连作甜瓜蔓根真菌病害发生与放线菌生物防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连作甜瓜蔓根真菌病害是甜瓜设施栽培和专业化种植基地发展的主要限制因素,寻找合适有效的病害防治途径是目前解决甜瓜连作障碍问题的首要任务。国内外关于甜瓜病害防治采取的措施主要有化学农药、嫁接、抗性品种筛选等,但效果均不明显且具有各自的缺点和弊端,如环境污染、农药残留、品质下降、病原菌易变异或者产生抗药性等。随着绿色农业和有机果蔬的兴起,寻找新的环境友好型病害防治措施开始受到人们的广泛关注。“以菌治菌”的生物防治思路有望从源头解决问题。放线菌具有产多种抗生素的功能,能够抑制动物病原菌、防治人畜传染性病害,已在医学上得到广泛应用。放线菌产生的农用抗生素在农业生产上也表现出良好的效果,但放线菌活菌制剂在作物真菌病害防治上的应用研究相对滞后,其作用机理及效果目前仍不清楚。放线菌活菌制剂在甜瓜蔓根真菌病害生物防治上的研究更少。本论文通过对连作甜瓜蔓根真菌病害发生微生态机制,真菌病害生防放线菌筛选鉴定,放线菌防病促生效果,放线菌生防机理以及病原真菌-生防放线菌-甜瓜植株互作机理的系统研究,为防治甜瓜蔓根真菌病害、克服甜瓜连作障碍提供高效生防放线菌菌株,并为后期生防放线菌活菌制剂的商品化生产和实际应用提供理论依据。论文主要研究结果如下:
     (1)连作甜瓜蔓根真菌病害发生的微生态机制
     连作甜瓜蔓根真菌病害发生时,发病植株及其根际病土中存在多种真菌,包括直接致病真菌、具有侵染性且产生有害毒素但不直接致病真菌以及试验条件下不致病真菌3种类型。从陕西省西安市阎良区连作甜瓜病株及其病土中共获得13株真菌分离物,经形态学和rDNA-ITS序列分析初步鉴定为4个属8个种,包括:甜瓜球腔菌(Didymellabryoniae)、木贼镰刀菌(Fusarium equiseti)、层出镰刀菌(Fusarium proliferatum)、腐皮镰刀菌(Fusarium solani)、葡萄座腔菌(Botryosphaeria dothidea)、细极链格孢菌(Alternaria alternata)、三线镰刀菌(Fusarium tricinctum)和厚垣镰孢菌(Fusariumchlamydosporum)。其中D. bryoniae为甜瓜蔓枯病专性致病菌,F. equiseti、F. proliferatum和F. solani对甜瓜离体根茎段具有侵染性。F. equiseti和F. proliferatum虽未表现出直接致病性,但可通过分泌毒素对甜瓜产生化感危害。其它真菌分离物在试验条件下不致病,但是否产生毒素尚不清楚。
     (2)生防放线菌筛选及盆栽防病促生效果
     放线菌A12、C28、C13和C27及其无菌发酵滤液对甜瓜球腔菌(D. bryoniae)具有良好的皿内抑制作用。放线菌A12和C28无菌发酵滤液喷施处理能明显降低盆栽甜瓜蔓枯病病害严重程度(DS)及AUDPC值;放线菌C13和C27固态发酵制剂拌土处理,对甜瓜蔓枯病亦表现出良好防效。供试放线菌能明显促进盆栽甜瓜植株生长,在甜瓜植株根区、根表的定殖数约为105~106cfu·g-1干土。放线菌A1、A11和A12能明显抑制木贼镰刀菌(F. equiseti)菌丝生长,其无菌发酵滤液能促进甜瓜胚轴、胚根生长,提高种子简明活力指数。三株放线菌在适宜接种量下与F. equiseti混接,甜瓜叶片叶绿素含量、PPO活性,根系质量、活力均高于未接种对照或者F. equiseti单接。
     (3)生防放线菌鉴定
     甜瓜蔓枯病生防放线菌A12、C28、C13和C27被依次鉴定为链霉菌属的密旋链霉菌(Streptomyces pactum)、球孢链霉菌球孢亚种(Streptomyces globisporus subsp.globisporus)、纤维黄链霉菌(Streptomyces celluloflavus)和黄三素链霉菌(Streptomycesflavotricini)。两株对F. equiseti具有良好拮抗性的放线菌A1和A11,被初步鉴定为加州链霉菌(Streptomyces californicus)和肉质链霉菌(Streptomyces carnosus)。
     (4)生防放线菌作用机理
     生防放线菌主要通过5种作用机制对以蔓根真菌病害为主的甜瓜连作障碍进行修复:通过抗菌活性物质抑制病原真菌生长;利用病原真菌菌体的诱导作用合成纤维素酶、几丁质酶及葡聚糖酶等胞外酶,通过酶溶作用破坏病原真菌菌丝体,抑制病原真菌生长;通过分泌植物激素类物质促进甜瓜植株生长,提高果实产量和品质,改善植株生理生化特性;通过提高植物保护性诱导酶活性诱导植株产生系统抗病性,增强植物抗病性及抗逆能力;通过根际土壤微生物区系修复调整植株根际土壤微生态平衡。
     生防放线菌A12、C28、C13和C27在温室条件下能促进甜瓜植株生长,增加果实产量,并能提高甜瓜果实可溶性蛋白、维生素C、可溶性糖和固形物等品质指标。放线菌A12和C28处理甜瓜叶片净光合速率提高,有利于光合产物累积。放线菌C13处理,甜瓜植株根系N、P、K含量增加,说明营养元素的吸收能力增强。
     生防菌剂C28和康照在大田条件下对甜瓜植株具有明显的促生作用。两种菌剂育苗接种、育苗移栽双重接种均能提高甜瓜诱导酶活性和可溶性蛋白含量,降低丙二醛含量。生防菌剂处理,甜瓜诱导抗病性增强,膜脂过氧化程度减弱,有利于植株形成抵御外界病害侵染的系统保护屏障。生防菌剂育苗接种、育苗移栽双重接种配施微量元素能促进甜瓜植株生长,对甜瓜抗病性和抗逆性影响不明显或具有负效应。
     生防放线菌A12、C28、C13和C27对温室甜瓜根区和根表土壤细菌、放线菌生长繁殖具有明显促进作用。放线菌A12、C28和C27处理,甜瓜植株根区土壤病原性真菌数量降低。甜瓜根域土壤微生物由“真菌型”向“细菌型”转变,说明生防放线菌具有调节和改良甜瓜根域土壤微生态、降低真菌病害发生风险的效应。
     (5)病原真菌-生防放线菌-甜瓜植株互作机理
     瓜类作物病原真菌菌体可诱导供试生防放线菌合成并分泌纤维素酶、几丁质酶及葡聚糖酶等胞外酶,进而溶解病原真菌菌体,即通过酶溶抑菌作用抑制病原真菌生长繁殖。层出镰刀菌(F. proliferatum)菌体作为唯一碳源,能够明显增强拮抗放线菌产纤维素酶活性。以木贼镰刀菌(F. equiseti)菌体为唯一碳源时,放线菌A12和C28的几丁质酶活性较高。
     具有侵染性的非致病真菌能够通过分泌毒素对甜瓜植株产生双重化感作用。木贼镰刀菌(F. equiseti)和层出镰刀菌(F. proliferatum)产生的毒素能明显抑制甜瓜种子萌发和胚轴、胚根生长,引起甜瓜幼苗根系丙二醛、可溶性蛋白含量及细胞膜相对透性增加。但两株镰刀菌毒素在一定稀释倍数下对甜瓜幼苗根系诱导酶活性具有提高作用,即能增强甜瓜植株系统抗病性。
Fungal diseases of the tendril and root of continuous cropping melon plants are themajor limiting factors of the development of melon protected cultivation and specializedplanting base. Finding effective disease control approaches is the first priority to solve theseproblems. The current measures for controlling melon fungal diseases at home and abroadmainly include chemical pesticides, grafting, resistant varieties screening and so on. Thesemeasures show little effect, while have their own shortcomings and drawbacks, such asenvironment pollution, pesticide residue, pathogens variation and drug resistance. With thedevelopment of green agriculture and organic fruit and vegetables, the new environment-friendly measures such as biocontrol methods attract widespread attention, and will be themain trend in current and future. The biocontrol idea ‘to prevent and cure fungal diseases byantagonistic microorganisms’ was a new way to solve these problems. Actinomycetes werewidely used in medicine for their inhibition effect on animal pathogens, human and livestockdiseases via antibiotics production. The agricultural antibiotics also played an important partin agricultural production, while the applications of live actinomycetes preparations on plantsfungal diseases control were somewhat slow, their action mechanisms and effects remainedunclear. There were still few researches about the biocontrol potential of live actinomycetespreparations on fungal diseases of melon tendril and root.
     In this paper, the author systematically studied the microecology mechnism of theoccurrence of melon fungal diseases, screening and identification of antagonisticactinomycetes, biocontrol and growth promotion effect of actinomycetes, biocontrolmechnism as well as the interaction mechnism among pathogenic fungi, biocontrolactinomycetes and melon plants. Biocontrol actinomycetes with high efficiency and stabilitywere obtained for controlling melon fungal diseases and overcoming melon continuouscropping obstacles. The related studies about biocontrol mechanisms provided solid scientific basis for the commercially production and practical application of the biocontrol preparationsin the near future. The main contributions of this research were summarized as follows:
     (1) Microecology mechnism of fungal diseases occurrence in tendril and root ofcontinuous cropping melon plants
     Various fungi were obtained from the infected melon plants and their rhizosphere soils,when the fungal diseases of tendril and root of continuous cropping melon plants occurred,which including direct pathogenic fungi, indirect pathogenic fungi but with infection andtoxin action, as well as indirect pathogenic fungi. From the infected melon plants and theirrhizosphere soils,13fungi isolates were collected and further attributed to4genus and8species, according to morphological characters and rDNA-ITS sequence analysis. Thesuperior fungi mainly included Didymella bryoniae, Fusarium equiseti, Fusariumproliferatum, Fusarium solani, Botryosphaeria dothidea, Alternaria alternata, Fusariumtricinctum and Fusarium chlamydosporum. Among which, D. bryoniae was the pathogencaused melon gummy stem blight, F. equiseti and F. proliferatum showed melon root andstem infection ability in vitro. Other fungi isolates had no pathogenicity to melon plants, theirtoxin production ability were unknown.
     (2) Disease biocontrol and growth promotion effect of antagonistic actinomycetes
     Actinomycetes A12, C28, C13, C27and their sterile culture filtrates showed favorableantagonistic effect against D. bryoniae in Petri dish. Sterile culture filtrates of actinomycetesA12and C28expressed significant reduction effect on the disease severity (DS) and AUDPCvalue of melon plants; solid-state fermentation preparations of actinomycetes C13and C27also showed obvious biocontrol effect on melon gummy stem blight. The four actinomycetesdisplayed definite growth promotion effect and substantial survival ability (105~106cfu·g-1dry soil) in the rhizosphere and on the rhizoplane of melon plants in pots. Actinomycetes A1,A11and A12showed evident mycelia inhibition effect on F. equiseti. The hypocotyl, radiclelength, and simple vigor index of melon seeds were all increased by their sterile culturefiltrates. Compared with the control or F. equiseti single inoculation, the chlorophyll contentsand PPO activity of melon leaves, root weights and activities were all improved, when F.equiseti were inoculated with the3antagonistic actinomycetes.
     (3) Identification of the biocontrol actinomycetes
     Actinomycetes A12, C28, C13and C27, with biocontrol effect on melon gummy stemblight, were subsequently identified as Streptomyces pactum, Streptomyces globisporus subsp.globisporus, Streptomyces celluloflavus and Streptomyces flavotricini. Actinomycetes A1andA11, with obvious antagonistic effect against F. equiseti, were identified as Streptomycescalifornicus and Streptomyces carnosus, respectively.
     (4) Biocontrol mechnisms of the actinomycetes
     The biocontrol actinomycetes showed good repair effect on the continuous croppingobstacle of melon plants from the following5action mechnisms: fungal mycelia growthinhibition effect via antimicrobial active substances; extracellular enzymes production andfungal mycelia degradation effect through these enzymes; growth and yield promotion, fruitquality improvement, as well as plant physiological and biochemical metabolism regulationby means of hormone-like substances; plant systematic disease resistance induction effect viaprotective enzymes improvement; rhizosphere soil microecosystem repair and regulation.
     Biocontrol actinomycetes A12, C28, C13and C27showed favorable growth and yieldpromotion effect on melon plants in greenhouse. Fruit quality such as soluble protein, vitaminC, soluble sugar and solids contents were improved in the presence of these actinomycetes.The net photosynthetic rate was also increased by A12and C28treatments, which waspropitious to the accumulation of photosynthetic product. The root absorption ability ofnutrient elements N, P, K was improved by actinomycete C13treatment.
     Two biocontrol preparations C28and Kangzhao showed obvious growth promotioneffect on melon plants in field. The induced enzymes activities and soluble protein contentsof melon plants were improved, and MDA contents were decreased by biocontrolpreparations treatments. With the enhanced disease resistance and decreased lipidperoxidation, melon plants have formed a protective barrier to resist disease attack. Themicroelements admixture of zine, manganese and titanium displayed significantly growthpromotion effect on melon plants, when biocontrol preparations C28and Kangzhao wereapplied. Application of microelements admixture with biocontrol preparations showed littledistinct variety even negative effect on the disease resistance of melon plants.
     There was an upward trend about the soil bacteria and actinomycetes amounts in therhizosphere and on the rhizoplane soil of melon plants after treated by biocontrolactinomycetes A12, C28, C13and C27. The pathogenic fungi quantities in the rhizospheresoil of melon plants were decreased by A12and C28treatments. Microorganisms in the rootdomain soil of melon plants were transited from “fungal-type” to “bacteria-type”, whichmeant the biocontrol actinomycetes displayed a positive effect on the regulation of soilmicroecosystem.
     (5) Interaction mechnism among pathogenic fungi, biocontrol actinomycetes and melonplants
     Mycelia preparation of the pathogenic fungi (MPPF) of cucurbit plants showedsynchronous induction effect on extracellular enzymes produced by antagonisitcactinomycetes, fungal mycelia degadation and inhibition were the combined action of these enzymes. The MPPF served as good carbon source to enhance cellulase activities, especiallythose from F. proliferatum. The MPPF from F. equiseti obviously improved chitinaseactivities of actinomycetes A12and C28.
     Indirect pathogenic fungi with infection ability showed double allelopathic effect onmelon plants via toxin production. F. equiseti and F. proliferatum showed obvious inhibitioneffect on seeds germination and the growth of melon plants. The MDA, soluble proteincontents and cell membrane permeability of melon roots were increased in the presence ofFusarium toxins. The induced protective enzymes of melon roots were improved whentreated by the toxins at stated dilutions, which strengthened the disease resistance of melonplants.
引文
安德荣.2002.生物制药的原理及方法——抗生素的制备.北京:中国科学文化出版社:266~295
    鲍士旦.1999.土壤农化分析,第三版.北京:中国农业出版社:76~78,265~267,270~271
    曹志强.2004.长白山经济动植物资源开发利用研究.人参研究.4:25~28
    柴宗华,杨江山,张海燕.2006.微量元素对甜瓜幼苗生理特性的影响.中国瓜菜,(5):9~11
    常宗堂,杜军志,司立征,袁万良,李省印.2010.甜瓜穴盘基质育苗新技术.陕西农业科学,(3):212~213
    陈刚,杨谦,刘志华,彭鹏.2010.病原菌细胞壁诱导下球毛壳菌葡聚糖酶活测定及抑菌试验.西南林学院学报,30(3):50~53,58
    陈怀谷,方正,陈厚德,林玲,王裕中.2005.小麦纹枯病菌核糖体基因内转录区序列比较.植物病理学报,35(1):24~29
    陈丽,安德荣,白萍.2004.拮抗放线菌S-930-6发酵液精提物对几种作物病害的防治效果.农药,43(3):120~122
    陈秦,薛泉宏,申光辉,段春梅,赵娟,王玲娜,薛磊,毛宁.2010.放线菌制剂对番茄PPO活性及生物量的影响.西北农林科技大学学报:自然科学版,38(3):184~187
    陈石,陈丽娜,周红玲,郑加协.2011.镰刀菌分泌的主要毒素研究进展.中国园艺文摘,(3):31~32,41
    陈卫国,赵保全,田斌,张国和.2010.优质抗病甜瓜甘科状元的选育.长江蔬菜,(12):12~15
    陈雪丽,王光华,金剑,吕宝林.2008.多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果.中国生态农业学报,16(2):446~450
    陈雪,赵克明.2011.土传病害生物防治微生物的研究进展.现代农业,(7):34~35
    陈秀蓉,魏永良,张建文.1990.甜瓜蔓枯病(Mycospharella melonis)抗病性鉴定方法及品种抗病性鉴定.甘肃农业大学学报,25(4):389~393
    陈幼源,陈绯翔.2002.不同南瓜砧木品种对网纹甜瓜生长发育的影响.上海农业学报,18(4):47~51
    陈幼源,陈绯翔.2006.厚皮甜瓜新品种“金辉一号”.园艺学报,33(4):931
    陈毓荃.2002.生物化学实验方法和技术.北京:科学出版社,102~105,166~168
    陈志谊,许志刚,陆凡,刘永锋.2001.拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报,14(2):44~48
    程丽娟,薛泉宏.2000.微生物学实验技术.西安:世界图书出版社:383~384
    程元荣,郑卫.2002.微生物生物活性物质的研究进展.中国抗生素杂志,27(10):632~633
    邓小雁,朱建兰.2006. Dh菌株胞外蛋白酶及几丁质酶的活性测定.西北农业学报,15(5):128~131,135
    董红强,刘峰,慕卫,朱天生.2008.黄瓜蔓枯病拮抗细菌的分离与筛选.西北农业学报,17(6):205~209
    董金皋,李树正.1997.植物病原菌毒素研究进展.北京:中国科学技术出版社:34~37
    段春梅,薛泉宏,赵娟,呼世斌,陈秦,王玲娜,申光辉,薛磊.2010.放线菌剂对黄瓜幼苗生长及叶片PPO活性的影响.西北农业学报,19(9):48~54
    方敦煌,王革,马永凯,孔光辉,李梅云,李天飞.2002.烟草赤星病菌拮抗微生物的筛选及其对病原的抑制作用.西南农业学报,15(2):59~61
    方敦煌,夏振远,邓建华.2006.球孢链霉菌AM6的液体发酵条件研究.西南农业大学学报:自然科学版,28(1):84~86
    方羽生,杨卫华,张洪玲,刘琼光,黄华林,赵军,卓侃,丘麒.2001.放线菌对4种病原真菌的拮抗作用初探.广东农业科学,(5):39~41
    方中达.1998.植病研究方法.北京:中国农业出版社:137~140
    冯文清,王旭,哈雪娇,陈宗光.2010.中微量元素对大兴区西瓜产量和品质的影响.现代农业科技,(1):119~120
    傅家瑞.1985.种子生理.北京:科学出版社:68
    冮洁,杜连祥,路福平,孙喜林,张淑艳.2004.基因工程菌里氏木霉染色体DNA的提取方法.生物技术,14(2):24~26
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版公司:57,203~204,138
    高克祥,刘晓光,郭润芳,高宝嘉,朱天博.2002.木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报:自然科学版,33(1):37~42
    顾振芳,王卫青,朱爱萍,朱晓敏,何欢乐,潘俊松,蔡润.2004.黄瓜对霜霉病的抗性与叶绿素含量、气孔密度的相关性.上海交通大学学报:农业科学版,22(4):381~384
    菅广宇,苏百童,邵秀丽,邢燕,王吉庆.2009.三种有益微生物混合发酵液对辣椒幼苗生长的影响.中国农学通报,25(11):141~144
    郭凤领,戴照义,汪红胜,王运强.2010.早熟优质甜瓜新品种鄂甜瓜6号的选育.长江蔬菜:学术版,24:9~11
    韩巨才,刘慧平,高计青,马利平,武辉民.1995.农抗120对西瓜枯萎病作用方式的研究.山西农业大学学报,15(2):122~125
    韩利真,李新凤,王建明.2011.几种罹病植物镰刀菌的分离鉴定.农业技术与装备,(3):48~51
    韩珊,朱天辉,李芳莲.2008.植物病原真菌毒素作用机理研究进展.四川林业科技,29(6):26~30
    郝华昆,韩俊华,李为民,牛天贵.2007.棉花黄、枯萎病拮抗菌株B110的鉴定及其抑菌作用方式.植物保护,33(2):77~80
    郝永娟,刘春艳,王勇,王万立,魏军.2007.设施蔬菜连作障碍的研究现状及综合调控.中国农学通报,23(8):396~398
    何延静,刘海明,胡洪波,许煜泉,张雪洪.2006.一株拮抗辣椒疫霉的假单胞菌的分离与鉴定.微生物学报,46(4):516~521
    何迎春,高必达.2000.立枯丝核菌的生物防治.中国生物防治,16(1):31~34
    何月秋.2000.真菌菌丝培养和提取DNA方法的改进.菌物系统,19(3):434
    洪亮.2007.红树林环境稀有放线菌的分离、初步鉴定及活性评价.[硕士学位论文].广州:华南热带农业大学
    胡繁荣.2005.设施蔬菜连作障碍原因与调控措施探讨.金华职业技术学院学报,5(2):18~22
    胡凤云,莫贱友,韦继光,郭堂勋,黄穗萍.2011.西瓜甜瓜蔓枯病防治研究进展.中国瓜菜,24(6):40~44
    胡燕梅,杨龙.2006.利用微生物防治植物病害的研究进展.中国生物防治.22(增刊):190~193
    胡元森,吴坤,刘娜,陈红歌,贾新成.2004.黄瓜不同生育期根际微生物区系变化研究.中国农业科学,37(10):1521~1526
    胡志宏,黄晶心,杜书佳,王慧杰,肖明.2010.盐胁迫下丛枝菌根对植物幼苗生长和营养元素吸收的影响.上海师范大学学报:自然科学版,39(3):309~314
    黄立华,梁正伟,马红媛.2009.苏打盐碱胁迫下羊草光合速率日变化及其与影响因子的关系.农业环境科学学报,28(8):1645~1650
    黄艳青,庄敬华,高增贵,徐韶,陈捷.2005.木霉菌诱导甜瓜抗枯萎病相关防御反应酶系的研究.沈阳农业大学学报,36(5):546~549
    纪兆林,陈景鹏,徐敬友,陈夕军,张清霞,童蕴慧.2011.小麦纹枯病菌毒素对小麦植株的作用.扬州大学学报:农业与生命科学版,32(3):55~59
    贾凤安,陈亮,陈立,陈五岭.2010.大棚甜瓜三种主要真菌病害拮抗细菌的筛选与鉴定.植物保护学报,37(6):505~510
    贾菊生.1993.新疆哈密瓜蔓枯病及防治研究.植物病理学报,23(l):85~89
    姜钰,董怀玉,徐秀德,刘志恒,樊慧梅.2005.放线菌在植病生防中的研究进展.杂粮作物,25(5):329~331
    解放.2010.蔬菜苗期的防治措施.农村实用技术,(9):37
    靳振江,黄河,何曙光.2007.链霉菌FB1的发酵产物对5种豆科植物种子萌发的影响.大豆科学,26(3):443~446
    柯文辉.2009.烟草连作障碍的根际微生态研究.[硕士学位论文].福州:福建农林大学
    孔德英,肖崇刚.2005.氨基寡糖素对番茄青枯病防治作用.西南农业大学学报:自然科学版,27(3):327~330
    李安民.2009.保护地蔬菜土传病害的发生与防治.现代农村科技,(12):29
    李赤,黎永坚,于莉,黄秉智.2010.香蕉枯萎病菌毒素的成分分析及其生物测定.果树学报,27(6):969~974
    李德全,陈志谊,聂亚锋.2008.生防菌Bs-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究.植物病理学报,38(2):192~198
    李德舜,苏忠锐,袁志刚,张长铠,郭新平,马井玉,张洪领.2004.山东链霉菌产抗真菌物质的理化性质的初步研究.山东大学学报:理学版,39(6):121~124
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社:119~120,164~165,213~214,260~261,261~263
    李华荣,刘灼均.1992.康氏木霉对立枯丝核菌7个融合群及3个亚群拮抗作用的研究.西南农业大学学报,14(4):283~285
    李晶,杨谦.2008.生防枯草芽孢杆菌的研究进展.安徽农业科学,36(1):106~111,132
    李乐.2006.放线菌株YB024对小麦全蚀病生物防治机制研究.[硕士学位论文].郑州:河南农业大学
    李连胜.2008.大棚蔬菜连作病害的防治.农业知识:瓜果菜,(8):26
    李明月,常敏,张庆华,何仁发,叶波平.2010.木榄内生真菌菌株ZD6及其代谢产物的抑菌活性.菌物学报,29(5):739~745
    李琼芳.2006.不同连作年限麦冬根际微生物区系动态研究.土壤通报,37(3):563~567
    李省印,麦晓丽,张会梅,张勇,杜军志,张显.2011.甜瓜几种主要病害的杀菌剂防治效果比较研究.北方园艺,(12):127~129
    李伟,纪燕玲,于汉寿,莫凌霄,李飞凤,王志伟.2006.中国产禾本科植物内生真菌的遗传多样性及rDNA-ITS系统发育分析.菌物学报,25(2):217~226
    李伟,张爱香,江蛟,羊杏平,陈怀古.2008.甜瓜蔓枯病病原鉴定及其生物学特性,24(2):148~152
    李伟,许维岸,李照会.2001.蜡蚧轮枝菌(Verticillium lecanii)的致病机理及其生防应用研究新进展.山东农业大学学报:自然科学版,32(4):561~565
    李骁,王迎春.2006.土壤微生物多样性与植物多样性.内蒙古大学学报:自然科学版,37(6):708~713
    李旭辉.1997.黄瓜施用微量元素肥料效应的研究.陕西农业科学,(1):8~9
    李英.2007.瓜类蔓枯病菌的生物学特性和黄瓜抗病资源的筛选.[硕士学位论文].南京农业大学
    李毅,王国平,张克诚.2005.拮抗放线菌LJ50和MJ52的分离与初步鉴定.湖南农业大学学报:自然科学版,31(3):310~313
    李艳梅,李小六,陈超,李慧云.2007.大花蕙兰根腐病病原菌的分离与鉴定.河南农业大学学报,41(1):85~89
    李增波,薛泉宏,梁军峰,石国亮,李文斌.2009.一株生防放线菌AL-04的防病促生作用.农药,48(1):74~76
    连宾,王进军,陆玲.2007.植物与微生物的化感作用.南京师大学报:自然科学版,30(1):88~95
    梁建根.2005.黄瓜根围病原菌与拮抗菌的生态学及PGPR诱导抗性机制的研究.[博士学位论文].杭州:浙江大学
    梁建根,张炳欣,陈振宇,喻景权.2006.促生菌CH1诱导黄瓜对猝倒病抗性的研究.33(2):283~288
    梁军锋,薛泉宏,牛晓磊,李增波.2005.7株放线菌在辣椒根部定殖及对辣椒叶片的PAL与PPO活性的影响.西北植物学报,25(10):2118~2123
    梁亚萍,宗兆锋,马强.2007.6株野生植物内生放线菌防病促生作用的初步研究.西北农林科技大学学报:自然科学版,35(7):131~136
    梁银丽,陈志杰,徐福利,张成娥,杜社妮,严勇敢.2004.黄土高原设施农业中的土壤连作障碍.水土保持学报,18(4):134~136
    林福呈,李德葆.2003.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,33(2):174~177
    刘焕利,王金生,张学君,吴健胜.1995.枯草芽孢杆菌B3抗植物病原真菌蛋白的纯化及其性质的研究.农业生物技术学报,3(3):35~38
    刘会清,张爱香,马海莲,李世东,郭荣君,孙漫红.2011.生防菌剂与生物有机肥复配对黄瓜抗病促生效果的研究.北方园艺,(05):1~4
    刘建国,李俊华,张煌新,董志新,朱新在,张继生.2003.大豆群体冠层结构及光合特性的研究.石河子大学学报:自然科学版,7(3):189~190
    刘建新.2004.锌对玉米幼苗生长和细胞保护酶活性的影响.甘肃科学学报,16(4):42~45
    刘力强,张维宏,刘占良,李亚宁,杨文香,刘大群.2005.链霉菌几丁质酶基因分子检测、克隆及原核表达.植物病理学报,35(6):141~142
    柳良好,徐同.2003.哈茨木霉几丁质酶诱导及其对水稻纹枯病菌的拮抗作用.植物病理学报,33(4):359~363
    刘梅,卢志军,王文君,郑建秋,黄俊生,吴学宏.2010.甘蓝种传尖孢镰刀菌粗毒素的研究.中国农业大学学报,15(3):63~69
    刘小刚,张富仓,杨启良,李志军.2009.调亏灌溉和施氮对玉米叶片保护系统的影响.17(6):1080~1085
    刘欣红.2008.设施蔬菜土传病害的成因及防治技术.河北农业科技,(8):19
    刘训理,王超,吴凡,薛东红,陈凯.2006.烟草根际微生物研究.生态学报,26(2):552~557
    刘宇,刘建华,刘伟成,裘季燕,刘德文,段玉玺.2007.利迪链霉菌A02诱导番茄抗灰霉病作用机理研究——对植株两种PR蛋白和总酚的影响.河北农业大学学报,30(2):27~30
    卢维宏,黄思良,陶爱丽,武爱波,王春梅,黎起秦.2011.玉米穗腐病样品中层出镰刀菌的分离与鉴定.植物保护学报,38(3):233~239
    吕延超,蒲金基,谢艺贤,刘佳,李玲,肖星.2010.杧果畸形病病原菌的生物学特性的初步研究.热带作物学报,31(3):453~456
    马国斌,林德佩,王叶筠,郭庆元.2000.西瓜枯萎病菌镰刀菌酸对西瓜苗作用机制的初步探讨.植物病理学报,30(4):373~374
    马艳,常志州,赵江涛,黄红英,叶小梅,张建英.2006.一株疫病拮抗青霉P. st10菌株的抗菌活性及其对辣椒疫病的盆栽防效.中国生物防治,22(3):239~243
    马云华,魏珉,王秀峰.2004.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,15(6):1005~1008
    毛宁,薛泉宏,唐明.2010.两株放线菌对土壤中苯甲酸和对羟基苯甲酸的降解作用.西北农林科技大学学报:自然科学版,38(5):143~148
    苗则彦,赵奎华,刘长远,梁春浩,王辉,吕国忠.2009.内生细菌B504的鉴定及对黄瓜枯萎病的生防作用.植物保护,35(6):73~77
    潘荣光,刘明霞.2008.黄瓜枯萎病菌的拮抗放线菌筛选.沈阳农业大学学报,39(4):492~494
    潘瑞炽.1995.植物生理学.第三版.北京:高等教育出版社:67~69
    乔宏萍,宗兆锋.2002.用重寄生菌防治植物病害.中国生物防治,18(4):176~179
    乔宏萍,宗兆锋.2004.重寄生放线菌F46和PR对灰葡萄孢的抑制作用.西北农林科技大学学报:自然科学版,32(11):23~26
    秦国政,田世平,刘海波,徐勇.2003.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导.中国农业科学,36(1):89~93
    任海英,陈志谊,许志刚,陆金元,徐永昌.2003.常熟地区蚕豆枯萎病病原菌鉴定及其致病力初探.植物保护,29(4):30~32
    任海英,方丽,茹水江,王汉荣.2009.抗蔓枯病甜瓜突变体edr2抗病现象的初步研究.中国农业科学,42(9):3131~3138
    阮继生.1977.放线菌分类基础.北京:科学出版社:77~104
    商闯,贾银锁,马春红,董文琦,李运朝,崔四平,侯立白.2008. HMC毒素培养滤液对专化寄主玉米叶片诱导抗病性及相关酶的影响.中国农业科学,41(12):4307~4313
    邵红涛,许艳丽.2006.木霉菌(胞外水解酶)拮抗大豆根腐病病原菌的机制研究.大豆科学,25(4):429~433
    沈寅初.1996.井冈霉素研究开发25年.植物保护,22(4):44~45
    盛下放,何琳燕,陈珏.2003.土壤芽孢杆菌NBT菌株理化诱变筛选及其对作物生长的影响.中国农业科学,36(4):415~419
    石一珺,申屠旭萍,俞晓平.2008.重寄生菌哈茨木霉的研究及其在植病生防中的应用.生物技术通报,(S1):76~78,89.
    疏秀林,安德荣,张勤福,马驰.2004.土壤拮抗放线菌S-5210-6的筛选及其初步分类鉴定.西北农林科技大学:自然科学版,32(12):57~60
    苏培玺,张立新,杜明武,毕玉蓉,赵爱芬,刘新民.2003.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应.植物生态学报,27(1):34~40
    孙敬祖,薛泉宏,唐明,曹书苗,邢胜利.2009.放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用.西北农林科技大学学报:自然科学版,37(12):153~158
    孙玉宏,葛米红,曾红霞,王宏太,洪娟,黄翔,张利红,郭东方.2010.武汉地区保护地西瓜枯萎病发病规律初探.长江蔬菜,(8):91~92
    台莲梅,许艳丽,高凤昌.2004.尖孢镰刀菌毒素的初步研究.黑龙江八一农垦大学学报,16(4):9~12
    唐丽娟,纪兆林,徐敬友,陈夕军,童蕴慧.2005.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质.中国生物防治,21(3):203~205
    田世平, Harman G.2008.生物拮抗菌Trichoderma harzianum处理玉米种子诱导实生苗的抗病性分析.植物病理学报,38(6):626~634
    田雪亮,刘鸣韬,杨家荣.2008.黄瓜枯萎菌粗毒素对不同抗性黄瓜种子萌发及幼苗胁迫作用研究.中国生态农业学报,16(6):1495~1498
    万明国.2008.源于水稻的链霉菌菌株F-1的鉴定及其防病潜力和防病机制研究.[硕士学位论文].武汉:华中农业大学
    王晶晶,蒋士君,常淑娴,王拥军,申顺善.2011.两株生防菌对烟草黑胫病的抑菌活性及其鉴定.中国烟草学报,17(6):89~93
    王俊丽,聂国兴,曹香林,张建新,张朋飞.2010.不同DNS试剂测定木糖含量的研究.食品研究与开发,31(7):1~3
    王兰英,徐林波.2008.生防链霉菌NH14菌株对黄瓜的促生作用研究.农业科技通讯,(7):36~38
    王美玲.2007.拮抗细菌控制小麦白粉病技术研究.[硕士学位论文].沈阳:沈阳农业大学
    王美英.2007.西葫芦白粉病生防放线菌筛选及其防治研究.[硕士学位论文].西安:西北农林科技大学
    王守正,王海燕,李洪连,于思勤,吴营昌,袁红霞.2001.瓜类植物诱导抗病性研究.河南农业科学,(10):28~30
    王学翠,童晓茹,温学森,杨德奎.2007.植物与根际微生物关系的研究进展.山东科学,20(6):40~44,50
    汪滢,王国平,王丽薇,徐旭辉,夏静,黄雪芳,吴友贵,章初龙.2010.一株多花黄精内生真菌的鉴别及其抗菌代谢产物,50(8):1036~1043
    魏刚,薛陕,周瑜,宗志友,陶黎明.2010.海洋放线菌JWH-09代谢产物中农用抗菌组分的分离纯化及结构鉴定.农药,49(12):868~870
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社:609~615
    吴海云,高增贵,赵世波,庄敬华,刘限.2007.防治甜瓜枯萎病木霉菌REMI变异株筛选.中国植保导刊,27(7):5~7
    吴宇芬,陈阳,赵依杰.2006.南瓜砧木对薄皮甜瓜生长发育、产量及品质的影响.福建农业科学,21(4):354~359
    夏秋瑜.2006.几丁质酶高产菌株的筛选及酶法制备几丁寡糖的研究.[硕士学位论文].广州:华南热带农业大学
    徐丽华,李文均,刘志恒,姜成林.2007.放线菌系统学—原理、方法及实践.北京:科学出版社:40~45
    徐韶,庄敬华,高增贵,黄艳青,朱有勇,陈捷.2005.内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性.中国生物防治,21(4):254~259
    徐同,柳良好.2002.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报,32(2):97~102
    徐晓梅,杨署光.2009.苯丙氨酸解氨酶研究进展.安徽农业科学,37(31):15115~15119
    许英俊,薛泉宏,邢胜利,周永强,张晓鹿,郭志英,杨斌,林超峰,孙敬祖.2008.3株放线菌对草莓的促生作用及对PPO活性的影响.西北农业学报,17(1):129~136
    薛磊,薛泉宏,卢建军,申光辉,赵娟.2012.棉棉花黄萎病原真菌菌体对链霉菌4种胞外水解酶活性的影响.植物病理学报,42(1):73~83
    薛泉宏,同延安.2008.土壤生物退化及其修复技术研究进展.中国农业科技导报,10(4):28~35
    杨建霞,范小峰,刘建新.2005.温室黄瓜连作对根际微生物区系的影响.浙江农业科学,(6):441~443
    杨宇,吴元华,郑亚楠.2006.瓜类枯萎病拮抗放线菌的筛选.北方园艺,(4):177~179
    杨艳红,陈玉惠.2004.植物病原菌重寄生菌作用机理的研究进展.西南林学院学报,24(2):70~75
    叶琪明,王拱辰.1995.浙江马铃薯干腐病病原研究初报.植物病理学报,25(2):148~150
    叶漪,范静华,孟艳妮,果志华,陈建斌.2008.稻瘟菌粗毒素诱导水稻过程中CAT, PPO活性和MDA含量的变化.云南农业大学学报.23(6):775~780
    易海艳,查向浩,马刘峰.2011.镰刀菌酸及其枯萎病菌培养液对棉花的毒性.安徽农业科学,39(12):7038~7039,7042
    尹莘耘.1984.我国利用抗生素防治农作物病害的进展.见:农牧渔业部植物保护总站.中国生物防治的进展.北京:农业出版社:424~437
    游长芬.1986.土壤微生物中的放线菌.土壤学进展,(3):1~5
    于凤玲.2006.克服设施蔬菜连作障碍几种有效方法.中国蔬菜,11:51~52
    喻敏,余均沃,曹培根,梁火娣,潇洪东,王蕴波,崔志新.2004.百合连作土壤养分及物理性状分析.土壤通报,35(3):377~379
    于蘋蘋,艾山江·阿不都拉,赵国玉,卡米力·克热木,吾甫尔·米吉提.2008.水浮莲中一株西瓜枯萎病拮抗菌的分离、筛选及鉴定.微生物学通报,35(8):1235~1239
    郁雪平,朱伟杰,高观朋,王伟.2009.生防木霉菌Th2和T4对甜瓜根围土壤微生态的影响.植物保护学报.36(6):522~528
    余永廷,谢媛媛,黄丽丽,康振生.2007.不同碳、氮源组合对小麦全蚀病菌产生胞外β-1,3-葡聚糖酶的影响.西北农林科技大学学报:自然科学版,35(2):110~114
    曾任森,骆世明,施月红.2004.日本曲霉产生的黑麦酮酸F对玉米的化感作用.应用生态学报,15(1):145~148
    翟洪榕.2009.保护地黄瓜病虫害综合防治技术.现代农村科技,(12):22
    张爱慧.2004.氮钾营养对甜瓜生理效应及品质的影响.金陵科技学院学报,20(1):55~58
    张安平.2007.厚皮甜瓜蔓枯病的发生及防治.西北园艺,(6):11
    张炳欣,张平,陈晓斌.2000.影响引入微生物根部定殖的因素.应用生态学报,11(6):951~953
    张辰露,孙群,叶青.2005.连作对丹参生长的障碍效应.西北植物学报,25(5):1029~1034
    张利平,陈冠平.1997.放线菌化学分类学的现状及发展趋势.微生物学报.24(5):310~312
    张璐,丁延芹,杜秉海,魏珉,王秀峰.2010.黄瓜枯萎病病原菌拮抗细菌DS-1菌株鉴定及其生防效果研究.园艺学报,37(4):575~580
    张晓燕,刘鹏,徐根娣,朱佳,徐冬青,何文彬.2006.锰对荞麦根系形态及生理的影响.浙江农业科学,(4):419~421
    张昕.2005.植物病原拮抗细菌的发酵条件作用机制及定殖规律的研究.[博士学位论文].杭州:浙江大学
    张先成,张云湖,赵晓宇,李晶.2009.枯草芽孢杆菌B29菌株对黄瓜植株的诱导抗性.武夷科学,25:24~29.
    张新春,刘菲菲,蒋盛军,罗长辉.2010.生防菌绿色木霉对几种枯萎病菌的抑制作用.中国瓜菜,(1):11~13
    张宇.甜瓜中间砧对嫁接黄瓜生长和果实品质的影响.[硕士学位论文].泰安:山东农业大学
    张玉勋,李光,张光明.2000.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果.植物病理学报,30(1):91
    赵国其,林福呈,陈卫良,童晓华,陈灵敏.1998.绿色木霉对西瓜枯萎病苗期的控制作用.浙江农业学报,10(4):206~209
    赵蕾,汪天虹.1999.几丁质、壳聚糖在植物保护中的研究与应用进展.植物保护,(1):43~44
    赵晓锋.2010.油松菌根根际放线菌协同外生菌根真菌抗油松猝倒病的研究.[硕士学位论文].西安:西北农林科技大学
    郑秀丽,郑爱萍,宋永燕,周华强,谭芙蓉,李平.2006.抑制真菌病害几丁质酶产生菌的筛选、鉴定.西南农业学报,19(3):423~427
    中国科学院微生物研究所放线菌分类组.1975.链霉菌鉴定手册.北京:科学出版社:13~15
    周艳红,丁衬衬,史建荣.2010.转基因作物对土壤微生物多样性影响研究技术的进展.江苏农业科学,(4)362~365
    周永强,薛泉宏,杨斌,张晓鹿,许英俊,郭志英,林超峰.2008.生防放线菌对西瓜根域微生态的调整效应.西北农林科技大学学报:自然科学版,36(4):143~150
    周永强.2008.西瓜枯萎病生防放线菌筛选及其防病促生作用研究.[硕士学位论文].西安:西北农林科技大学
    朱诚,傅亚萍,孙宗修.2002.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系.中国水稻科学,16(4):326~330
    朱海霞,马永强,卢蒙,唐彩乐,宗兆锋.2009.不同生防放线菌组合防治枯、黄萎病研究.西北农林科技大学学报:自然科学版,37(7):152~156
    朱春林.2011.不同栽培措施对露地种植甜瓜蔓枯病的影响.北方园艺,(21):123~124
    祝新德,冯镇泰,许煜泉,张霞.2001.荧光假单胞菌株M18防治甜瓜蔓枯病害.上海交通大学学报,35(7):1062~1065
    庄敬华,高增贵,刘限,陈捷,杨宇.2004.营养元素对木霉菌防治甜瓜枯萎病效果的影响.植物保护学报,31(4):359~364
    庄敬华,高增贵,杨长城,陈捷,薛彩云,牟连晓.2005.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响.植物病理学报.35(2):179~183
    邹德勋,徐凤花,潘俊波,徐诚蛟,夏清梅.2007.抗生菌剂在缓解大豆重迎茬根际微生态障碍中的作用.大豆科学,26(2):280~283
    Adams PB.1990. The potential of mycoparasites for biological control of plant diseases. Annual Review ofPhytopathology,28:59~72
    Alstrom S, Burns RG.1989. Cyanide production by rhizobacteria as a possible mechanism of plant growthinhibition. Biology and Fertility of Soils,7(3):232~238
    Altoma RE, Norvell WA, Bjorkm A.1999. Combining effective strains of Trichoderma harzianum andsolid matrix priming to improve biological seed treatments. Applied and Environmental Microbiology,65(7):2926-2933
    Amand PCS, Wehner TC.2011. Generation means analysis of leaf and stem resistance to gummy stemblight in cucumber. Journal of the American Society for Horticultural Science,126(1):95~99
    Arima K, Kakinuma A, Tamura G.1968. Surfactin, A crystalline peptidelipid surfactant produced byBacillus stubilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemicaland biophysical research communications,31:488~494
    Astrom B, Gustafsson A, Gerhardson B.1993. Characteristics of a plant deleterious rhizosphere Pseudo-monad and its inhibitory metabolite(s). Journal of Applied Bacteriology,74:20~28
    Avdiushko SA, Ye XS, Kuc J.1993. Detection of several enzymatic activities in leaf prints of cucumberplants. Physiological and Molecular Plant Pathology,42(6):441~454
    Baharlouei A, Sharifi-Sirchi G R, Shahidi BGH.2010. Identification of an antifungal chitinase from apotential biocontrol agent, Streptomyces plicatus strain101, and its new antagonistic spectrum ofactivity. The Philippine Agricultural Scientist,93(4):439~445
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, QuailMA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, FraserA, Goble A, HidalgoJ, Hornsby T.2002. Complete genome sequence of the model actinomyceteStreptomyces coelicolor A3(2). Nature,417:141~147
    Bertin C, Yang XH, Weston LA.2003. The role of root exudates and allelochemicals in the rhizosphere.Plant and Soil,256(1):67~83
    Bhuyan BK.1962. Pactamycin production by Streptomyces pactum. Applied Microbiology,10(4),302~304
    Bielecki S, Galas E.1991. Microbial β-glucanases different from cellulases. Critical Reviews inBiotechnology,10(4):275~304
    Bockle B, Galunsky B, and Muller R.1995. Characterization of a keratinolytic serine proteinase fromStreptomyces pactum DSM-40530. Applied and Environmental Microbiology,61(10),3705~3710
    Brown, HL, Bruce, A.1999. Assessment of the biocontrol potential of a Trichoderma viride isolate: Part I:Establishment of field and fungal cellar trials. International Biodeterioration and Biodergradation,44(4):219~223
    Budi SW, van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S.2000.Hydrolytic enzyme activity of Paenibacillus sp. strain b2and effects of the antagonistic bacterium oncell integrity of two soil-borne pathogenic fungi. Applied Soil Ecology,15(2):191~199
    Chun J, Lee JH, Jung Y, Kim M., Kim S, Kim BK, Lim YW.2007. EzTaxon: a web-based tool for theidentification of prokaryotes based on16S ribosomal RNA gene sequences. International Journal ofSystematic and Evolutionary Microbiology.57,2259~2261
    Clermont N, Legault G, Lerat S, Beaulieu C.2010. Effect of biopolymers on geldanamycin production andbiocontrol ability of Streptomyces melanosporofaciens strain EF-76. Canadian Journal of PlantPathology,32(4):481~489
    Deacon, JW1991. Significance of ecology in the development of biocontrol agents against soil-borne plantpathogens, Biocontrol Science and Technology,1(1):5~20
    Dik AJ, Koning G, and Kohl J.1999. Evaluation of microbial antagonists for biological control of Botrytiscinerea stem infection in cucumber and tomato. European Journal of Plant Pathology,105(2):115~122
    Easa SMH, Youssef KA.2011. Antagonistic activities of some rhizosphere microorganisms againstFusaruim oxysporum. Egyptian Journal of Biological Pest Control,21(1):51~59
    Edwards S G, Seddon B.2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea invitro. Journal of Applied Microbiology,91(4):652~659.
    EI-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K.1997. Plant growth promotion andbiological control of Pythium aphanidermatum, a pathogen of cucumber, by endophyticactinomycetes. Journal of Applied Microbiology,106(1):13~26
    Fan TWM, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM.2001. Comprehensive chemicalprofiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry,57(2):209~221
    Freeman S, Zveibil A, Vintal H, Maymon M.2002. Isolation of nonpathogenic mutants of Fusariumoxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology,92(2):164~168
    Gomes RC, Semedo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR.2000. Chitinolyticactinomycetes from a Brazilian tropical soil active against phytopathogenic fungi. World Journal ofMicrobiology and Biotechnology,16(1):109~110
    Gray EJ, Smith DL.2005. Intracellular and extracellular PGPR: commensalities and distinctions in theplant-bacterium signaling processes. Soil Biology and Biochemistry,37(3):395~412
    Harman GE, Taylor AG, Stasz TE.1989. Combining effective strains of Trichoderma harzianum and solidmatrix priming to improve biological seed treatments. Applied and Environmental Microbiology,73(8):631~637
    Horikoshi K, Shigeji I.1959. Effect of lytic enzyme from Bacillus circulars and chitinase fromStreptomyces sp. on Aspergillus oryzae. Nature,183:186~187
    Igarashi Y, Iida T, Yoshida R, Furumai T.2002. Pteridic acids A and B, novel plant growth promoters withauxin-like activity from Streptomyces hygroscopicus TP-A0451. Journal of Antibiotics,55(8):764~767
    Johnson FH, Campbell DH.1945. The retardation of protein denaturation by hydrostatic pressure. Journalof Cellular Physiology,26(1):43~46
    Kelly KL. Inter-society color council-national bureau of standards color-name charts illustrated withcentroid colors. Washington DC, US: US Government Printing Office,1964
    Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J.1994. Induction ofsystemic acquired resistance in plant by chemicals. Annual Review of Phytopathology,32:439~459
    Kortemaa H, Pennanen T, Smolander A, Haahtela K.1997. Distribution of Antagonistic Streptomycesgriseoviridis in Rhtzosphere and Nonrhizosphere Sand. Journal of Phytopathology,145(4):137~143
    Kowalchuk GA, Os GJ, Aartrijk J, Veen JA.2003. Microbial community responses to disease managementsoil treatment used in flower bulb cultivation. Biology and Fertility of Soil,37:55~63
    Lewis JA, Dark sdale TH, Papavizas GC.1990. Greenhouse and field studies on the biological control oftomato fruit rot caused by Rhizoctonia solani. Crop Protection,9(1):8~14
    Lloyd AB, Noveroske RL, Lockwood JL.1965. Lysis of fungal mycelium by Streptomyces spp.and theirchitinase systems. Phytopathology,55(8):871~875
    Maget D R, Peypoux F, Iturins.1994. A special class of pore-forming lipopeptides: biological andphysicochemical properties. Toxicology,87:151~174
    Mahadevan B, Crawford DL.1997. Properties of the chitinase of the antifungal biocontrol agentStreptomyces lydicus WYEC-108. Enyme Microbial Technology,20:489~493
    Marilizele R, Paul RM.2005. Streptomyces pharetrae sp. nov., isolated from soil from the semiarid Karooregion. Systematic and Applied Microbiology,28(6):488~493
    Mateo JJ, Mateo R, Hinojo MJ, Llorens A, Jiménez M.2002. Liquid chromatographic determination oftoxigenic secondary metabolites produced by Fusarium strains. Journal of Chromatography A,955(2):245~256
    Mishra SK, Taft WH, Putnam AR, Ries SK.1987. Plant growth regulatory metabolites from novelactinomycetes. Journal of Plant Growth Regulation,6(2):75~83
    Morooka N, Uratsuji N, Yoshizaiva T, Yamamoto H.1972. Studies on the toxic substances in barleyinfected with Fusarium spp. Journal of the food hygienic society of Japan,13:368~375
    Mukherjee AK, Mohapatra NK, Rao AVS, Nayak P.2005. The effect of nitrogen fertilization on theexpression of slow-blasting resistance in rice of slow-mildewing knox wheat. Journal of AgriculturalScience,143:385~393
    Nga NTT, Giau NT, Long NT, Lubeck M, Shetty NP, de Neergaard E, Thuy TTT, Kim PV, Jorgensen HJL.2010. Rhizobacterially induced protection of watermelon against Didymella bryoniae. Journal ofApplied Microbiology,109(2):567~582
    Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW.2011. Biological control of anthracnose(Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of AppliedMicroiology,111(2):443~455
    Park CN, Lee JM, Lee D, Kim BS.2008. Antifungal activity of valinomycin, a peptide antibiotic producedby Streptomyces sp. strain M10antagonistic to Botrytis cinerea. Journal of Microbiology andBiotechnology,18(5):880~884
    Pongrawee N, Neelawan P, Saisamorn L.2010. Endophytic actinomycetes isolated from Aquilaria crassnaPierre ex Lec and screening of plant growth promoters production. World Journal of MicrobiologyBiotechnology,26(2):193~203
    Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP.2002. Effect of soil and seed application ofTrichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. CropProtection,21(4):293~297
    Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernandez-Ortuno D, Tores JA, and Perez-Garcia A.2007. Evaluation of biological control agents for managing cucurbit powdery mildew ongreenhouse-grown melon. Plant Pathology,56(6):976~986
    Samac DA, Willert AM, McBride MJ, Kinkel LL.2003. Effect of antibiotic-producing Streptomyces onnodulation and leaf spot in alfalfa. Applied Soil Ecology,22(1):55~56
    Schneider S, Ullrich W.1994. Differential induction of resistance and enhanced enzyme activities incucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiologicaland Molecular Plant Pathology,45(4):291-304
    Seok KK and Seu YB.2004. Isolation of polyene antifungal antibiotics against gummy stem light causedby Didymella bryoniae. Korean Journal of Microbiology and Biotechnology,32(3):238~242
    Shirling EB, Gottlieb D.1966. Methods for characterization of Streptomyces species. International Journalof Systematic Bacteriology,16:313-340
    Shoda M.2000. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering,89(6):515~521
    Stein T.2005. Bacillus subtilis antibiotics: structures, syntheses andspecific functions. MolecularMicrobiology,56(4):845~857
    Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J.1999. Structural and functional organization of the fengycin synthetase multienzyme system fromBacillus subtilis B213and A1/3. Chemistry and Biology,6:31~41
    Strobel GA.2003. Endophytes as sources of bioactive products. Microbes and Infection,5(6):535~541
    Suarez EF, Vargas GC, Lopez MJ, Capel C, Moreno J.2007. Antagonistic activity of bacteria and fungifrom horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Protection,26(1):46~53
    Sudisha J, Niranjana SR, Umesha S, Prakash HS, Shetty HS.2006. Transmission of seed-borne infectionof muskmelon by Didymella bryoniae and effect of seed treatments on disease incidence and fruityield. Biological Control,37(2),196~205
    Tu JC.1986. Hyperparasitism of Streptomyces albus on a destructive mycoparasite Nectria inventa.Journal of Phytopathology,117(1):71~76
    Turhan G.1990. Further hyperparasites of Rhizoctonia solani Kuehn as promising candidates forbiological control. Journal of Plant Disease and Protection.97(2):208~215.
    Utkhede RK and Koch CA.2004. Evaluation of biological and chemical treatments for control of gummystem blight on cucumber plants grown hydroponically in greenhouses. Biocontrol.49(1):109~117
    Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinki R, Beaulieu C.1996. Glucanolyticactinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot.Applied and Environmental Microbiology,62(5):1630~1635
    Vanittanakom N, Loeffler W, Koch U, Jung G.1986. Fengycin: a novel antifungal lipopeptide antibioticproduced by Bacillus subtilis F29-3. Journal of Antibiotics,39(7):888~901
    Veronesi, AR, Finestrelli A, Cesari A.2004. Possible induction of systemic resistance in melon againstDidymella bryoniae by seed and soil treatments with Trichoderma longibrachiatum. MicologiaItaliana,33:10~24
    Wehner TC, Shetty NV.2000. Screening the cucumber germp1asm collection for resistance to gummystem blight in North Carolina field tests. HortScience.35(6):1132~1140
    Weinding R.1932. Trichodema lignorum as a parasite of other soil fungi. Phytopathology,22:837~845
    Whipps JM, McQuilken MP.2009. Biological control agents in plant disease control. In: Walters D,Blackwell W. Disease Control in Crops: Biological and Environmentally Friendly Approaches.Oxford: Blackwell Publishing Ltd:27~61
    Willert A, Mcbride M, Kinkel L.2003. Effects of antibiotic-producing Streptomyces spp. on nodulationsand leaf spot in alfalfa. Applied Soil Ecology,22:55~66
    Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton AM, Lamb C.1995. Cloning and properties of a rice geneencoding phenylalanine ammonialyase. Plant Molecular Biology,29(3):535~550.
    Zimand G, Elad Y, Chet I.1996. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity.Phytopathology,86(11):1255~1260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700