110kV真空断路器电磁场数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对环境保护越来越重视,SF6气体的使用和排放受到限制,从而使电器领域内SF6断路器的发展也受到限制。而真空断路器充分利用了真空优异的绝缘与熄弧特性,且对环境不造成污染,所以目前在中压领域已经占据了主导地位,而且不断向高电压、大容量方向发展。因此,未来高压真空断路器必然取代高压SF6断路器。真空灭弧室是真空断路器的“心脏”,所以,开发高压真空断路器最关键的是灭弧室的设计。本文对110kV的真空灭弧室的内部电磁场进行了仿真分析,为我国开发110kV真空断路器提供一定的参考。
     本文采用有限元软件对110kV真空断路器灭弧室内部静电场进行了仿真分析,得到了灭弧室内部各种屏蔽罩的大小、尺寸和位置对电场分布的影响;触头距离对灭弧室内部电场分布的影响;伞裙对灭弧室内部电场分布的影响。再根据等离子体和金属蒸气具有一定导电率的特点,从麦克斯韦基本方程出发,推导了灭弧室内部电场所满足的计算方程,然后用有限元法对二维电场进行了求解。考虑到弧后粒子消散过程中,电极和悬浮导体表面会有带电微粒的存在,又计算分析了带电微粒对真空灭弧室电场分布的影响,进而提出了使灭弧室内部电场更加均匀的措施。
     根据大电流真空电弧的物理模型,基于磁场对电流的作用力理论,计算分析了真空电弧自生磁场的收缩效应以及对分断电弧的影响,得到了弧柱中自生磁场产生的电磁压强分布,最后分析了外加纵向磁场分量对减小自生磁场收缩效应的作用。
     建立了110kV、1/2线圈以及1/3线圈纵向磁场触头三维电极模型,并利用有限元法进行了三维静磁场和涡流场仿真。得到了电流在峰值和过零时纵向磁场分别在触头片表面和触头间隙中心平面上的二维和三维分布,给出了这两种触头在电流过零时纵向磁场滞后时间沿径向路径和轴向路径的分布规律,最后还对这两种触头的性能进行了比较。
Recently, people pay more attention to human living environment in the world, and SF6 is limited to be used and be let out, so the development of SF6 circuit breakers are restricted. On the contrary, excellent insulation and arc blowing out characteristics of vacuum are used sufficiently for vacuum circuit breakers(VCB) which do not make pollution of environment, so middle voltage vacuum circuit breakers have been highly developed, and VCB with high voltage and large capacity have become considerably interested in the world. It is predictable that high voltage VCB would certainly be replaced high voltage SF6 circuit breaks in the future.
     Because vacuum interrupter is the heart of vacuum circuit breakers, its design is the key to vacuum circuit breaker development. In this thesis, 110kV vacuum interrupter is simulated and analyzed on the electromagnetic field, and some references are supplied for the development of 110kV vacuum circuit breakers. The static electric field of 110kV vacuum circuit breakers is simulated and analyzed using finite element method, influences of size and position of various shields on the electric field distributions of inner interrupter are gotten, and influences of contact gap length and rain shed on the electric field distributions of inner interrupter are given also. Then according to specific conductivity of plasma and metal vapor, calculation equations are deduced for vacuum interrupter from Maxwell equations, and two-dimensional electric field is solved using finite element method. The effect of charged particle on the electric field distribution of inner interrupter is calculated and analyzed with the consideration of existential charged particle on the surface of contact and floating conductor during dissipating of particle in post-arc, furthermore the proposal is given to make the electric field distributions more uniformly.
     According to the physical model of high-current vacuum arc, contract effect of vacuum arc self-magnetic field and its influence to arc are analyzed based on the theory of magnetic field force applied to current, and electromagnetism pressure distribution generated by self-magnetic field of arc is given. At last,the action of additional-axial magnetic field to reduce self-magnetic field contract effect is analyzed.
     3-Dimentional electrode model of two segments coil and three segments coil axial magnetic field (AMF) contacts of 110kV vacuum interrupter are built up, and the 3-D static magnetic field and eddy current field in the case of arc discharge are simulated by the 3-D finite element method. The distributions of AMF on the surface of contact plate and mid-gap plane are gotten at current peak and zero respectively. Furthermore the distributions of the AMF phase shift time along the axial and radial path are given at current zero. At last, the parameters of these two contacts are compared.
引文
1 王季梅, 钱予圭. 论高压真空灭弧室和真空断路器的产品开发. 高压电器, 2003, 39(1): 65~67
    2 林立生, 林扬. 真空断路器综述. 华北电力技术, 1996, (5): 44~46
    3 王季梅. 真空开关的发展概况和应用. 中国电力, 1994, (2): 14~17
    4 马志瀛. 积极开展高电压真空灭弧室及 126kV 以上真空断路器的理论研究和产品开发. 电气技术, 2002, (5): 295~298
    5 H. Toya, T. Hayashi, Y. Shinozaki, et al. Statistical Property of Breakdown Between Electrode and Shield in High-Voltage Vacuum Interrupter. IEEE Trans. on Plasma Science, 1985, 13(5): 311~314
    6 王季梅, 钱忠厚. 论发展 110kV 真空断路器的可行性和必要性. 电杂志, 1991, (4): 1~3
    7 苑舜. 真空断路器机械特性对开断电流性能的影响及 63kV 和 110kV 真空断路器研制. 西安交通大学博士论文, 1993: 15~20
    8 冯亚清. 户外单断口 72.5kV 真空断路器电场分析与绝缘设计. 西安交通大学硕士论文, 2003: 10~13
    9 H. Saitoh. Research and Development on 145 kV/40kA One Break Vacuum Interrupter Circuit Breaker. IEEE/PES Trans. & Distr. Conf & Exhib, 2002, Japan: 1465~1468
    10 林莘. 现代高压电器技术. 机械工业出版社, 2002: 50~70
    11 王季梅. 真空开关理论及其应用. 西安交通大学出版社, 1986: 86~90
    12 修士新, 王季梅. 发展高电压等级真空断路器的技术问题探讨. 真空电子技术, 1997, (3): 1~7
    13 金黎, 王季梅. 真空灭弧室向高电压大容量发展的关键问题. 真空电子技术, 1998, (1): 50~54
    14 S. Giere, H. C. Kamer. Dielectric Strength of Double and Single Break Vacuum Interrupters. IEEE Trans. on Dielectrics and Electrical Insulation, 2001, 8(1): 43~47
    15 王季梅. 真空灭弧室设计和制造工艺概述与发展方向. 真空电子技术, 2001, (3): 23~25
    16 王季梅. 真空灭弧室设计、制造及其应用. 西安交通大学出版社, 1993:25~30
    17 S. Giere, M. Kurrat, U. Schuemann. High-Voltage Dielectric Strength of Shielding Electrodes in Vacuum Circuit Breakers. IEEE 20th Int. Symp. On Discharges and Electrical Insulation in Vacuum, 2002, France: 113~117
    18 M. Kurrat, S. Giere, U. Schuemann. Electric Field Design for High-Voltage Vacuum Tubes. The XIIIth International Symposium on High Voltage Engineering, 2003, Netherlands: 25~29
    19 T. Tsutsumi. Dynamic Characteristics of High-Speed Operated, Long-Storke Bellows for Vacuum Interrupters. IEEE Trans. on P. D., 1993, 8(1): 163~167
    20 M. Homma. Physical and Theoretical Aspects of a New Vacuum Arc Control Technology-SADE. Proc. of 18th ISDEIV, 1998, Eindhoven: 266-269
    21 K. Watanab, E. Kanek, S. Yanabu. Technological Progress of Axial Magnetic Field Vacuum Interrupters. IEEE Trans. on Plasma Science, 1997, 25(4) : 609~716
    22 Z. Y. Liu, J. M. Wang, Z. Wang, et al. Analysis of Axial Magnetic Field of an Iron Style Bipolar Axial Magnetic Field Vacuum Interrupter. IEEE Trans. on Plasma Science, 2001, 29(5): 749~753
    23 刘志远, 王季梅, 王政等. 杯状纵磁真空灭弧室三维纵向磁场及涡流场的有限元分析. 高压电器, 2000, 36(2): 18~21
    24 王清玲, 郭良福, 何孟兵等. 轴向磁场控制的旋转电弧开关的研制. 中国电机工程学报, 2006, 26(3): 102~105
    25 王立军, 贾申利, 史宗谦等. 真空电弧磁流体动力学模型与仿真研究. 中国电机工程学报, 2005, 25(4): 113~118
    26 陈美娟. 真空灭弧室内部的绝缘强度分析. 西安交通大学博士论文, 1989: 55~58
    27 陆庞慧. 真空灭弧室的绝缘特性研究. 西安交通大学博士论文, 1990: 10~15
    28 高勒福. 27.5kV 铁道电气化用真空灭弧室内部电场分布与改进的研究. 西安交通大学硕士论文, 1990: 20~22
    29 阎静. 真空灭弧室绝缘特性的研究及电场计算. 西安交通大学硕士论文, 1999: 35~40
    30 阎静, 马志瀛. 高电压等级真空灭弧室绝缘结构的研究. 高电压技术, 2005, 31(6): 6~9
    31 赵智忠, 邹积岩. 高压真空灭弧室的电场设计的新方法. 中国电机工程学报, 2005, 25(6): 109~112
    32 冯亚清, 马志瀛. 真空断路器灭弧室外表面绝缘及其计算. 高电压技术, 2003, 29(3): 18~20
    33 王仲奕. 真空灭弧室开断电流时电导对电场影响的计算与分析. 电工技术学报, 1996, 2(2): 16~20
    34 曹云东, 刘晓明, 王尔智. 12kV户外真空断路器电场数值分析. 高压电器, 2002, 38(3): 14~16
    35 S Yanabu. Vacuum Arc Under an Axial Magnetic Field and Its Interrupting Ability. Proc. IEE, 1979, 126(4): 313~320
    36 H. Fink, M. Heimbach, W. K. Shang. Vacuum Interrupters with Axial Magnetic Field Contacts Based on Bipolar and Quadrupolar Design. IEEE Trans. on Plasma Science, 2001, 29(5) : 738~743
    37 B. Fenski, M. Heimbach, M. Lindmaner, et al. Characteristics of a Vacuum Switching Contact Based on Bipolar Axial Magnetic field. IEEE Trans. on Plasma Science, 1999, 27(4): 949~954
    38 K. Steinke, M. Lindmayer. Differences in Current Zero Behavior Between Bipolar and Quadrupolar AMF Contacts. IEEE 20th Int. Symp. On Discharges and Electrical Insulation in Vacuum, 2002, France: 764~771
    39 Satoru Yanabu, Eiji Kaneko. Research and Development of Axial Magnetic Field Electrode and Its Application. IEEE 18th Int. Symp. On Discharges and Electrical Insulation in Vacuum, 1998, Eindhoven: 223~227
    40 G. Duning, M. Lindmayer. Energy of Irons in Vacuum Arcs Between Axial and Radial Magnetic Field Contacts. IEEE 19th Int. Symp. On Discharges and Electrical Insulation in Vacuum, 2000, Xi’an: 432~439
    41 K Vatanabe. Technology Progress of Axial Magnetic Field Vacuum Interrupters. IEEE 17th Int. Symp. on Discharge and Electrical Insulation in Vacuum, 1996, Berkeley: 231~238
    42 常越. 调整真空灭弧室纵向磁场分布方法的研究. 高压电器, 1996, (3): 12~14
    43 刘东辉, 修士新, 王季梅. 两种新型的纵磁结构真空灭弧室的研究比较. 电工技术学报, 2003, 18(6): 68~71
    44 刘志远, 王仲奕, 王季梅. 杯状纵磁触头纵向磁场滞后时间研究. 高压电器, 2004, 40(2): 87~90
    45 付军, 贾申利, 张晋. 非均匀分布纵磁控制真空电弧分布的初步研究. 高压电器, 1999, (5): 14~17
    46 B. J. Paul. Calculation of Eddy-Current-Induced Magnetic Fields in Vacuum Interrupters with Axial Magnetic Field Contacts. IEEE Trans on Magnetics, 1988, 24(5): 2204~2214
    47 刘志远, 谢克松, 王仲奕. 杯状纵磁真空灭弧室三维涡流场仿真. 电工电能新技术, 2004, 23(5): 27~30
    48 A. Henton, T. Altimanni, P. Picot, et.al. 3D Finite Element Simulation and Synthetic Tests of Vacuum Interrupters With Axial Magnetic Field Contacts. IEEE 20th Int. Symp. on Discharges and Electrical Insulation in Vacuum, 2002, France: 1100~1108
    49 Y. Kawase, H. Mori, H. Inoue. 3-D Finite Element Analysis of Magnetic Blowout Forces Acting on the Arc in Vacuum Circuit Breakers. IEEE Trans on Magnetics, 1996, 32(3): 1681~1684
    50 B. Fenski, M. Lindmaner. Vacuum Interrupters with Axial Field Contacts-3D Finite Element Simulations and Switching Experiments. IEEE 17th Int. Symp. On Discharges and Electrical Insulation in Vacuum, 1996, Berkeley: 1355~1360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700