,已经广泛应用于中等电压等级的真空断路器上。本文重点研究了能与17.5kV/10000A/80kA型大容量真空发电机出口断路器良好配合的永磁操动机构。
     本文首先介绍了永磁操动机构的工作原理,对比了现有两种结构的永磁操动机构的优缺点,设计了一种非对称式双稳态永磁操动机构,并应用有限元软件Ansoft Maxwell,对永磁操动机构的静态保持力和静态磁场进行了分析和计算,分析和计算的结果表明非对称式结构所需的合闸启动电流远小于对称式双稳态永磁操动机构的启动电流,证明了非对称式双稳态永磁操动机构结构的合理性。
     本文还对所设计的非对称式双稳态永磁操动机构的动态特性进行了数学建模与分析,给出了动态微分方程组。通过Ansoft软件的瞬态求解器,获得了一系列动态特性曲线,为样机的设计提供了理论指导。研究了分闸线圈的线径变化对永磁操动机构动特性的影响,为线圈参数的优化设计提供了理论指导。为了减小分闸电流和触动时间,提高永磁操动机构的刚分速度,提出了双线圈并励磁的方法。对所设计的样机进行了机械特性试验,试验结果表明,各项指标均符合设计要求。
     大电流下的触头熔焊问题是17.5kV/10000A/80kA型大容量真空发电机出口断路器需要解决的一个难点,动熔焊是由触头弹跳所产生电弧热而引起的,解决触头弹跳问题是本文的一个重点。通过对减小触头弹跳措施的分析,采用双线圈串励磁合闸的方式,来降低触头的刚合速度,以达到减小触头弹跳的目的。试验结果证明了这种励磁方式的有效性。
The generator breaker is the protecting equipment installed between the generator and the transformer booster. It not only protects the generator and the main transformer but also exerts postive influence on the starting and stopping of the generator, the maintainence of equipments and improving the flexibility and reliability of the generator. Due to the special working conditions, the generator is required of high reliability. Permanent magnetic actuator, possessing advantages of simple structure, fewer components, high reliability, long working life and operational centrality, has already been applied widely in the medium voltage vaccum circuit breaker. This paper mainly makes research on the construction of the permanent magnetic actuator, which works well with the 17.5kV/10000A/80kA high capacity vacuum generator circuit.
     This paper,first of all, has introduced the working mechanism of the permanent magnetic actuator and makes comparision of the advantages and disadvantages between two kinds of permanent magnetic actuator, and then it proposed the asymmetric bistable permanent magnetic actuator and the use of finite element software Ansoft Maxwell, which analysed and calculated the close circuit starting current and the static retentivity of permanent magnetic actuator. The result shows that the close circuit starting current of construction is far less than the starting current required by symmetrical bistable permanent magnetic actuator, proving the rationality of this construction.
     This paper also analysed the dynamic characteristics of the proposed asymmetric bistable permanent magnetic actuator and builded a mathematical model of dynamic differential equation. A set of dynamic curve can be abtained to provide the theoretical guide by the transient solver of Ansoft Software. The research, after studying the open coil and closing coils’influence on the external characteristics of permanent magnetic actuator, also provided theoretical guide for the optimization design of setting the coil parameter. In order to reduce the open coil current and the touching time, and improve the just open speed of the permenant magnetic actuator, this experiment proposed the use for twin coil in the shunt field which had shown that the use of twin coil.After conducting experiments on the designed model, the test results showed that all the indexes complied with the requirements.
     The contact terminal will melt down under heavy current, which is a problem of the breaker of 17.5kV/10000A/80kA high capacity vacuum generator circuit. The puddle welding is caused by the voltaic arc heat produced by the bounce of the contacting terminals. This is also the key problem of this paper to solve. In the end, after analysing the measures of reducing the bounce of the contact terminals and taking the way of series excitation twin coil with closed circuit,which aims at reducing the speed of just close, the experiment has proven the effectiveness of the excitation .
引文
[1]曹荣江,顾霓鸿.高压交流断路器运行条件.北京:北京工业大学出版社, 1999.
    [2]张节容,钱家骊,王伯翰等.高压电器原理和应用.北京:清华大学出版社, 1989.
    [3]陈慈萱,马志瀛.高压电器.北京:水利电力出版社, 1987.
    [4]李建基,发电机断路器的发展.高压电器技术, 1993(3): 12-15.
    [5]林莘.现代高压电器技术.北京:机械工业出版社, 2004.
    [6] IEEE Std C37. 013-1997以对称电流为基础的交流高压发电机断路器标准.美国:电力电子工程师协会,1997.
    [7]徐黎明. IEEE/ANSI发电机断路器新标准.高压电器, 1996(2): 58-61.
    [8]王季梅,苑舜.大容量真空开关理论及其产品开发.西安:西安交通大学出版社, 2001.
    [9]徐万红,曲万春,张洪君等.中等容量发电机保护断路器的研究.沈阳:沈阳工业学院学报, 1999, 18(4): 4751.
    [10]程朝辉. 600MW发电机出口装设断路器问题的探讨.华中电力, 1999, 12(1): 17-20.
    [11]刘志远,王季梅,苑舜.一种新型真空发电机断路器的研究进展.中国电力, 2001, 34(1): 36-50.
    [12]陈尚发.大容量发电机出口断路器在我国的制造和应用问题.电力设备, 2006, 7(3): 50-52.
    [13]王政,费广成.大容量发电机断路器用真空灭弧室,高压电器, 2005(4): 295-298.
    [14]张龙.中压断路器永磁操动机构的研究: (硕士学位论文) .天津:河北工业大学, 2003.
    [15]孙静. 12kV节能型真空断路器永磁操动机构的研究: (硕士学位论文).沈阳:沈阳工业大学, 2006.
    [16]谭东现.永磁操动机构设计与动态分析软件的开发: (硕士学位论文).沈阳:沈阳工业大学, 2006.
    [17]崔寒.真空断路器永磁操动机构优化设计研究: (硕士学位论文).沈阳:沈阳工业大学, 2006.
    [18]游一民.真空断路器永磁机构的优化设计与电容器组同步关合策略的研究(博士学位论文).西安:西安交通大学, 2003.
    [19]孙志强.真空断路器永磁操动机构动态特性的仿真.(硕士学位论文).西安:西安交通大学, 2004.
    [20]游一民,陈德桂,孙志强等.方形与圆形永磁机构的比较,高压电器, 2004, 40(6): 436-438.
    [21]马少华,王季梅. 72.5kV高压真空断路器永磁操动机构的研究与设计,中国电机工程学报, 2001, 21(12): 109-114.
    [22] J.A.Macbain. Magnetic Field Simulation from a Voltage Source. IEEE Trans on Mag, Vol.19, No.5.Sep, 1983: 2180-2182.
    [23] T.Nakata, N.Takahashi. Direct Finite Analysis of Flux and current Districulations under specified conditions. IEEE Trans.on Mag, Vol.18, No.2, May, 1982: 325.
    [24]李治,张力超,林莘.也谈永磁机构.高压开关行业通讯, 2001: 1-2.
    [25] Gao Huijun, Lin Xin, Wu Yi. Study on a New-Type Actutor for Middle-Voltage Circuit Breaker. Proceedings of the First International Conference on Mechanical Engineering, ICME2000.
    [26]卢芸,林莘.高压断路器新型永磁操动机构特性分析.全国电工理论与新技术2001年学术年会,河北保定, 2001.
    [27] Renforth L A, Auckland D K. Varlow B.Computer aided optimal design of magnetic actuator for auto-recloser application. Trends in Distribution Switchgear, 1998: 80-85.
    [28]赵进尚.高压真空开关新型操动机构的动特性研究: (硕士学位论).北京:华北电力大学, 2003.
    [29] J.A.Macbain. Magnetic Field Simulation from a Voltage Source. IEEE Trans on Mag, Vol.19, No. 5. Sep, 1983: 2180-2182.
    [30] T.Nakata, N.Takahashi. Direct Finite Analysis of Flux and current Districulations under specified conditions. IEEE Trans.on Mag, Vol.18, No.2, May, 1982: 325.
    [31]陈剑光,柳春芳,郭福明.大电流真空断路器温升与过热影响因素的探讨.高电压技术, 2002, 28(6): 25-26.
    [32]余小玲,魏义江,刘志远等.高电压真空断路器温升影响因素的仿真研究.高压电器, 2007(3): 179-182.
    [33]苑舜,于力.大容量真空负荷开关.发明专利,专利号: 101101832.
    [34]堵永国,张为军,胡君隧.电接触与电接触材料.电工材料, 2005(3): 42-48.
    [35] Nakamura M. Constriction resistance of conducting spots by the boundary elemenet method . IEEE Trans Comp Hybrids Manuf Technol, CHMT-16,1993: 339-341.
    [36]张海泉.接触电阻的分析研究.商丘师范学院学报, 2004, 20(5): 40-43.
    [37] Holm R. Electric Contacts: Theory and Applications. Berlin: Springer-Verlag, 1976.
    [38] Paulke J, Weichert H, Steinhaeuser P. Simulation of contact spots. Proceedings of 21th International Conference on Electrical Contacts, 2002: 388-393.
    [39]孙海涛,陈德桂,刘庆江.低压断路器触头系统电动斥力的计算.低压电器, 2002(3): 3-5.
    [40]方鸿发.低压电器.北京:机械工业出版社, 1988.
    [41]左全璋,胡双等.双稳态永磁操动机构结构设计和性能计算.华通技术, 2002(2): 13-17.
    [42]左全璋,胡双等.双稳态永磁操动机构结构设计和性能计算.华通技术, 2002(3): 20-28.
    [43]高会军,林莘,蔡志远.永磁操动机构磁场计算及动特性计算.沈阳工业大学学报, 2000(6): 490-493.
    [44]王海峰,徐建源.永磁操动机构磁场数值计算和结构分析.高压电器, 2002(1): 11-13.
    [45]唐任远等著.现代永磁电机.北京:机械工业出版社, 1997.
    [46]林莘.永磁机构与真空断路器.北京:机械工业出版社, 2002.
    [47]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.电子工业出版社, 2005.
    [48]付万安,贾春博等.永磁操动机构的动态分析.大连铁道学院学报, 1999(3): 31-37.
    [49]霍凤鸣等.高压断路器操动机构的电气动态特性.高压电器, 2001(4): 55-57.
    [50]李岩,王胜辉等.真空断路器永磁机构设计与分析软件的开发.高压电器, 2003(1): 34-39.
    [51]林莘,徐建源,高会军.永磁操动机构动态特性计算与分析.中国电机工程学报, 2002(2): 85-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700