Bt抗虫基因导入马铃薯的遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过基因工程手段, 利用农杆菌介导法将Bt基因导入马铃薯品种大西洋, 同时对马铃薯品种大西洋、地西瑞、东农303和克新4号的茎段和叶片再生体系进行优化,建立了马铃薯高效再生体系和遗传转化体系, 探讨了影响植株再生频率和遗传转化效率的因素, 确立了最佳植株再生体系和遗传转化条件,获得了转基因植株。主要研究结果如下:
    
    1马铃薯再生体系的建立
    ⑴ 茎段最佳愈伤培养基为:MS+0.1 mg/l 2,4-D+1mg/l BA;最佳分化培养基为:MS+1mg/l GA3+1mg/l ZT。叶片最佳愈伤培养基为: MS+0.2mg/lNAA +5mg/l GA3 +2.25mg/l BA;最佳分化培养基为:MS+5mg/l GA3+2.25mg/lBA。
    
    ⑵ 基因型不同,在相同侵染条件下的愈伤诱导率差异较大。大西洋的愈伤率最高,茎段为68.76%,叶片达75.11%。
    
    ⑶ 以相同的农杆菌菌株介导不同类型外植体,外植体分化率不同。本试验采用茎段和叶片作为遗传转化的外植体材料,最佳外植体为叶片。
    
    2 遗传转化影响因素探讨
    (1) 茎段外植体最佳预培养时间为2d,此时抗性愈伤率最高,为56.78%。最佳共培养时间为2d,抗性愈伤率最高为50.10%。叶片外植体最佳预培养时间为2d,此时抗性愈伤率最高,为71.25%。最佳共培养时间为3d,此时抗性愈伤率最高,为70.00%。
    
    (2) 侵染时间和菌液浓度因外植体类型而异,茎段外植体最佳侵染时间为10 min,此时抗性愈伤率最高,为54.62%,菌液浓度OD600=0.5时,抗性愈伤率最高为49.37%;叶片最佳侵染时间为10min,此时抗性愈伤形成率为63.69%,菌液浓度OD600=0.5时,抗性愈伤率最高为68.12%。
    
    (3) 杀菌剂选用进口头孢噻肟钠。浓度为200mg/l时,可完全抑制菌的生长,且对外植体再生无影响。
    
    (4) 抗性选择剂为卡那霉素(Kan)。在不同生长阶段,选择压力不同。在愈伤形成阶段,Kan的选择压力为50mg/l;在生根阶段,Kan的选择压力为75mg/l。
    
    3 抗性植株的检测
    
    
    
     试验接种转化101个叶片,获得的大西洋再生植株经PCR检测和PCR-Southern杂交检测有3株呈阳性, 转化率为2.96%, 初步证明了目的基因以整合到了马铃薯基因组中。
In this study Bt gene was introduced into Atlantic successfully with Agrobacterium
    mediated method. At the same time the regeneration system of the cultivars Atlantic, Desiree, Dongnong303, Kexin number4 were optimized as well for leaf and stem explants. It established a highly efficient regeneration system of potato and transformation system were optimized. The integration of target gene into potato genome was analyzed. The factors influencing regeneration rate and transformation rate were discussed and the positive plants gained. The main results were showed as following:
    1.Establishment of the regeneration system for potato
    (1) Two types of explants, leaf and stem cuttings, were used in the study. For stem optimum medium for callus culture was MS+0.1 mg/l 2,4-D+1mg/l BA;the best medium for differentiation was MS+1mg/l GA3+1mg/l ZT. For leaf optimum medium for callus culture was MS+0.2mg/lNAA +5mg/l GA3+2.25mg/l BA;the best medium for differentiation was MS+5mg/l GA3 +2.25mg/lBA.
    (2) Under the same infection conditions, three different genotypes of potatoes varied significantly in the percentage of culture. Atlantic have a high percentage of callus for stem with 68.76% and for leaf with 75.11%,
    (3) Different explants' types interposition by the same bacterial strain, the resulting differentiation is different too. In the present studies stem and leaf are explants .The best explants was leaf.
    2. Factors affecting genetic transformation
    (1) For stem optimum time of pre-culture was 2d.The highest frequency was 56.78%. Optimum time of co-culture was 2d. The highest frequency was 50.10%. For leaf optimum time of pre-culture was 2d.The highest frequency was 71.25%. Optimum time of co-culture is 3d. The highest frequency was 70.00%.
    (2)The infection duration and concentration of Agrobacterium varied with the explants' type. For stem, optimum infection duration was 10min, The highest frequency was 54.62%.Concentration of Agrobacterium was OD600=0.5,The highest frequency were 49.37%. For leaf optimum infection duration was 10min, The highest frequency were 63.69% .Concentration of Germ liquid was OD600=0.5,The highest frequency were 68.12%.
     (3) Cefotaxime sodium was used as bactericide, which can restrain bacterium infection without any negative influence on regeneration of explants when the concentration was 200ml/l.
    (4) Kanamycin was used as the selective agent. The selection pressure varied with different growth phases. During the wound-curing phase, the selection pressure of Kan was 50mg/l,
    
    
    during the root-growing phase, the selection pressure of Kan is 75mg/l.
    3 Test of transgenic plants
     In the experiment, 101 leaf cuttings were infected by Bt gene. Three Bt gene transformed plants that is PCR tested and PCR-Southern tested positive were obtained, therefore the transformation rate was 2.96%.
     Postgraduate: Su Junfeng
     Major: Crop Genetics and Breeding Supervisor: Prof. Tian Xingya
     Prof. Lu Cuihua
引文
1 马伯军, 袁妙葆. 一种简便的遗传转化技术在大麦中应用. 广西植物.1998,18(1): 51-53.
    2王锋等 不同调节序列控制下的GUS基因在柑桔原生体中的瞬时表达.福建农业学报.
    3薛红卫, 卫志明, 许智宏 转化脂介导甘蓝转化获得转基因植株. 科学通报 1999,(3):358-360.
    4 李成云等 植物基因的克隆与转化(2)植物基因转化方法简介. 云南农业科技. 2000 ,5: 39-42.
    5 刘建强, 孙仲序 植物基因转化方法的研究概况 河北果树 2002, (5) : 4-6.
    6 刘金元, 时香玉, 陈晓等 利用基因枪技术转化小麦、玉米的研究. 吉林农业科学 1998 12 9-15.
    7 许新萍,卫剑文 基因枪转化籼稻的影响因素.中山大学学报.1998,37(1):88-92.
    8 魏松红, 张领兵, 张艳贞等.小麦基因枪高效转化体系的建立.吉林农业科学.2001,26(3):7-11.
    9 华志华, 朱雪峰, 林鸿生等.基因枪转化获得的转基因水稻中外源基因转化与整合规律研究. 2001,28(11):1012-1018.
    10 董延瑜. 植物基因转移研究进展 湖南农学院学报 1994,20 (6) : 573-584.
    11 张宝红, 丰小嵘 转基因抗虫棉现状、问题和对策 作物学报 1998 ,24 (2): 248-256.
    12 张林生, 俞嘉宁 ,曹让等. 转基因植物在农业上的应用.西北植物学报2002;22(4):1011-1017.
    13 郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学.1995,28(5): 8-13.
    14 刘荣乐等.苏云金杆菌研究五十年.北京:科学出版社.1962,3,15,43-48.
    15 郭三堆等.苏云金芽孢杆菌aizawai-29δ-内毒素基因改造后的杀虫活性研究.中国农业科学.1993,26(5):77-81.
    16 张智奇,周音,王少鸥等 抗虫基因及其在植物上的应用 吉林农业大学学报 1996,18(1):91~95.
    17 杨虹等.苏云金芽孢杆菌δ-内毒素基因导入水稻和原生质体后获得转基因植株.中国农业科学.1989,22(6):1-5.
    18 谢道昕, 范云六 苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学B辑.1991,21(8):830-834.
    19 谢道昕,范云六,黄俊麟等.苏云金芽孢杆菌杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学B辑,1991,21(4):367-373.
    20 刘春明等. 豇豆胰蛋白酶抑制剂抗虫转基因烟草的获得.科学通报,1992,37(18):1694-1697.
    21 何亚文,李耿光,张兰英 生物技术在马铃薯抗病育种中的应用进展 热带亚热带植物学报 1995,4(1):77-82.
    22 崔晓江,彭学贤,沈禹飞等 马铃薯单双三价抗病毒基因表达载体得构建 。生物工程学报 .1994,10(2):185-189.
    23 张鹤龄 我国马铃薯抗病毒基因工程研究进展.马铃薯杂志. 2000, 1:25-30.
    
    
    
    24 周思军,李希臣,刘昭军 通过农杆菌将菜豆几丁质酶导入马铃薯.中国马铃薯. 2000,(2):70-72.
    25 王光清,王蕴珠,杨金水等.高必需氨基酸转基因马铃薯的研究[J].植物学报.1995,37(8):655-658.
    26 王光清, 王蕴珠, 杨金水等.外源基因在转基因马铃薯植株中的异常表达[J].复旦学报(自然科学版).1997,37(5):537-542.
    27 王 罡, 张艳贞, 魏松红等 花粉管通道法将Bt毒蛋白基因导入优良玉米自交系 吉林农业大学学报 2002,24(4):40-44.
    28 双宝, 吕文河 马铃薯基因转化的研究进展.马铃薯杂志. 1996,1:49-53
    29 刘传光,林青山,陈占宽 籼稻遗传转化高频再生体系的建立 广东农业科学 2002,4:12-16. 
    30 王 丹,朱常香,郑成超 根癌农杆菌介导的马铃薯遗传转化条件的优化. 山东农业大学学报. (自然科学版).2002,33(1):23-27.
    31 王丹,温孚江.马铃薯组培条件快速优化方法的研究,山东农业大学学报,1998,29(1):25-29.
    曹晓风,杨美珠,朱玉贤等.马铃薯Y病毒外壳蛋白基因在转基因马铃薯中的表达.植物学报.1996,38(5):417-420.
    伊里等主编.马铃薯高产栽培技术.
    王关林,方宏筠主编.植物基因工程.北京:科学出版社,2002.
    司怀军.我国马铃薯组织和细胞培养研究进展.中国马铃薯.2000,4(14):220-221.
    宋东光,周健,黄大庆.ClassⅠpatatin基因5ˊ侧翼区驱动的GUS基因在马铃薯块茎中专一表达.实验生物学报. 2001,34(1):5-8.
    宋艳茹,彭学贤,崔晓江等.双价外壳蛋白基因植物表达载体的构建及马铃薯转基因植株的鉴定.植物学报,1994,36(1):842-848.
    朱乾浩,汪若海.转基因植物研究新进展.世界农业.2000,8:23-24.
    吕长平, 石雪晖.水分胁迫对草莓叶片SOD活性以及MDA和Vc含量的影响.湖南农业大学学报.1996,22(5):451-455.
    罗小英,候磊,李德谋等.大麦β-1,3-葡聚糖酶基因表达载体的构建及其对马铃薯的遗传转化.西南农业学报,2000,13(4):1-5.
    41岳东霞,金红,周良炎等.外源类甜蛋白基因在马铃薯中的表达.华北农学报.2000,15(1):12-16.
    42赵福宽,张鹤龄,郑用琏等. 分子生物技术在马铃薯抗病毒育种中的应用.世界农业.1998,25-26.
    兴国等.转基因小麦的研究进展与展望.农业生物技术学报.2000,8(2):111-116.
    44杨美珠,潘乃穗,陈章良.高效马铃薯遗传转化体系的建立及外源甜蛋白基因的导入.植物学报.1992,34(1):31-36.
    45吴刚, 崔海瑞, 舒庆尧等.Bt杀虫晶体蛋白基因及其转基因育种研究进展.生物工程进展.2000,20(2):45-48.
    
    
    
    46付道林,王兰岚,蓝海燕等. 将抗真菌病毒基因导入马铃薯的研究. 激光生物学报.2000,9(3):189-193.
    47 雷勃钧, 卢翠华,钱华等. 导入外源总DNA获得优质高蛋白和双高大豆新品系. 大豆科学.1995,14:202-208.
    48 苏彦辉,王慧丽,俞梅敏等. 苏云金芽孢杆菌杀虫结晶蛋白基因导入大豆的研究.
    植物学报 41(10):1046-1051.
    49贾士荣,屈贤铭,冯兰香等.转抗菌肽基因提高马铃薯对青枯病的抗性.中国农业科学.1998,31(3):5-12.
    50焦芳婵,毛雪,李润植.植物抗逆性的基因工程改良.世界农业.2001,5:38-39.
    51 蔡磊明, 王 捷, 宋宏宇 转基因抗虫玉米Bt-176食用安全性研究. 现代农药. 2003,2(2) 15-20 .
    52 陈伊里 ,田兴亚,王凤义,吕文河等. 马铃薯高产栽培技术.
    53 卢翠华,石瑛,陈伊里 马铃薯生产实用技术
    54 贾士荣. 转基因作物的安全性争论及其对策[J]. 生物技术通报, 1999,(6):1-7.
    55 敖光明,刘瑞凝 马铃薯外植体再生植株的研究. 北京农业大学学报. 1991,17(2):43-47.
    56 蔡磊明,王 捷, 宋宏宇等 转基因抗虫玉米Bt-176食用安全性研究 ,现 代 农 药. 2003,2(2):27-36.
    57刘光明, 苏文金,植物性转基因食品的发展与安全管理. 集美大学学报(自然科学版) .2001,9(3):214-218 .
    58 景梅芳. 世界转基因作物种植状况及安全问题. 中国饲料.2001,20:2-4 .
    59 Arakawa T, Chong D K, Merritt J L, et al. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res.1997, 6(6): 403-408.
    60 Akaichi, M., and Oeda, K., Transgenic with enhanced resistance against two major pathogens, Erysiphe heraclei and Alternaria dauci, Plant Science, 2000, (153): 135-144.
    Bather I,et al. Expression of the genome of potato leaf roll virus: read through of the coat
    protein termination codon in vivo. Journal of General Virology.1900,71:2251-2256.
    Bolton G W, Nester E W and Gordon M P . Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science. 1986, 232: 983-984 .
    63 Cheng Z, He X, Chen C, et al. transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway – mediated transformation. Chinese Agricultural Science – For the Compliments to the 40th Anniversary of the Chinese Academy of
    Agricultural Sciences. China Agricultural SciTech. Press, 1997: 98-108.
    64 Cheng Z, He X, Chen C, et al. Resistance to virus gene expression in transgenic wheat plants. High Technology Letters 1996,2(2):103-108.
    Han, S.R. Respiration rates and peroxides activity in virus-infected aseolus vulgaris. Experientia1967, 23:676-677.
    
    
    
    66 De Block, M, 1988:Genotype-independent Leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium . Theor. Appl. Genet, 76: 767-772.
    67 Block, M, Genotype-independent Leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumcfaciens. Theor. Appl. Genet, 1988:76: 767-774.
    68 Hiatemy Y, Shihyom, Sharaf A. N. et al, transfer of delta-end toxin gene into cotton protoplasts. Bulletin of Faculty of Agriculture University of Cairo,1990,41:717-728.
    69 Fran I., Sanchez-Serrano J. J., Medina J. F., et al. Targeted expression of human serum albumin to potato tubers. Transgenic Res. 2002: 11(4): 337-346.
    70 Fromm N E, F Morrish, C Armetrong. Inheritance and expression of chimerical genes in the progeny of transgenic maize plants. Bio Technology .8:833-839.
    71 Feher A et al. Expression of PVX coat protein gene under the control of extension –gene promoter confers virus resistance on transgenic potato plants. Plant Cell Reports 1992 ,11(1): 48-52.
    72 Re G.G., D. W. Kingsbury. Paradoxical effects of sendai virus DI-RNA size on survival
     inefficient development of small nucleeocap sides. Virology, 1988, 165: 331-337.
    73 Ames, C. Global review of field testing and commercialization of transgenic plants, the first decade of crop biotechnology, ISAAA Briefs NO.1 ISAAA: Ithaca, N Y.1996, 31 26-32.
    74 Jaynes J M, et al. plant protein improvement by genetic engineering: use of synthetic genes [J] Trends in Biotech. 1986, (12): 314-320.
    75 Jia S R et al. Genetic engineering of Chinese potato cultivars by introducing antibacterial polypeptide gene. In: Biotechnology in agriculture , Proceedings of the First Asia-Pacific Conference on Agriculture Biotechnology, Beijing ,China , 1992 , 8:20-24.
    76 John C, Thomas, et al. Introduction and expression of an insect proteins inhibitor in alfalfa (Medicago saliva.) Plant Cell Reports, 1994, 14: 31-36.
    77 Joseph, M, et al. A defective replicas gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Nat Acad. Sci USA Vol, 1992, 89: 3759-3763.
    78 Jongedijk E, Tigelaar H. Synergistic activity of chitinases andβ-1, 3-glucanases enhances fungal resistance in transgenic tomato plants [J]. Euphytica, 1995,85:173-180.
    79 Kaniewski W et al. Field resistance of transgenic Russet Burbank potato to effects of infection by PVX and PVY biotechnology, 1990, 8:750-754.
    80 Karattiger, A.F.Insect resistance in crops: A case study of Bacillus thuring- iensis (Bt) and its transfer to developing countries. ISAAA Briefs NO.2. ISAAA:I thaca, N Y.1997,PP.4-11
    81Kujawa A B, Drugeon G, Hulanicka D, et al. Structural requirements for efficient translation framshifting in the synthesis of the putative viral RNA-dependent RNA
    polymerase of potato leaf roll virus. Nucleic Acids Research, 1993, 21: 2165-2171.
    82 Lawson C. Kaniewski W. Haley L et al. Engineering resistance to mixed virus infection in a commercial potato cultivars: Resistance to potato virus X and potato virus Y in transgenic russet Burbank.Bio/Technology.1990,8: 127-134.
    
    
    
    83 Lin W, Anurathacs, Karabi Datta, et al. Genetic Engineering of Rice for Resistance to Sheath Blight  [J].Biotechnology. 1995, 13 (7): 686-691.
    84 Lamb J.W and Hay R.T. Ribozymes that cleave potato leafroll virus RNA within the coat protein and polymerase gene. Journal of General Virology,1990,71:2257-2264.
    85 Montanelli C , Nascari G . Introduction of an antibacterial gene in potato using a binary vector in Agrobacterium genes, J Genet Breed .1991,45:307-316.
    86 Nawab Ali, Robert M.Skirvin, Walter E.S. Regeneration of Cucumis sativus from Cotyledons of Small Explants.Hortscience.1991, 26(7): 925-928.
    87 Peteroen M.Progress and prospects for field use of Bt genes in crops [J]. Trends in Biotechnology, 1997, 15:173-177.
    88 Perlak F J, Stone T B, Muskopf Y M, Petersen L J, Parker G B, Mcpherson S A,Wyman J, Love S, Reed G, Biever D, Fischhoff D A, 1993.Genetically improved potato: protection from damage by Colorado potato beetles. Plant Mol Biol.1995, 22: 313-321
    89 Perl a A, S Galili, O Shaul ,I Ben-Tzvi and G, Galili. Bacteria dihydrodipicocolinate syntheses and desensitized aspartame kinas: Two novel selectable markers for plant transformation. Biotechnology 11:715-718.
    90 Richter L J, Thanavala Y, Arntzen C J, et al. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Bio technol, 2000,18(11):1167-1171.
    91 Rgathehouse A M,V A Hilder, and D Boulter. Plant genetic manipulation for crop protection, CAB international, 1992, 155-181.
    92 Schepers, A.A Beestman, Effect of fertilizer on the susceptibility to virus infection of the potato with special reference to mature-plan resistance.proc. 12colloq.Int.potash Inst. 1976,201-210.
    93 Sheerman, S and M. W Bevan, A rapid transformation method for Solanum tuberosum using binary Agrobaclerium tumefaciena. Plant Cell Rep, 1988:7:13-16.
    94 Stiekema.W.J, F.Heidekmp, J.D.Louwerse, H.A.Verhoeven and P.Dijkhuis: introduction of foreign genes into potato cultivars Bintje and Derisee using an Agrobaclerium tumefaciena binary vector. Plant Cell Rep, 1988, 7:47-50.
    95 Sazza, R, M.Tavazza, R.J.Ordas, G.AncoraandE.Benvenuto. Genetic transformation of potato (Solanum tuberosum): An efficient method to obtain transgenic plants.Plant Sci, 1988:59:175-181.
    96 Twell.D. and G.Ooms, The 5’flanking DNA of a patatin gene directs tuber specific expression of a chimaeric gene in potato. Plant Sci. Biol. 1987:9:365-375.
    97 Tavazza,R,M.Tavazza,R.J.Ordas,G.AncoraandE.Benvenuto. Genetic transformation of potato (Solanum tuberosum): An efficient method to obtain transgenic plants. Plant Sci, 1988: 59:175-181
    98 Truve E et al . Transgenic potato plants expressing mammalian 2ˊ-5ˊOligoadenylate synthetase are protected from PVX infection under field conditions Bio/technology ,
    
    
    1993 , 11(9):1048-1052.
    99 Venekamp, J.H.A.Schepers c.B.Bus.Mature-plant resistance of potato plants again virus in dictated by a decrease in concentration of ribosomes and glyco- proteins in ageing potato plants under field conditions. Neth.J. plant. 1980,86:301-309.
    100 Visser, R.G.F, E.Jacobsen, A.H.Meinders, M.J.Schans.B. Witholt and W.J.Feenst- ra. Transformation of homozygous diploid potato with an Agrobacterium tumef- aciens binary vectersy stem by adventitious shoots regeneration on leaf and stem segments. Plant Mol. Biol, 1989, 12:329-307.
    101 Vaeck M A et al. Transgenic Plant Protected from Insect attack. Nature . 1987,388:33-
    37.
    102 Vander M L . Huisman MJ,Cornelissen B J , et al. Nucleotide sequence and organization
     of potato leaf virus genomic RNA.FEBS lett.1989, 245:51-56.
    103 Wenzler, H, G.Mignery, G.Max and W.Park, Arapid and efficient transformation method for large number of transgenic potato plants. Plant Sci, 1989:63:79-85
    104 Willem J.S. et al. Introduction of foreign genes into potato cultivars Bintje and Desiree
    using an Agrobacterium tumefaciens binary vector. Plant Cell Report, 1988,7:47-52.
    105 Zupan J R and Zambryski. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 107:1041-1047.
    106 Zhuang W and Wu R. Efficient regeneration of transgenic plants from rice proto-plants and correctly regulated expression of the foreign gene in the plants. Theor.Appl.Genet.1988, 76:835-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700