真核生物非逆转录病毒内生化与进化基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒是地球上目前所知的最古老、数量最多、适应性最强的生物实体(biological entities),代表着巨大、多样的新基因源,病毒进化因而很可能也影响到宿主的进化。研究病毒进化不仅可以了解病毒的多样性,预测和解释新病毒病的出现,而且可以深入认识病毒-宿主间的互作关系,揭示病毒-宿主之间遗传信息的交流。病毒基因组比较是研究病毒互作与进化的重要方式,但是常常会受到数据的限制,比如可用的病毒基因组数据量偏少,或着样本不具代表性。更重要的是,病毒没有化石,病毒进化研究只能局限在现存病毒上。由于逆转录病毒(retroviruses)能够发生基因组整合,在数百万年的进化历程中它们偶尔会内生化(endogenization)到宿主基因组中形成内源逆转录病毒(endogenous retroviruses)。这些内源病毒序列实际上代表着古老病毒基因组的“分子化石”,保留了古代病毒与宿主互作的重要信息,因此对研究病毒-宿主长期的互作与进化历史极为宝贵。此前一直认为非逆转录病毒通常并不能够发生基因组整合,形成“病毒化石”的例子就更加罕见。
     本研究一方面立足于所在实验室长期研究的核盘菌(Sclerotinia sclerotiorum)——一种重要植物病原真菌,从中分子克隆和测序分析未知真菌病毒的全基因组序列;另一方面立足于不断增长的生物信息学数据库,运用生物信息学方法和技术,从公共的EST数据库中电子克隆(cloning in silico)未知病毒的基因组序列,更重要的是,从真核生物基因组数据库中挖掘(data mining)作为“病毒化石”的内源非逆转录病毒序列。最后利用这些新得到的病毒基因组序列结合已有的相关病毒的数据,在比较基因组学的框架内,以系统发育分析病毒基因和基因组序列为主要研究方式,全面了解病毒的多样性、宿主范围的广泛性和非逆转录病毒内生化现象,探讨病毒内生化机制、病毒起源进化以及病毒-宿主在基因组水平上的互作关系,揭示病毒在真核生物进化中的重要作用。本研究所取得的主要研究结果如下:
     1.从核盘菌弱致病力菌株Ep-1PN中克隆到一种新RNA病毒,命名为核盘菌RNA病毒L (SsRV-L)。SsRV-L基因组全长6043 bp(不包括3’-末端的polyA尾),仅具单个开放阅读框(ORF),编码蛋白具有甲基转移酶、RNA解旋酶和依赖RNA的RNA聚合酶(RdRp)保守结构域。序列比较表明该蛋白与隶属ss(+)RNA病毒“类甲病毒”超组的人类戊型肝炎病毒(HEV)的复制酶具有显著相似性,这是首次在真菌中报道与人类病毒具有显著亲缘关系的ss(+)RNA病毒。系统发育分析表明SsRV-L可归于“类甲病毒”超组内的“类风疹病毒”世系,与植物长线形病毒(closteroviruses)、烟草花叶病毒(tobamoviruses)、甜菜坏死黄脉病毒(benyviruses)、昆虫四病毒(tetraviruses),以及脊椎动物戊型肝炎病毒(hepeviruses)和风疹病毒(rubiviruses)都具有较近的亲缘关系。并且这些病毒的系统进化关系与宿主的分化相一致,表明其祖先可能起源于宿主植物、真菌和动物分化之前,随后在长期的进化历程中与宿主保持协同进化,该发现对理解众多的RNA病毒进化世系的起源进化以及新病毒的出现具有深远影响。另外,实验证明了SsRV-L能够在宿主核盘菌细胞内独立复制,对宿主生长速度和致病力可造成轻微的影响,进一步明确了引起Ep-1PN菌株弱致病力的原因,对研究病毒介导的植物病原真菌弱毒特性的分子机理具有重要意义。
     2从核盘菌强致病力菌株Sunf-M中克隆到一种新单分体(monopartite) dsRNA病毒,命名为核盘菌dsRNA真菌病毒L (SsMV-L)。SsMV-L基因组全长9124 bp,无polyA尾,具两个长ORF (ORF1和ORF2),5’-非翻译区相对较长(1088 bp)而3’-非翻译区相对较短(54 bp)。ORF1推定编码1304个氨基酸的蛋白,该蛋白具有磷酸庚糖异构酶(Sugar ISomerase)保守结构域的部分序列,但功能未知;ORF2推定编码1337个氨基酸的蛋白,该蛋白具有RNA病毒典型的RdRp保守结构域,推测为病毒的复制酶。对SsMV-L及其相关的dsRNA病毒类群进行了全面的系统发育分析和基因组结构比较,研究结果表明SsMV-L代表一类新单分体dsRNA病毒世系,而单分体dsRNA病毒实际上具有多样化的病毒世系,当前的病毒分类系统已不能满足需要,可考虑成立新的病毒科或在已有单分病毒科(Totiviridae)内增加新属以容纳这些不同的病毒进化世系。系统发育分析还表明基因组为4节段的产黄青霉病毒(chrysoviruses)可能由单分体dsRNA病毒进化而来。令人惊奇的是,SsRV-L复制酶RdRp结构域的下游还具有植物呼肠孤病毒属(Phytoreovirus)成员所特有的S7核心蛋白结构域的同源序列,通过PSI-BLAST分析,发现该结构域广泛存在于多种RNA病毒类群中,包括产黄青霉病毒、内源RNA病毒(endornaviruses)以及一些未归类的单分体dsRNA病毒。结构域排列比较和系统发育分析表明S7结构域序列可能起源于植物呼肠孤病毒属病毒,并且在不同种类的dsRNA病毒间发生过多次水平基因转移事件。该发现首次证明遗传关系非常疏远的dsRNA病毒类群间也能够发生基因水平转移事件,揭示了dsRNA病毒宏观进化(macroevolution)的分子机制。
     3.从核盘菌Sunf-M菌株中克隆到一种新双分体(bipartite) dsRNA病毒,命名为核盘菌双分病毒S(SsPV-S)。SsPV-S基因组包含大小相似的两个片段:S-1和S-2,长度分别为1856和1783 bp(不包括正链3’-末端的polyA尾),各含一个ORF,分别编码病毒的RdRp和衣壳蛋白(CP)。对SsPV-S及目前已报道的双分病毒(partitiviruses)进行全面的系统发育分析,结果表明这些病毒主要形成4个单系类群。同一单系类群中可包括侵染真菌的双分病毒(Partitivirus)和侵染植物的双分病毒(Alphacryptovirus),表明双分病毒可能在植物和真菌间发生过水平转移,同时也说明当前双分病毒科(Partitiviridae)的分类并不能反映病毒真实的进化关系。值得说明的是,SsPV-S的CP蛋白与拟南芥生长素-亮氨酸抗性蛋白2(ILR2)具有最高的氨基酸相似性,而与其它双分病毒的CP蛋白相似性都较低,表明病毒与拟南芥基因组之间可能发生过水平基因转移事件。
     4.通过电子克隆技术从NCBI EST数据库中克隆到120多条类似单分病毒、双分病毒、产黄青霉病毒和内源RNA病毒的新RNA病毒基因组序列,其中类似双分病毒的新病毒序列达到106条,几乎使已知双分病毒的种类翻了一倍。这些序列不仅代表先前未报道的病毒,而且很多来自新的宿主甚至新的宿主类群。例如许多类似单分病毒和内源RNA病毒的序列来自动物,而目前这类病毒并未发现侵染动物。更重要的是,通过对这些新得到的病毒序列以及已报道的相关病毒序列进行全面的系统发育分析,揭示了这些病毒与宿主的互作与进化关系,即这些病毒的祖先可能起源于真核宿主超群(supergroup)分化之前,在漫长的进化历史中与宿主协同进化并伴随频率的宿主转移事件。该研究证明电子克隆方法具有发现新病毒的巨大潜力,通过该方法的运用极大地增强了我们对dsRNA病毒多样性、宿主范围广泛性以及病毒-宿主互作与进化的认识。
     5.通过对dsRNA病毒和真核生物基因组进行系统地数据比较,鉴定真核基因组中内源dsRNA病毒序列,研究结果表明单分病毒和双分病毒都存在广泛的内生化现象。总共从来自植物、节肢动物、真菌、线虫、腹足动物和原生动物等类群的20多种真核生物的核基因组中鉴定出22个类似双分病毒和34个类似单分病毒RdRp或CP基因的序列。通过PCR扩增、测序以及计算分析证明这些序列是真正存在于真核生物基因组中的内源病毒序列。序列比较和系统发育分析进一步证明这些序列来自单分病毒和双分病毒的内生化。鉴于许多内源病毒序列来自目前还未报道被单分病毒和双分病毒侵染的真核类群,本研究延伸了这些病毒的宿主范围。另外,通过分析内源病毒基因的保守性和表达情况,证明一些内源病毒基因,例如拟南芥和白菜(Brassica rapa)基因组中的双分病毒CP类似基因和果蝇(Drosophila grimshawi)基因组中的双分病毒RdRp类似基因不仅存在序列保守性而且能够表达,尤其是拟南芥中的CP类似基因(ILR2)已被证明具有调节植物激素吲哚乙酸生物合成的功能。本研究提供翔实的证据证明dsRNA病毒的遗传材料可以水平转移到多样的真核生物基因组中,并可能产生有重要功能的新基因,表明RNA病毒在真核生物进化中扮演了重要角色。
     6.通过对线性ssDNA病毒和真核生物基因组进行系统地数据比较,鉴定真核基因组中内源线性ssDNA病毒的序列,研究结果表明细小病毒(parvoviruses)和浓核病毒(densoviruses)都存在广泛的内生化现象。总共从来自哺乳动物、鸟类、鱼类和背囊动物等类群的37种真核生物核基因组中鉴定出62个细小病毒非结构蛋白(NS)类似序列和77个CP类似序列:从来自甲壳纲、蛛形纲和昆虫纲动物以及扁形虫等类群的9种真核生物核基因组中鉴定出92个浓核病毒NS类似序列和44个CP类似序列。通过PCR扩增、测序以及计算分析证明这些序列是真正存在于真核生物基因组中的内源病毒序列。值得说明的是鱼类、背囊动物和扁形虫当前并未发现被细小病毒侵染,但其基因组中存在内源病毒序列清楚的表明它们被或曾经被相关病毒侵染。序列比较和系统发育分析证明许多内源病毒序列非常古老,至少在动物基因组中存在了数百万年。特别是在人类和其它哺乳动物的基因组中鉴定出一个类似细小病毒CP基因的直系同源(orthologous)序列,表明细小病毒与哺乳动物宿主共存至少有9,800万年的历史,此类病毒的进化时间超出前人想象,同时,这也是迄今发现的最古老的“病毒化石”。另外,通过表达分析证明部分内源细小病毒基因在真核生物基因组中可以表达,表明细小病毒可能作为宿主未曾预料的遗传革新源(source of genetic innovation)。总之,内源细小病毒和浓核病毒的发现提供了表征病毒入侵的“化石记录”,从而有助于揭示其与宿主的进化历史,增强了我们对病毒一宿主互作的认识。
     7.通过对环形ssDNA病毒和真核生物基因组进行系统地数据比较,鉴定真核基因组中类似环形ssDNA病毒的序列,研究结果表明类似双生病毒(geminiviruses)、矮缩病毒(nanoviruses)和圆环病毒(circoviruses)的内源序列广泛存在于真核生物核基因组中。总共从来自真菌、植物和原生动物等类群的12种真核生物核基因组中鉴定出31个双生病毒复制相关蛋白(Rep)类似序列和1个CP类似序列;从来自绿藻类、硅藻类、脊椎动物和无脊椎动物等类群的23种真核生物核基因组中鉴定出271个圆环病毒和矮缩病毒Rep类似序列和2个CP类似序列。通过PCR扩增、测序以及计算分析证明这些序列是真正存在于真核生物基因组中的内源病毒序列。通过将这些内源病毒序列与已知的环状ssDNA病毒以及真核或原核滚环复制质粒进行序列比较和系统发育分析,不仅揭示了环状ssDNA病毒的多样性和宿主范围的广泛性,而且重构了这些病毒与宿主长期的进化历史,并对双生病毒、矮缩病毒和圆环病毒的起源和进化产生了新的认识。另外,本研究不仅通过表达分析证明了部分内源病毒基因在真核生物基因组中可以表达,预示可能执行生物学功能,而且在内生真菌和半索类海生动物基因组中鉴定出类似双生病毒和类似细小病毒的两种新转座子,证明了ssDNA病毒对真核宿主的进化起到了重要作用。
Viruses are the most ancient, numerous and adaptable biological entities we now know. They represent a vast and diverse source of novel genes and thereby their evolution can also affect host evolution. The study of virus evolution provides an integrating framework for not only understanding the diversity of viruses and providing explanations for the emergence of new viral disease, but also advancing our knowledge of host-virus interactions and revealing the exchange of genetic information between viruses and hosts. The large-scale comparison of viral genome sequences may provides a valuable way to study their evolution and interactions. However, this way is often limited by data, such as the available viral sample sizes are often both small and biased. Moreover, since viruses lack the geological fossil record, the study of virus evolution is confined to the present. Retroviruses normally integrate into the genome of the host cell as an obligate step in their replication strategy, and occasionally these viruses may integrate into the germline genome of their host, and become inherited endogenous retroviruses over millions of years. The endogenous retroviral sequences effectively represent the 'molecular fossils' of ancient viral genomes, preserving information about ancient virus and host interactions, and hence constitute an invaluable resource for reconstructing the long-term history of virus and host evolution. For non-retroviral viruses, which do not normally integrate their genomes into host DNA, the formation of 'viral fossils' should be far less likely.
     On the one hand, base our study on the Sclerotinia sclerotiorum, a long-term studied plant pathogens fungus in our lab, from which we performed molecular cloning and sequencing of the complete genome sequences of novel mycoviruses. On the other hand, base on the increasing availability of bioinformatics database, we used bioinformatics methods and technologies to discover genomic sequences of new viruses from EST database by cloning in silico, and more importantly, to identify the non-retroviral endogenous virus sequences, the 'molecular fossils' of ancient viral genomes, from the eukaryotic genomic databases by data mining. Finally, we used the new viral genome sequences combining with the related known viral sequences in the database and sited squarely within the framework of comparative genomics, with the phylogenetic analysis of viral gene and genome sequences as the main analytical tool to reveal novel virus diversity, the widespread endogenization and host range of non-retroviral viruses, the contribution of virus to eukaryotic host evolution, and discuss the origin and evolution of relevant viruses, the potential integration mechanism of non-retroviral viruses, and the interaction and evolution of virus-host in the genome level. The main results of this study are listed as following,
     1. We cloned and sequenced a novel RNA virus, named Sclerotinia sclerotiorum RNA virus L (SsRV-L), from a debilitated strain Ep-1PN of S. sclerotiorum. The complete genomic sequence of the SsRV-L is 6,043 nucleotides in length, excluding the poly (A) tail. Sequence analysis revealed the presence of a single open reading frame (ORF) that encodes a protein containing conserved methyltransferase, helicase, and RNA dependent RNA polymerase domains, which has significant sequence similarity to the replicase of Hepatitis E virus, a virus infecting humans belonging to "alphavirus-like" supergroup of positive-strand RNA viruses. As far as we know, this is the first report of a positive-strand RNA mycovirus that is related to a human virus. Genome comparison and phylogenetic analysis of SsRV-L with representative members of "alphavirus-like" supergroup showed that it clustered with the rubi-like viruses and that it is related to the plant clostero-, beny-and tobamoviruses, to the insect tetraviruses, and to the vertebrate hepeviruses and rubiviruses. Moreover, the viral phylogeny is consistent with the host phylogeny, suggesting that the progenitor of these viruses was originated anciently possibly prior to the separation of host fungi, plants, and animals and subsequently co-evolved with their hosts over long evolutionary history. This finding has potentially far-reaching implications for the understanding the origin and evolution of the large evolutionary lineage of RNA viruses as well as the emergence of new viruses. In addition, we presented convincing evidence that SsRV-L could replicate independently with only a slight impact on growth and virulence of its host. These results represent a significant contribution to future studies on the basis of virus-mediated hypovirulence for this plant pathogenic fungus.
     2. We cloned and sequenced a novel monopartite dsRNA virus, named S. sclerotiorum dsRNA mycovirus L (SsMV-L), from a virulence strain Sunf-M of S. sclerotiorum. The complete genomic sequence of the SsMV-L is 9,124 nucleotides in length and no poly (A) tail. Sequence analysis revealed the presence of two large ORFs (ORF1 and ORF2) and the 5'-untranslated region (UTR) and 3'-UTR were 1088 and 54 bp in length, respectively. ORF1 of SsMV-L was predicted to encode a 1,034-aa protein containing partial sequence of conserved Sugar ISomerase domain but its function is unknown. ORF2 was predicted to encode a 1,337-aa protein containing conserved RdRp domain characteristic of RNA viruses, suggesting that it is function as viral replicase. Genome comparison and phylogenetic analysis of SsMV-L with related dsRNA viruses revealed that SsMV-L represents a species of a new taxon of monopartite dsRNA viruses and the current taxonomy of monopartite dsRNA virus cannot meet the needs. Hence, it should be considered to establish new virus families or new genera within the existent family Totiviridae to accommodate the different viral evolutionary lineages. In addition, the phylogeny also suggests that the ancestor of chrysoviruses whose genome encompasses four segments is likely to be originated from monopartite dsRNA viruses. Intriguingly, a 'phytoreo S7 domain' was found downstream from the RdRp domain in the putative replicase of SsMV-L. This domain consists of P7 proteins of phytoreoviruses known to be viral core proteins with nucleic acid binding activities. PSI-BLAST searches showed that the S7 domain has also been found in various RNA viruses, including chrysoviruses, endornaviruses as well as some unclassified monopartite dsRNA viruses. Domain organization and phylogenetic analysis suggested that the S7 domain sequences were most likely to be derived from those of ancestral phytoreoviruses and then be occurred multiple horizontal gene transfers (HGTs) among diverse RNA viruses. This finding provides convincing evidence that the recombination events have occurred between the virus families with very distant genetic relationships from different host taxa and reveals the macroevolutionary mechanism of dsRNA viruses.
     3. We cloned and sequenced a novel bipartite dsRNA virus, named S. sclerotiorum partitivirus S (SsPV-S), from the strain Sunf-M. The genome of SsPV-S encompasses two segments:S-1 and S-2 and each contain one ORF. S-1 is 1,856 bp in length and encodes an RdRp; S-2 is 1,783 bp in length and encodes a coat protein (CP). Comprehensive phylogenetic analysis of SsPV-S with all known partitiviruses led to the identification of four major clades. One clade can consist of a mixture of plant partitiviruses (genus Alphacryptovirus) and fungal partitiviruses (genus Partitivirus), suggesting that horizontal transfer of members of the family Partitiviridae between fungi and plants were most likely to occur. Meanwhile, it suggests that current classification of partitivirus does not reflect the true evolutionary relationships of viruses, and therefore the taxonomy of the family Partitiviridae will probably need to be reconsidered. Intriguingly, SsPV-S CP has the highest aa sequence similarity to IAA-leucine-resistant protein 2 (ILR2) of Arabidopsis, its similarity to CPs of other partitiviruses is considerably lower. This raises the interesting possibility that HGT may have occurred between partitiviruses and genome of an Arabidopsis ancestor.
     4. We identified large numbers of novel viral sequences similar to partiti-, toti-, chryso-or endornaviruses from NCBI EST database by cloning in silico. Among these, the number of partitivirus-like sequences is 106, almost doubled the known partitiviral species. The viral sequences obtained from this study not only represented previously unknown viruses, many but also were from the new host even new host taxa. For example, many partiti- or endornavirus-like sequences were from animals, while these viruses presently have not been reported to infect animals. More importantly, Comprehensive phylogenetic analysis of these new viral sequences with related known dsRNA viruses revealed the long-term history of virus-host evolution and interaction, namely, the progenitors of these viruses were originated anciently possibly prior to the separation of host supergroups and subsequently likely to co-evolve with their hosts over long evolutionary timescales concomitant of frequent viral host changes. This study demonstrates the potential of virus cloning in silico for discovering novel viruses directly from database, which can greatly increase our knowledge of viral diversity, host ranges as well as the interaction and evolution of virus-host.
     5. We constructed a systematic search for sequences related to known dsRNA viruses in the publicly available eukaryotic genome databases. The results show that the RdRp and CP genes of partitiviruses and totiviruses have been widely endogenized into a broad range of eukaryotic genomes. Altogether,22 partitivirus and 34 totivirus RdRp or CP-like sequences were identified from the nuclear genomes of more than 20 eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification, sequencing and comparative analysis supports the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis further demonstrated that these endogenous viral sequences were derived from endogenization of partitiviruses and totiviruses. Given that many of endogenous viral sequences were found in eukaryotic species which previously is not known to be infected by partitiviruses or totiviruses, our findings extends the host range of these viruses. Though analysis of conservation and expression of endogenous viral genes, we found that some of these, such as the partitiviral CP-like genes in Arabidopsis and Chinese cabbage (Brassica rapa), and the partitiviral RdRp-like gene in fruit fly (Drosophila grimshawi), were not only conserved but also expressed. Particularly, the ILR2 gene, a homolog of partitivirus CP, has been demonstrated to function in regulating the synthesis of the auxin indole-3-acetic acid (IAA). Hence, our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.
     6. We performed extensive sequence similarity searches for sequences related to known linear ssDNA viruses in the publicly available eukaryotic genome databases. The results show that parvoviruses and densoviruses have been widely endogenized into a broad range of eukaryotic genomes. Altogether,62 nonstructural protein (NS)-like and 77 CP-like sequences of parvoviruses were identified from the nuclear genomes of 37 eukaryotic organisms, including mammals, fish, birds and tunicates; 92 NS-like and 44 CP-like sequences of densoviruses were identified from the nuclear genomes of 9 eukaryotic organisms, including crustaceans, arachnids, insects and flatworms. PCR amplification, sequencing and comparative analysis supports the conclusion that these viral homologs are real and occur in eukaryotic genomes. It is worth to note that some animal lineages (such as fishes, tunicates and flatworms) are not known to be infected by parvoviruses. Many endogenous parvoviral sequences were found in their genomes, however, clearly suggesting that these species can also be infected by parvoviruses, at least past. Sequence comparison and phylogenetic analysis suggested that many of endogenous viral sequences were ancient and occurred at least millions years. Especially, the identification of orthologous endogenous parvoviral CP-like sequences in the genomes of humans and other mammals suggests that parvoviruses have coexisted with mammals at least 98 million years, which implies that these viruses are much older than previously thought. As far as we know, this is the oldest'viral fossil'known. In addition, we also reveal that some of the endogenous viral genes were expressed, suggesting that parvoviruses might act as an unforeseen source of genetic innovation in their hosts. In summary, our discovery provides fossil records of past viral invasions, thereby helps to shed light on the evolutionary history of viruses and hosts, and advance our knowledge of host-virus interactions.
     7. We performed comprehensive sequence similarity searches for sequences related to known circular ssDNA viruses in the publicly available eukaryotic genome databases. The results show that sequences related geminiviruses, nanoviruses and circoviruses have been widely occurred in a broad range of eukaryotic genomes. Altogether,31 replication initiation protein (Rep)-like and 1 CP-like sequences of geminiviruses were identified from the nuclear genomes of 12 eukaryotic organisms, including plants, fungi, and protozoans; 271 Rep-like and 2 CP-like sequences of nanoviruses and circoviruses were identified from the nuclear genomes of 23 eukaryotic organisms, including green algae, diatoms, invertebrates and vertebrates. PCR amplification, sequencing and comparative analysis supports the conclusion that these viral homologs are real and occur in eukaryotic genomes. Though comprehensive sequence comparison and phylogenetic analysis of endogenous circular ssDNA virus-like sequences with related known viruses and eukaryotic or bacterial rolling-circle replicating (RCR) plasmids, our studies not only revealed the diversity of circular ssDNA viruses and their widespread host range, but also reconstructed the long-term history of virus and host evolution and advanced our understanding of the evolution of geminiviruses, nanoviruses and circoviruses. Furthermore, we also demonstrated that some of the endogenous viral genes were conserved and expressed, suggesting that these genes are also functional in the host genomes. We also identified a geminivirus-like and parvovirus-like transposable element in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from relevant viruses. It revealed that capture and functional assimilation of exogenous viral genes may represent an important force in eukaryotic evolution.
引文
1. 李国庆,姜道宏,王道本,易先宏,朱斌,Rimmer S R同核盘菌菌株Ep-1PN弱毒性相关的RNA及其属性.自然科学进展,1999,9:1245-1249
    2.李国庆,王道本,黄鸿章,周启.来源于佳木斯茄子上的核盘菌菌株多样性的研究.植物病理学报,1996,26:237-242
    3. 萨姆布鲁克 J(美)和拉塞尔D W(美)著, 黄培堂等译.分子克隆实验指南(上下册) (第3版).北京:科学出版社,2002,890-898
    4.卫冬妹.核盘菌弱毒相关病毒基因组分子生物学特性的初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2003
    5.羊国根.核盘菌病毒SsDRV的5'末端克隆及侵染性全长cDNA克隆的构建.硕士学位论文].武汉:华中农业大学图书馆,2009
    6. Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Reviews Microbiology,2006,4(5): 371-382
    7. Ahn I P, Lee Y H. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol Plant Microbe Interact,2001,14(4):496-507
    8. Al Rwahnih M, Daubert S, Urbez-Torres J R, Cordero F, Rowhani A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch Virol,2010,156(3):397-403
    9. Alam S L, Atkins J F, Gesteland R F. Programmed ribosomal frameshifting:much ado about knotting! Proc Natl Acad Sci U S A,1999,96(25):14177-9
    10. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25(17):3389-402
    11. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches:A fast, accurate, and powerful alternative. Systematic Biology,2006,55(4):539-552
    12. Aoki N, Moriyama H, Kodama M, Arie T, Teraoka T, Fukuhara T. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria altemata. Virus Research,2009,140(1-2):179-87
    13. Arnaud F, Murcia P R, Palmarini M. Mechanisms of late restriction induced by an endogenous retrovirus. J Virol,2007,81(20):11441-51
    14. Ashby M K, Warry A, Bejarano E R, Khashoggi A, Burrell M, Lichtenstein C P. Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggest a unique integration event. Plant Mol Biol,1997,35(3): 313-21
    15. Attoui H, Mohd Jaafar F, Belhouchet M, Tao S, Chen B, Liang G, Tesh R B, de Micco P, de Lamballerie X. Liao ning virus, a new Chinese seadornavirus that replicates in transformed and embryonic mammalian cells. J Gen Virol,2006,87(Pt 1):199-208
    16. Avila-Adame C, Gomez-Alpizar L, Zismann V, Jones K M, Buell C R, Ristaino J B. Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Curr Genet,2006,49(1):39-46
    17. Bandea C I. A new theory on the origin and the nature of viruses. J Theor Biol,1983, 105(4):591-602
    18. Bejarano E R, Khashoggi A, Witty M, Lichtenstein C. Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci U S A,1996,93(2):759-64
    19. Bell P J. Viral eukaryogenesis:was the ancestor of the nucleus a complex DNA virus? J Mol Evol,2001,53(3):251-6
    20. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A,2004,101(14):4894-9
    21. Belyi V A, Levine A J, Skalka A M. Sequences from Ancestral Single-Stranded DNA Viruses in Vertebrate Genomes:the Parvoviridae and Circoviridae Are More than 40 to 50 Million Years Old. Journal of virology,2010a,84(23):12458-12462
    22. Belyi V A, Levine A J, Skalka A M. Unexpected inheritance:multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. Plos Pathogens,2010b,6(7):e1001030
    23. Benveniste R E, Todaro G J. Evolution of C-type viral genes:inheritance of exogenously acquired viral genes. Nature,1974,252(5483):456-9
    24. Bergoin M, Tijssen P. Parvoviruses of arthropods. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.4. Oxford:Elsevier,2008.76-85
    25. Berns K, Parrish C R. Parvoviridae. In:Knipe D M, Howley P M eds., Fields Virology.5th edition. Philadelphia:Lippincott-Williams & Wilkins Publishers,2007. 2437-2477
    26. Bertsch C, Beuve M, Dolja V V, Wirth M, Pelsy F, Herrbach E, Lemaire O. Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance. Biology Direct,2009,4:21
    27. Best S, Le Tissier P, Towers G, Stoye J P. Positional cloning of the mouse retrovirus restriction gene Fvl. Nature,1996,382(6594):826-9
    28. Bezier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff A N, Lanzrein B, Drezen J M. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science,2009,323(5916):926-30
    29. Bill C A, Summers J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11135-11140
    30. Bininda-Emonds O R, Cardillo M, Jones K E, MacPhee R D, Beck R M, Grenyer R, Price S A, Vos R A, Gittleman J L, Purvis A. The delayed rise of present-day mammals. Nature,2007,446(7135):507-12
    31. Blawid R, Stephan D, Maiss E. Alphacryptovirus and Betacryptovirus. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.1. Oxford: Elsevier,2008.98-104
    32. Blawid R, Stephan D, Maiss E. Molecular characterization and detection of Vicia cryptic virus in different Vicia faba cultivars. Archives of Virology,2007,152(8): 1477-1488
    33. Bugert J J, Darai G. Poxvirus homologues of cellular genes. Virus Genes,2000, 21(1-2):111-33
    34. Bujarski J J. Recombination. In:Mahy B W J, van Regenmortel M H V eds., Encyclopedia of Virology. Volume 4.3rd edition. Oxford:Elsevier,2008.374-382
    35. Bull J J, Meyers L A, Lachmann M. Quasispecies made simple. Plos Computational Biology,2005,1(6):450-460
    36. Campos-Olivas R, Louis J M, Clerot D, Gronenborn B, Gronenborn A M. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci U S A,2002,99(16):10310-5
    37. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M L, Brussow H. Phage as agents of lateral gene transfer. Current Opinion in Microbiology,2003a,6(4): 417-424
    38. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H. Prophage genomics. Microbiol Mol Biol Rev,2003b,67(2):238-76
    39. Capy P, Gasperi G, Biemont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity,2000,85 (Pt 2)101-6
    40. Casjens S. Prophages and bacterial genomics:what have we learned so far? Molecular Microbiology,2003,49(2):277-300
    41. Chare E R, Gould E A, Holmes E C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol,2003,84(Pt 10):2691-703
    42. Chare E R, Holmes E C. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol,2006,151(5):933-46
    43. Chiba S, Salaipeth L, Lin Y H, Sasaki A, Kanematsu S, Suzuki N. A novel bipartite double-stranded RNA Mycovirus from the white root rot Fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol,2009,83(24):12801-12
    44. Clark D A, Nacheva E P, Leong H N, Brazma D, Li Y T, Tsao E H F, Buyck H C E, Atkinson C E, Lawson H M, Potter M N, Griffiths P D. Transmission of integrated human herpesvirus 6 through stem cell transplantation:Implications for laboratory diagnosis. Journal of Infectious Diseases,2006,193(7):912-916
    45. Claverie J M. Viruses take center stage in cellular evolution. Genome Biol,2006,7(6): 110
    46. Coffin J M. Superantigens and endogenous retroviruscs:a confluence of puzzles. Science,1992,255(5043):411-3
    47. Corsini J, Tal J, Winocour E. Directed integration of minute virus of mice DNA into episomes. Journal of virology,1997,71(12):9008-15
    48. Crochu S, Cook S, Attoui H, Charrel R N, De Chesse R, Belhouchet M, Lemasson J J, de Micco P, de Lamballerie X. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol,2004, 85(Pt7):1971-80
    49. Daubin V, Ochman H. Bacterial Genomes as new gene homes:The genealogy of ORFans in E-coli. Genome Research,2004,14(6):1036-1042
    50. Daya S, Cortez N, Berns K I. Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol,2009, 83(22):11655-64
    51. Delaroque N, Maier I, Knippers R, Muller D. Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). Journal of General Virology,1999,80(6):1367-70
    52. Dellaporta S L, Chomet P S, Mottinger J P, Wood J A, Yu S M, Hicks J B. Endogenous transposable elements associated with virus infection in maize. Cold Spring Harb Symp Quant Biol,1984,49:321-8
    53. Delwart E L. Viral metagenomics. Rev Med Virol,2007,17(2):115-31
    54. DePaulo J, Powell C. Extraction of double-stranded RNA from plant tissues without the use of organic solvents. Plant disease,1995,79(3):246-248
    55. Dinman J D. Programmed Ribosomal Frameshifting Goes Beyond Viruses: Organisms from all three kingdoms use frameshifting to regulate gene expression, perhaps signaling a paradigm shift. Microbe Wash DC,2006,1(11):521-527
    56. Dolja V V, Karasev A V, Koonin E V. Molecular biology and evolution of closteroviruses:sophisticated build-up of large RNA genomes. Annual Review of Phytopathology,1994,32(1):261-285
    57. Dolja V V, Kreuze J F, Valkonen J P. Comparative and functional genomics of closteroviruses. Virus Res,2006,117(1):38-51
    58. Domingo E, Holland J. RNA virus mutations and fitness for survival. Annual Reviews in Microbiology,1997,51(1):151-178
    59. Dong X. Pathogen-induced systemic DNA rearrangement in plants. Trends Plant Sci, 2004,9(2):60-1
    60. Dunlap K A, Palmarini M, Varela M, Burghardt R C, Hayashi K, Farmer J L, Spencer T E. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci U S A,2006,103(39):14390-5
    61. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P, Heidmann T. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A,2009, 106(29):12127-32
    62. Edgar R C. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res,2004,32(5):1792-7
    63. Edwards R A, Rohwer F. Viral metagenomics. Nature Reviews Microbiology,2005, 3(6):504-10
    64. Elena S F. Restrictions to RNA virus adaptation:an experimental approach. Antonie Van Leeuwenhoek,2002,81(1-4):135-42
    65. Emerman M, Malik H S. Paleovirology-Modern Consequences of Ancient Viruses. Plos Biology,2010,8(2):e1000301
    66. Essbauer S, Ahne W. Viruses of lower vertebrates. J Vet Med B Infect Dis Vet Public Health,2001,48(6):403-75
    67. Esteban D, Da Silva M, Upton C. New bioinformatics tools for viral genome analyses at Viral Bioinformatics-Canada. Pharmacogenomics,2005,6(3):271-280
    68. Fauquet C M, Mayo M A, Maniloff J, Desselberger U, Ball L A. Virus taxonomy: Eighth report of the International Committee for the Taxonomy of Viruses. San Diego, CA:Elsevier Academic Press,2005
    69. Ferber M J, Montoya D P, Yu C, Aderca I, McGee A, Thorland E C, Nagorney D M, Gostout B S, Burgart L J, Boix L, Bruix J, McMahon B J, Cheung T H, Chung T K, Wong Y F, Smith D I, Roberts L R. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene,2003,22(24):3813-20
    70. Feschotte C. Virology:Bornavirus enters the genome. Nature,2010,463(7277): 39-40
    71. Filee J, Forterre P. Viral proteins functioning in organelles:a cryptic origin? Trends Microbiol,2005,13(11):510-3
    72. Flegel T W. Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biology Direct,2009,4:32
    73. Forterre P. Defining life:the virus viewpoint. Orig Life Evol Biosph,2010a,40(2): 151-60
    74. Forterre P. Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Molecular Microbiology,1999,33(3):457-65
    75. Forterre P. Evolution, Viral. In:Schaechter M eds., Encyclopedia of Microbiology. 3rd eds., vol.4. Elsevier,2009.370-389
    76. Forterre P. Giant Viruses:Conflicts in Revisiting the Virus Concept. Intervirology, 2010b,53(5):362-378
    77. Forterre P. The great virus comeback-from an evolutionary perspective. Research in Microbiology,2003,154(4):223-225
    78. Forterre P. The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology,2002,5(5):525-32
    79. Forterre P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Research,2006a,117(1):5-16
    80. Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes:A hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences of the United States of America,2006b, 103(10):3669-3674
    81. Frank A C, Wolfe K H. Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot Cell,2009,8(10):1521-31
    82. Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner D S, Palm D, Andersson J O, Andersson B, Svard S G. Draft Genome Sequencing of Giardia intestinalis Assemblage B Isolate GS:Is Human Giardiasis Caused by Two Different Species? Plos Pathogens,2009,5(8):e1000560
    83. Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y. Recombination every day:abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol,2005,3(3):e89
    84. Fukuhara T, Moriyama H. Endornavirus. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.2. Oxford:Elsevier,2008.109-116
    85. Gardner M B, Kozak C A, O'Brien S J. The Lake Casitas wild mouse:evolving genetic resistance to retroviral disease. Trends Genet,1991,7(1):22-7
    86. Geuking M B, Weber J, Dewannieux M, Gorelik E, Heidmann T, Hengartner H, Zinkernagel R M, Hangartner L. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science,2009,323(5912): 393-6
    87. Ghabrial S A, Nibert M L. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Archives of Virology,2009a,154(2):373-379
    88. Ghabrial S A, Ochoa W F, Baker T S, Nibert M L. Partitiviruses:General Features. In: Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol. 4. Oxford:Elsevier,2008a.68-75
    89. Ghabrial S A, Suzuki N. Fungal Viruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.2. Oxford:Elsevier,2008b.284-291
    90. Ghabrial S A, Suzuki N. Viruses of plant pathogenic fungi. Annual Review of Phytopathology,2009b,47:353-84
    91. Ghabrial S A. Chrysoviruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.1. Oxford:Elsevier,2008a.503-513
    92. Ghabrial S A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes,1998,16(1):119-31
    93. Ghabrial S A. Totiviruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.5. Oxford:Elsevier,2008b.163-174
    94. Gibbs A, Skotnicki A H, Gardiner J E, Walker E S, Hollings M. A tobamovirus of a green alga. Virology,1975,64(2):571-4
    95. Gibbs A. Evolution and origins of tobamoviruses. Philos Trans R Soc Lond B Biol Sci,1999,354(1383):593-602
    96. Gibbs M J, Smeianov V V, Steele J L, Upcroft P, Efimov B A. Two families of Rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes. Molecular Biology and Evolution,2006,23(6):1097-1100
    97. Gibbs M J, Weiller G F. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proceedings of the National Academy of Sciences of the United States of America,1999,96(14):8022--8027
    98. Gibbs M, Koga R, Moriyama H, Pfeiffer P, Fukuhara T. Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA virus. Journal of General Virology,2000,81(1): 227-33
    99. Gifford R J, Katzourakis A, Tristem M, Pybus O G, Winters M, Shafer R W. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A,2008,105(51): 20362-7
    100.Gifford R, Tristem M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes,2003,26(3):291-315
    101.Gilbert C, Feschotte C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. Plos Biology,2010,8(9):e1000495
    102.Gilbert C, Maxfield D G, Goodman S M, Feschotte C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. Plos Genetics,2009,5(3):e1000425
    103.Goff S P. Genetics of retroviral integration. Annu Rev Genet,1992,26527-44
    104.Gorbalenya A E, Enjuanes L, Ziebuhr J, Snijder E J. Nidovirales:evolving the largest RNA virus genome. Virus Res,2006,117(1):17-37
    105.Gorbalenya A E, Koonin E V, Wolf Y I. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett,1990, 262(1):145-8
    106.Gordon K H, Johnson K N, Hanzlik T N. The larger genomic RNA of Helicoverpa armigera stunt tetravirus encodes the viral RNA polymerase and has a novel 3'-terminal tRNA-like structure. Virology,1995,208(1):84-98
    107.Goremykin V V, Salamini F, Velasco R, Viola R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Molecular Biology and Evolution, 2009,26(1):99-110
    108.Gorinsek B, Gubensek F, Kordis D. Phylogenomic analysis of chromoviruses. Cytogenetic and Genome Research,2005,110(1-4):543-552
    109.Grekova S, Zawatzky R, Horlein R, Cziepluch C, Mincberg M, Davis C, Rommelaere J, Daeffler L. Activation of an antiviral response in normal but not transformed mouse cells:a new determinant of minute virus of mice oncotropism. Journal of virology,2010,84(1):516-31
    110.Guerrero R B, Roberts L R. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. Journal of Hepatology,2005,42(5): 760-777
    111.Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology,2003,52(5):696-704
    112.Hacker C V, Brasier C M, Buck K W. A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. Journal of General Virology,2005,86:1561-1570
    113.Hamilton H, Gomos J, Berns K I, Falck-Pedersen E. Adeno-associated virus site-specific integration and AAVS1 disruption. J Virol,2004,78(15):7874-82
    114.Hanzlik T N, Dorrian S J, Johnson K N, Brooks E M, Gordon K H. Sequence of RNA2 of the Helicoverpa armigera stunt virus (Tetraviridae) and bacterial expression of its genes. J Gen Virol,1995,76 (Pt 4):799-811
    115.Harper G, Hull R, Lockhart B, Olszewski N. Viral sequences integrated into plant genomes. Annual Review of Phytopathology,2002,40:119-136
    116.Harvey P H, Pagel M D. The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press,1993
    117.Haugland O, Mikalsen A B, Nilsen P, Lindmo K, Thu B J, Eliassen T M, Roos N, Rode M, Evensen O. Cardiomyopathy Syndrome of Atlantic Salmon (Salmo salar L.) Is Caused by a Double-Stranded RNA Virus of the Totiviridae Family. Journal of Virology,2011,85(11):5275-5286
    118.Hawksworth D. The fungal dimension of biodiversity:magnitude, significance, and conservation. Mycological Research,1991,95(6):641-655
    119.Hellen C U, de Breyne S. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera:evidence for modular exchange of functional noncoding RNA elements by recombination. Journal of Virology,2007,81(11):5850-63
    120.Henckaerts E, Dutheil N, Zeltner N, Kattman S, Kohlbrenner E, Ward P, Clement N, Rebollo P, Kennedy M, Keller G M, Linden R M. Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proc Natl Acad Sci U S A,2009,106(18):7571-6
    121.Hendrix R W, Lawrence J G, Hatfull G F, Casjens S. The origins and ongoing evolution of viruses. Trends Microbiol,2000,8(11):504-8
    122.Henikoff S, Henikoff J G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A,1992,89(22):10915-9
    123.Hoffmann K, Rodriguez-Brito B, Breitbart M, Bangor D, Angly F, Felts B, Nulton J, Rohwer F, Salamon P. The structure of marine phage populations. Trondheim (Norway):Tapir Academic Press,2005
    124.Hohn T, Richert-Poggeler K R, Staginnus C, Harper G, Schwarzacher T, Teo C H, Teycheney P Y, Iskra-Caruana M L, Hull R. Evolution of Integrated Plant Viruses. In:Roossinck M J eds., Plant Virus Evolution. Verlag Berlin Heidelberg:Springer, 2008.53-83
    125.Hollings M. Viruses associated with a die-back disease of cultivated mushroom. Nature,1962,196:962-965
    126.Holmes E C. Molecular clocks and the puzzle of RNA virus origins. J Virol,2003, 77(7):3893-7
    127.Holmes E C. The evolution and emergence of RNA viruses. New York:Oxford University Press,2009
    128.Holmes E C. Viral evolution in the genomic age. Plos Biology,2007,5(10):e278
    129.Hon C C, Lam T T Y, Yip C W, Wong R T Y, Shi M, Jiang J W, Zeng F Y, Leung F C C. Phylogenetic evidence for homologous recombination within the family Birnaviridae. J Gen Virol,2008,893156-3164
    130.Hong Y, Cole T E, Brasier C M, Buck K W. Evolutionary Relationships among Putative RNA-Dependent RNA Polymerases Encoded by a Mitochondrial Virus-like RNA in the Dutch Elm Disease Fungus, Ophiostoma novo-ulmi, by Other Viruses and Virus-like RNAs and by the Arabidopsis Mitochondrial Genome. Virology,1998, 246(1):158-169
    131.Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics,2005,21(24): 4338-4347
    132.Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, Oshida T, Ikuta K, Jern P, Gojobori T, Coffin J M, Tomonaga K. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature,2010,463(7277):84-7
    133.Howitt R L, Beever R E, Pearson M N, Forster R L. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant 'potex-like' viruses. J Gen Virol,2001,82(Pt 1):67-78
    134.Hu W S, Temin H M. Retroviral recombination and reverse transcription. Science, 1990,250(4985):1227-33
    135.Huang X, Madan A. CAP3:A DNA sequence assembly program. Genome Res,1999, 9(9):868-77
    136.Hueffer K, Parrish C R. Parvovirus host range, cell tropism and evolution. Current Opinion in Microbiology,2003,6(4):392-398
    137.Hunter E. Retroviruses:General Features. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.4. Oxford:Elsevier,2008.459-467
    138.Huson D H. SplitsTree:analyzing and visualizing evolutionary data. Bioinformatics, 1998,14(1):68-73
    139.Ilyina T V, Koonin E V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res,1992,20(13):3279-85
    140.Isawa H, Kuwata R, Hoshino K, Tsuda Y, Sakai K, Watanabe S, Nishimura M, Satho T, Kataoka M, Nagata N, Hasegawa H, Bando H, Yano K, Sasaki T, Kobayashi M, Mizutani T, Sawabe K. Identification and molecular characterization of a new nonsegmented double-stranded RNA virus isolated from Culex mosquitoes in Japan. Virus Res,2011,155(1):147-55
    141.Iyer L M, Balaji S, Koonin E V, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res,2006,117(1):156-84
    142.Iyer L M, Koonin E V, Leipe D D, Aravind L. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins:structural insights and new members. Nucleic Acids Research,2005,33(12):3875-3896
    143.Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A,1976,73(4):1260-4
    144.Jakowitsch J, Mette M F, van Der Winden J, Matzke M A, Matzke A J. Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc Natl Acad Sci U S A,1999,96(23):13241-6
    145.Jalasvuori M, Bamford J K. Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph,2008,38(2):165-81
    146.Jern P, Coffin J M. Effects of retroviruses on host genome function. Annu Rev Genet, 2008,42:709-32
    147.Jiang D H, Ghabrial S A. Molecular characterization of Penicillium chrysogenum virus:reconsideration of the taxonomy of the genus Chrysovirus. Journal of General Virology,2004,85:2111-2121
    148.Johnson W E. Endless Forms Most Viral. Plos Genetics,2010,6(11):e1001210
    149.Johnson W E. Endogenous Retroviruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.2. Oxford:Elsevier,2008.105-109
    150.Kapoor A, Simmonds P, Lipkin W I. Discovery and Characterization of Mammalian Endogenous Parvoviruses. Journal of Virology,2010,84(24):12628-12635
    151.Karasev A V. Genetic Diversity and Evolution of Closteroviruses. Annual Review of Phytopathology,2000,38:293-324
    152.Katz R A, Skalka A M. Generation of diversity in retroviruses. Annu Rev Genet,1990, 24409-45
    153.Katzourakis A, Gifford R J. Endogenous viral elements in animal genomes. Plos Genetics,2010,6(11):e1001191
    154.Katzourakis A, Tristem M, Pybus O G, Gifford R J. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A,2007,104(15):6261-5
    155.Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol,2006, 7(2):131-7
    156.Kazazian H H, Jr. Mobile elements:drivers of genome evolution. Science,2004, 303(5664):1626-32
    157.Keckesova Z, Ylinen L M, Towers G J, Gifford R J, Katzourakis A. Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology,2009,384(1):7-11
    158.Kellam P, Alba M M. Virus bioinformatics:databases and recent applications. Appl Bioinformatics,2002,1(1):37-42
    159.Kellam P, Holzerlandt R, Gramoustianou E, Jenner R, Kwan A. Viral bioinformatics: computational views of host and pathogen. Novartis Found Symp,2003,254:234-47
    160.Kellam P. Post-genomic virology:the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol,2001, 11(5):313-29
    161.Kerr J R, Boschetti N. Short regions of sequence identity between the genomes of human and rodent parvoviruses and their respective hosts occur within host genes for the cytoskeleton, cell adhesion and Wnt signalling. Journal of General Virology,2006, 87:3567-3575
    162.Khan S A. Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev, 1997,61(4):442-55
    163.Khatchikian D, Orlich M, Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature,1989,340(6229):156-7
    164.Kim K H, Chang H W, Nam Y D, Roh S W, Kim M S, Sung Y, Jeon C O, Oh H M, Bae J W. Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Applied and Environmental Microbiology,2008,74(19):5975-5985
    165.Klenerman P, Hengartner H, Zinkernagel R M. A non-retroviral RNA virus persists in DNA form. Nature,1997,390(6657):298-301
    166.Koonin E V, Dolja V V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol,1993,28(5):375-430
    167.Koonin E V, Dolja V V. Evolution of complexity in the viral world:The dawn of a new vision. Virus Research,2006a,117(1):1-4
    168.Koonin E V, Senkevich T G, Dolja V V. The ancient Virus World and evolution of cells. Biology Direct,2006b,1:29
    169.Koonin E V, Wolf Y I, Nagasaki K, Dolja V V. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology,2008,6(12):925-939
    170.Koonin E V. Evolution of double-stranded RNA viruses:a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Sem. Virol,1992,3: 327-339
    171.Koonin E V. On the Origin of Cells and Viruses Primordial Virus World Scenario. Natural Genetic Engineering and Natural Genome Editing,2009,1178:47-64
    172.Koonin E V. Taming of the shrewd:novel eukaryotic genes from RNA viruses. BMC Biol,2010,8:2
    173.Koonin E V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol,1991,72 (Pt 9)2197-206
    174.Kotin R M, Siniscalco M, Samulski R J, Zhu X D, Hunter L, Laughlin C A, McLaughlin S, Muzyczka N, Rocchi M, Berns K I. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A,1990,87(6):2211-5
    175.Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature,2003, 423(6941):760-2
    176.Kozlakidis Z, Hacker C V, Bradley D, Jamal A, Phoon X, Webber J, Brasier C M, Buck K W, Coutts R H. Molecular characterisation of two novel double-stranded RNA elements from Phlebiopsis gigantea. Virus Genes,2009,39(1):132-6
    177.Krupovic M, Ravantti J J, Bamford D H. Geminiviruses:a tale of a plasmid becoming a virus. Bmc Evolutionary Biology,2009,9:112
    178.La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie J M, Raoult D. A giant virus in amoebae. Science,2003,299(5615):2033
    179.La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E. The virophage as a unique parasite of the giant mimivirus. Nature,2008,455(7209):100-104
    180.Lakshman D K, Jian J, Tavantzis S M. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc Natl Acad Sci U S A,1998,95(11):6425-9
    181.Le S Q, Lartillot N, Gascuel O. Phylogenetic mixture models for proteins. Philosophical Transactions of the Royal Society B-Biological Sciences,2008, 363(1512):3965-3976
    182.Li L L, Kapoor A, Slikas B, Bamidele O S, Wang C L, Shaukat S, Masroor M A, Wilson M L, Ndjango J B N, Peeters M, Gross-Camp N D, Muller M N, Hahn B H, Wolfe N D, Triki H, Bartkus J, Zaidi S Z, Delwart E. Multiple Diverse Circoviruses Infect Farm Animals and Are Commonly Found in Human and Chimpanzee Feces. Journal of Virology,2010,84(4):1674-1682
    183.Linden R M, Ward P, Giraud C, Winocour E, Berns K I. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A,1996,93(21):11288-94
    184.Liu H Q, Fu Y P, Jiang D H, Li G Q, Xie J T, Cheng J S, Peng Y L, Ghabrial S A, Yi X H. Widespread Horizontal Gene Transfer from Double-Stranded RNA Viruses to Eukaryotic Nuclear Genomes. Journal of Virology,2010,84(22):11876-11887
    185.Liu H Q, Fu Y P, Jiang D H, Li G Q, Xie J, Peng Y L, Yi X H, Ghabrial S A. A Novel Mycovirus That Is Related to the Human Pathogen Hepatitis E Virus and Rubi-Like Viruses. Journal of virology,2009,83(4):1981-1991
    186.Lockhart B, Menke J, Dahal G, Olszewski N. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. Journal of General Virology,2000, 81(6):1579-85
    187.Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, Alcami A. High Diversity of the Viral Community from an Antarctic Lake. Science,2009,326(5954): 858-861
    188.Lubicz J V, Rush C M, Payton M, Colberg T. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol J,2007,4:37
    189.Lukashov V V, Goudsmit J. Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. Journal of virology,2001,75(6):2729-40
    190.Lwoff A. Principles of classification and nomenclature of viruses. Nature,1967, 215(5096):13-4
    191.Lwoff A. The concept of virus. J Gen Microbiol,1957,17(2):239-53
    192.Magidin M, Pittman J K, Hirschi K D, Bartel B. ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant Journal,2003, 35(4):523-534
    193.Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, Richaud A, Ducos B, Heidmann T. Placental syncytins:genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proceedings of the National Academy of Sciences,2007,104(51):20534-9
    194.Maori E, Tanne E, Sela I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology,2007,362(2): 342-349
    195.Marienfeld J, Unseld M, Brandt P, Brennicke A. Viral nucleic acid sequence transfer between fungi and plants. Trends in genetics:TIG,1997,13(7):260-1
    196.Martelli G P, Adams M J, Kreuze J F, Dolja V V. Family Flexiviridae:a case study in virion and genome plasticity. Annual Review of Phytopathology,2007,45:73-100
    197.Martin F N, Bensasson D, Tyler B M, Boore J L. Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae. Curr Genet,2007, 51(5):285-96
    198.Martin R R, Zhou J, Tzanetakis I E. Blueberry latent virus:an amalgam of the Partitiviridae and Totiviridae. Virus Res,2011,155(1):175-80
    199.Mc Grath S, van Sinderen D. Bacteriophage:Genetics and Molecular Biology.1st ed. Caister Academic Press,2007
    200.McCarty D M, Young S M, Jr., Samulski R J. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet,2004,38:819-45
    201.Meints R H, Ivey R G, Lee A M, Choi T J. Identification of two virus integration sites in the brown alga Feldmannia chromosome. J Virol,2008,82(3):1407-13
    202.Meneses P, Berns K I, Winocour E. DNA sequence motifs which direct adeno-associated virus site-specific integration in a model system. J Virol,2000, 74(13):6213-6
    203.Mertens P. The dsRNA viruses. Virus Research,2004,101(1):3-13
    204.Mi S, Lee X, Li X, Veldman G M, Finnerty H, Racie L, LaVallie E, Tang X Y, Edouard P, Howes S. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature,2000,403(6771):785-789
    205.Miller D G, Petek L M, Russell D W. Adeno-associated virus vectors integrate at chromosome breakage sites. Nature Genetics,2004,36(7):767-773
    206.Miller D G, Trobridge G D, Petek L M, Jacobs M A, Kaul R, Russell D W. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. Journal of virology,2005,79(17):11434-11442
    207.Miller E D, Plante C A, Kim K H, Brown J W, Hemenway C. Stem-loop structure in the 5'region of potato virus X genome required for plus-strand RNA accumulation. J Mol Biol,1998,284(3):591-608
    208.Miller S, Krijnse-Locker J. Modification of intracellular membrane structures for virus replication. Nature Reviews Microbiology,2008,6(5):363-74
    209.Moore J K, Haber J E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks,1996a,644-6
    210.Moore J K, Haber J E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol,1996b,16(5):2164-73
    211.Moreira D, Brochier-Armanet C. Giant viruses, giant chimeras:The multiple evolutionary histories of Mimivirus genes. Bmc Evolutionary Biology,2008,8:12
    212.Moreira D, Lopez-Garcia P. Comment on "The 1.2-megabase genome sequence of Mimivirus". Science,2005,308(5725):1114; author reply 1114
    213.Moreira D, Lopez-Garcia P. Ten reasons to exclude viruses from the tree of life. Nature Reviews Microbiology,2009,7(4):306-11
    214.Moretti S, Armougom F, Wallace I M, Higgins D G, Jongeneel C V, Notredame C. The M-Coffee web server:a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Research, 2007,35W645-W648
    215.Morissette G, Flamand L. Herpesviruses and chromosomal integration. J Virol,2010, 84(23):12100-9
    216.Moriyama H, Nitta T, Fukuhara T. Double-stranded RNA in rice:a novel RNA replicon in plants. Mol Gen Genet,1995,248(3):364-9
    217.Moya A, Elena S F, Bracho A, Miralles R, Barrio E. The evolution of RNA viruses:A population genetics view. Proc Natl Acad Sci U S A,2000,97(13):6967-73
    218.Muller T, Vingron M. Modeling amino acid replacement. J Comput Biol,2000,7(6): 761-76
    219.Murad L, Bielawski J P, Matyasek R, Kovarik A, Nichols R A, Leitch A R, Lichtenstein C P. The origin and evolution of geminivirus-related DNA sequences in Nicotiana. Heredity,2004,92(4):352-8
    220.Nagasaki K, Tomaru Y, Takao Y, Nishida K, Shirai Y, Suzuki H, Nagumo T. Previously unknown virus infects marine diatom. Applied and Environmental Microbiology,2005,71(7):3528-3535
    221.Nakatsukasa-Akune M, Yamashita K, Shimoda Y, Uchiumi T, Abe M, Aoki T, Kamizawa A, Ayabe S, Higashi S, Suzuki A. Suppression of root nodule formation by artificial expression of the TrEnodDRl (coat protein of White clover cryptic virus 1) gene in Lotus japonicus. Mol Plant Microbe Interact,2005,18(10):1069-80
    222.Nakhasi H L, Rouault T A, Haile D J, Liu T Y, Klausner R D. Specific high-affinity binding of host cell proteins to the 3'region of rubella virus RNA. New Biol,1990, 2(3):255-64
    223.Ndowora T, Dahal G, LaFleur D, Harper G, Hull R, Olszewski N E, Lockhart B. Evidence That Badnavirus Infection inMusaCan Originate from Integrated Pararetroviral Sequences* 1. Virology,1999,255(2):214-220
    224.Nogawa M, Kageyama T, Nakatani A, Taguchi G, Shimosaka M, Okazaki M. Cloning and characterization of mycovirus double-stranded RNA from the plant pathogenic fungus, Fusarium solani f. sp. robiniae. Biosci Biotechnol Biochem,1996, 60(5):784-8
    225.Novoa R R, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell, 2005,97(2):147-72
    226.Nowak M A, May R M. Virus Dynamics:Mathematical Principles of Immunology and Virology. Oxford:Oxford University Press,2000
    227.Okamoto H. TT viruses in animals. Curr Top Microbiol Immunol,2009,33135-52
    228.Orend G, Linkwitz A, Doerfler W. Selective sites of adenovirus (foreign) DNA integration into the hamster genome:changes in integration patterns. Journal of virology,1994,68(1):187-94
    229.Osaki H, Kudo A, Ohtsu Y. Nucleotide sequence of seed- and pollen-transmitted double-stranded RNA, which encodes a putative RNA-dependent RNA polymerase, detected from Japanese pear. Biosci Biotechnol Biochem,1998,62(11):2101-6
    230.Osaki H, Nakamura H, Nomura K, Matsumoto N, Yoshida K. Nucleotide sequence of a mitochondrial RNA virus from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Research,2005,107(1):39-46
    231.Osaki H, Nakamura H, Sasaki A, Matsumoto N, Yoshida K. An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. Virus Res, 2006,118(1-2):143-9
    232.Osaki H, Nomura K, Matsumoto N, Ohtsu Y. Characterization of double-stranded RNA elements in the violet root rot fungus Helicobasidium mompa. Mycol Res,2004, 108(Pt 6):635-40
    233.Oshima K, Kakizawa S, Nishigawa H, Kuboyama T, Miyata S, Ugaki M, Namba S. A plasmid of phytoplasma encodes a unique replication protein having both plasmid-and virus-like domains:clue to viral ancestry or result of virus/plasmid recombination? Virology,2001,285(2):270-7
    234.Pagel M. Inferring the historical patterns of biological evolution. Nature,1999, 401(6756):877-84
    235.Paoletti M, Saupe S J. Fungal incompatibility:evolutionary origin in pathogen defense? Bioessays,2009,31(11):1201-10
    236.Papadopoulos J S, Agarwala R. COBALT:constraint-based alignment tool for multiple protein sequences. Bioinformatics,2007,23(9):1073-9
    237.Parra G I, Bok K, Martinez M, Gomez J A. Evidence of rotavirus intragenic recombination between two sublineages of the same genotype. J Gen Virol,2004, 851713-1716
    238.Parrish C R. Parvoviruses of vertebrates. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.4. Oxford:Elsevier,2008.85-90
    239.Pearson H.'Virophage'suggests viruses are alive. Nature,2008,454(7205):677
    240.Pearson M N, Beever R E, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Molecular Plant Pathology,2009,10(1):115-128
    241.Pfeiffer P. Nucleotide sequence, genetic organization and expression strategy of the double-stranded RNA associated with the '447' cytoplasmic male sterility trait in Vicia faba. J Gen Virol,1998,79 (Pt 10):2349-58
    242.Phan T G, Okitsu S, Maneekarn N, Ushijima H. Evidence of intragenic recombination in G1 rotavirus VP7 genes. Journal of Virology,2007,81(18): 10188-94
    243.Ponferrada V G, Mauck B S, Wooley D P. The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Archives of Virology,2003,148(4):659-675
    244.Poulos B T, Tang K F J, Pantoja C R, Bonami J R, Lightner D V. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. Journal of General Virology,2006,87:987-996
    245.Pouteau S, Grandbastien M A, Boccara M. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. The Plant Journal,1994,5(4): 535-542
    246.Prangishvili D, Forterre P, Garrett R A. Viruses of the Archaea:a unifying view. Nature Reviews Microbiology,2006,4(11):837-48
    247.Prasad A B, Allard M W, Green E D, Program N C S. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology and Evolution,2008,25(9):1795-1808
    248.Pritham E J, Putliwala T, Feschotte C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene,2007,390(1-2): 3-17
    249.Puchta H. The repair of double-strand breaks in plants:mechanisms and consequences for genome evolution. J Exp Bot,2005,56(409):1-14
    250.Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J M. The 1.2-megabase genome sequence of Mimivirus. Science,2004, 306(5700):1344-50
    251.Rebrikov D V, Bulina M E, Bogdanova E A, Vagner L L, Lukyanov S A. Complete genome sequence of a novel extrachromosomal virus-like element identified in planarian Girardia tigrina. BMC Genomics,2002,3(1):15
    252.Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T. An infectious progenitor for the murine IAP retrotransposon:emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res,2008,18(4): 597-609
    253.Ricchetti M, Fairhead C, Dujon B. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature,1999,402(6757):96-100
    254.Richert-Poggeler K R, Noreen F, Schwarzacher T, Harper G, Hohn T. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J,2003,22(18):4836-45
    255.Roekring S, Nielsen L, Owens L, Pattanakitsakul S N, Malasit P, Flegel T W. Comparison of penaeid shrimp and insect parvoviruses suggests that viral transfers may occur between two distantly related arthropod groups. Virus Research,2002, 87(1):79-87
    256.Roiz D, Vazquez A, Seco M P, Tenorio A, Rizzoli A. Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera:Culicidae) in Northern Italy. Virol J,2009,6:93
    257.Ronquist F, Huelsenbeck J P. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003,19(12):1572-4
    258.Rosario K, Duffy S, Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. Journal of General Virology,2009a,90: 2418-2424
    259.Rosario K, Nilsson C, Lim Y W, Ruan Y J, Breitbart M. Metagenomic analysis of viruses in reclaimed water. Environmental Microbiology,2009b,11(11):2806-2820
    260.Ryan F P. An alternative approach to medical genetics based on modern evolutionary biology. Part 2:retroviral symbiosis. J R Soc Med,2009,102(8):324-31
    261.Ryan F P. Human endogenous retroviruses in health and disease:a symbiotic perspective. J R Soc Med,2004,97(12):560-5
    262.Sabanadzovic S, Abou Ghanem-Sabanadzovic N, Valverde R A. A novel monopartite dsRNA virus from rhododendron. Archives of Virology,2010,155(11):1859-1863
    263.Sabanadzovic S, Valverde R A, Brown J K, Martin R R, Tzanetakis I E. Southern tomato virus:The link between the families Totiviridae and Partitiviridae. Virus Research,2009,140(1-2):130-137
    264.Salem N M, Golino D A, Falk B W, Rowhani A. Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora. Arch Virol,2008,153(3):455-62
    265.Schiff L A, Nibert M L, Tyler K L. In:Knipe D M, Howley P M eds., Orthoreoviruses and Their Replication. In:Fields Virology.5th edition. Philadelphia: Lippincott-Williams & Wilkins Publishers,2007.1853-1915
    266.Schmidt H A, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE:maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics,2002,18(3):502-504
    267.Senkevich T G, Koonin E V, Bugert J J, Darai G, Moss B. The genome of molluscum contagiosum virus:analysis and comparison with other poxviruses. Virology,1997, 233(1):19-42
    268.Shackelton L A, Holmes E C. The role of alternative genetic codes in viral evolution and emergence. J Theor Biol,2008,254(1):128-34
    269.Shadan F F, Villarreal L P. Coevolution of persistently infecting small DNA viruses and their hosts linked to host-interactive regulatory domains. Proceedings of the National Academy of Sciences of the United States of America,1993,90(9):4117-21
    270.Shadan F F, Villarreal L P. Parvovirus-mediated antineoplastic activity exploits genome instability. Med Hypotheses,2000,55(1):1-4
    271.Sharp P M. Origins of human virus diversity. Cell,2002,108(3):305-12
    272.Skotnicki A, Gibbs A, Wrigley N G. Further studies on Chara corallina virus. Virology,1976,75(2):457-68
    273.Spear A, Sisterson M S, Yokomi R, Stenger D C. Plant-feeding insects harbor double-stranded RNA viruses encoding a novel proline-alanine rich protein and a polymerase distantly related to that of fungal viruses. Virology,2010,404(2): 304-311
    274.Srivastava A, Lusby E W, Berns K I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol,1983,45(2):555-64
    275.Staginnus C, Richert-Poggeler K R. Endogenous pararetroviruses:two-faced travelers in the plant genome. Trends Plant Sci,2006,11(10):485-91
    276.Strauss J H, Kuhn R J, H. Niesters G M, Strauss E G. Functions of the 5'-terminal and 3'-terminal sequences of the Sindbis virus genome in replication. In:Brinton M A, Heinz F X eds., New aspects of positive-strand RNA viruses. Washington: American Society for Microbiology,1990.61-66
    277.Sugden A M, Jasny B R, Culotta E, Pennisi E. Charting the evolutionary history of life. Science,2003,300(5626):1691-1691
    278.Surosky R T, Urabe M, Godwin S G, McQuiston S A, Kurtzman G J, Ozawa K, Natsoulis G. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol,1997,71(10):7951-9
    279.Suttle C A. Marine viruses-major players in the global ecosystem. Nature Reviews Microbiology,2007,5(10):801-812
    280.Suzan-Monti M, La Scola B, Barrassi L, Espinosa L, Raoult D. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus. PLoS One,2007,2(3):e328
    281.Suzuki Y, Gojobori T, Nakagomi O. Intragenic recombinations in rotaviruses. FEBS Lett,1998,427(2):183-7
    282.Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol,2001, 52(5):419-25
    283.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution,2007, 24(8):1596-9
    284.Tang K F, Lightner D V. Infectious hypodermal and hematopoietic necrosis virus (IHHNV)-related sequences in the genome of the black tiger prawn Penaeus monodon from Africa and Australia. Virus Res,2006,118(1-2):185-91
    285.Tanne E, Sela I. Occurrence of a DNA sequence of a non-retro RNA virus in a host plant genome and its expression:evidence for recombination between viral and host RNAs. Virology,2005,332(2):614-622
    286.Tauer T J, Schneiderman M H, Vishwanatha J K, Rhode S L. DNA double-strand break repair functions defend against parvovirus infection. J Virol,1996,70(9): 6446-9
    287.Tavantzis S. Partitiviruses of Fungi. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of virology.3rd ed., vol.4. Oxford:Elsevier,2008.63-68
    288.Taylor D J, Bruenn J. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol,2009,7:88
    289.Taylor D J, Leach R W, Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. Bmc Evolutionary Biology,2010,10:193
    290.Taylor J W, Berbee M L. Dating divergences in the Fungal Tree of Life:review and new analyses. Mycologia,2006,98(6):838-49
    291.Thingstad T, Lignell R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquatic Microbial Ecology,1997,1319-27
    292.Thomson B J, Efstathiou S, Honess R W. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature,1991,351(6321):78-80
    293.Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K. Isolation and Characterization of a Single-Stranded RNA Virus Infecting the Bloom-Forming Diatom Chaetoceros socialis. Applied and Environmental Microbiology,2009,75(8):2375-2381
    294.Tuomivirta T T, Hantula J. Three unrelated viruses occur in a single isolate of Gremmeniella abietina var. abietina type A. Virus Res,2005,110(1-2):31-9
    295.Tuomivirta T T, Kaitera J, Hantula J. A novel putative virus of Gremmeniella abietina type B (Ascomycota:Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol,2009,90(Pt 9):2299-305
    296.Turnbull M, Webb B. Perspectives on polydnavirus origins and evolution. Adv Virus Res,2002,58:203-54
    297.Turner P E, Chao L. Prisoner's dilemma in an RNA virus. Nature,1999,398(6726): 441-3
    298.Tzanetakis I E, Price R, Martin R R. Nucleotide sequence of the tripartite Fragaria chiloensis cryptic virus and presence of the virus in the Americas. Virus Genes,2008, 36(1):267-272
    299.van der Walt E, Rybicki E P, Varsani A, Polston J E, Billharz R, Donaldson L, Monjane A L, Martin D P. Rapid host adaptation by extensive recombination. J Gen Virol,2009,90(Pt 3):734-46
    300.van Diepeningen A D, Debets A J, Hoekstra R F. Intra- and interspecies virus transfer in Aspergilli via protoplast fusion. Fungal Genet Biol,1998,25(3):171-80
    301.Veliceasa D, Enunlu N, Kos P B, Koster S, Beuther E, Morgun B, Deshmukh S D, Lukacs N. Searching for a new putative cryptic virus in Pinus sylvestris L. Virus Genes,2006,32(2):177-86
    302.Vetten H J. Nanoviruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.2. Oxford:Elsevier,2008.385-391
    303.Villarreal L P, DeFilippis V R. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of virology,2000,74(15):7079-84
    304.Villarreal L P. Evolution of Viruses. In:Mahy B W J, Van Regenmortel M H V eds., Encyclopedia of Virology.3rd eds., vol.2. Oxford:Elsevier,2008a.174-184
    305.Villarreal L P. The source of self:genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci,2009,1178:194-232
    306.Villarreal L P. The widespread evolutionary significance of viruses. In:Domingo E P C R, Holland J J eds., Origin and Evolution of Viruses.2rd eds. Elsevier 2008b. 477-516
    307.Villarreal L P. Viruses and the evolution of life. Washington:American Society for Microbiology,2005
    308.Wallace I M, O'Sullivan O, Higgins D G, Notredame C. M-Coffee:combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Research,2006, 34(6):1692-1699
    309.Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res,2004,64(11): 3878-84
    310.Wickner R B. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev,1996,60(1):250-65
    311.Wilke C O. Quasispecies theory in the context of population genetics. Bmc Evolutionary Biology,2005,5-44
    312.Worobey M, Holmes E C. Evolutionary aspects of recombination in RNA viruses. J Gen Virol,1999,80 (Pt 10)2535-43
    313.Wu Q, Luo Y, Lu R, Lau N, Lai E C, Li W X, Ding S W. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A,2010,107(4):1606-11
    314.Xie J, Wei D M, Jiang D H, Fu Y P, Li G Q, Ghabrial S, Peng Y L. Characterization of debilitation-associated mycovirus infecting the plant-pathogen fungus Sclerotinia sclerotiorum. Journal of General Virology,2006,87:241-249
    315.Yan Q. Bioinformatics databases and tools in virology research:an overview. In Silico Biol,2008,8(2):71-85
    316.Yang W, Summers J. Integration of hepadnavirus DNA in infected liver:evidence for a linear precursor. J Virol,1999,73(12):9710-7
    317.Yu J, Kwon S J, Lee K M, Son M, Kim K H. Complete nucleotide sequence of double-stranded RNA viruses from Fusarium graminearum strain DK3. Arch Virol, 2009,154(11):1855-8
    318.Yu X, Gabriel A. Patching broken chromosomes with extranuclear cellular DNA. Mol Cell,1999,4(5):873-81
    319.Yu X, Li B, Fu Y P, Jiang D H, Ghabrial S A, Li G Q, Peng Y L, Xie J T, Cheng J S, Huang J B, Yi X H. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences of the United States of America,2010,107(18):8387-8392
    320.Zhai Y, Attoui H, Mohd Jaafar F, Wang H Q, Cao Y X, Fan S P, Sun Y X, Liu L D, Mertens P P, Meng W S, Wang D, Liang G. Isolation and full-length sequence analysis of Armigeres subalbatus totivirus, the first totivirus isolate from mosquitoes representing a proposed novel genus (Artivirus) of the family Totiviridae. J Gen Virol, 2010,91 (Pt 11):2836-45
    321.Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol, 2008,20(1):10-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700