灰葡萄孢菌菌株CanBc-1生物学特性及其致病力衰退机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了灰葡萄孢菌弱毒菌株CanBc-1的生物学特性、致病力衰退相关RNA病毒(Botrytis cinerea debilitation related RNA virus,简称BcDRV)的基因组结构及其分类属性、致病力衰退的分子机理。最后还以弱毒将菌株CanBc-1及其恢复致病力的单分生孢子后代CanBc-1c-66为材料,初步分析了菌株CanBc-1中差异表达的基因。取得了如下研究结果:
     首先,对源于6个地区和14种寄主植物的23个灰葡萄孢菌菌株进行了生物学特性分析。鉴定出一个异常菌株CanBc-1,其生长缓慢、菌丝异常分枝、仅产生少量分生孢子和菌核、完全丧失了致病能力。在菌株CanBc-1菌丝中检测到一种3.0 kb大小的dsRNA分子。通过对菌株CanBc-1单分生孢子后代的致病力,发现该菌株单分生孢子后代的致病力发生分化,有强毒后代出现。通过对不同类型杀菌剂的抗性测定,发现弱毒菌株CanBc-1对多菌灵、菌核净、农利灵等具有抗性。
     其次,对灰葡萄孢菌弱毒菌株CanBc-1中的致病力衰退相关RNA病毒(Botrytis cinerea-debilitation related RNA virus,缩写为BcDRV)基因组的分子生物学特性进行了研究。通过cDNA克隆和RT-PCR技术获得了BcDRV基因组的全长序列,共2806 bp,GC含量为33.3%。通过与网上已知序列的分析比对,确定CanBc-1中的dsRNA分子是一个线粒体病毒,属于裸露病毒科(Narnaviridae)、线粒体病毒属(Mitovirus)。此外,还对灰葡萄孢菌菌丝的超微结构进行了透射电镜观察,发现弱毒菌株CanBc-1菌丝线粒体出现异常,包括皱缩、溃解、内部没有瘠等特征。可见,BcDRV可能以灰葡萄孢菌的线粒体作为攻击目标。
     再次,对灰葡萄孢菌弱毒菌株CanBc-1的致病力衰退机制进行了研究。通过对不同灰葡萄孢菌菌株的侵染结构、果胶酶、植物毒素次生代谢产物、酸类物质和漆酶等致病相关因子的研究,发现弱毒菌株CanBc-1能够正常的分泌果胶酶、漆酶和植物性毒素物质,RT-PCR结果也证实弱毒菌株CanBc-1的果胶酶基因(Bcpg1-6)、漆酶基因(Bclcc1,Bclcc2)和毒素合成相关基因(Bcbot1)均能正常表达;但是通过对侵染结构的观察,发现弱毒菌株CanBc-1的菌丝顶端不能正常的形成侵染结构。因此,导致弱毒菌株CanBc-1致病力衰退机理包括:菌丝线粒体发生畸变,菌丝顶端不能正常产生侵染垫结构。
     最后,对弱毒菌株CanBc-1和强毒菌株CanBc-1c-66(可视为菌株CanBc-1的近等基因系)在转录水平上的差异表达基因进行了分析。采用基因表达谱分析的方法,共得到了2288个差异表达的基因。在弱毒菌株CanBc-1中,1392个基因上调表达,896个基因下调表达。根据KEGG基因功能分类,表明差异表达的基因的功能涉及到糖类代谢(8%)、脂质代谢(5%)、核苷代谢(2%)、氨基酸代谢(4%)、多糖的生物合成与代谢(1%)、辅助因子和维生素代谢(2%)、能量代谢(3%)、聚酮化合物和萜类化合物的生物合成(1%)、外源物质的生物降解(1%)、酶类家族(10%)、转录(2%)、翻译(2%)、聚集和降解(2%)、复制和修复(2%)、膜运输(5%)、信号转导(1%)、配体受体的相互作用(3%)、细胞内加工处理(3%)和未分类蛋白(43%)等19类。其中,可能与灰葡萄孢菌和其它病原菌致病过程相关的差异表达基因有12个。上述结果为进一步挖掘灰葡萄孢菌致病相关基因奠定了基础。
In this study, we investigated some biological characteristics, the genome structure and identity of Botrytis cinerea-debilitation related RNA virus (BcDRV) and the mechanisms responsible for pathogenicity debilitation of strain CanBc-1 of Botrytis cinerea, the causal agent of plant grey mould disease. Meanwhile, we performed the expression profiling analysis for the hypovirulent strain CanBc-1 and the virulent strain CanBc-1c-66 (a single-conidium isolate of strain CanBc-1) of B. cinerea. Main results are summarized below.
     Firstly, twenty-three strains of B. cinerea were isolated from 14 species of plants grown from different places, and were compared for cultural characteristics and pathogenicity on oilseed rape (Brassica napus). Results showed that strains CanBc-1 and CanBc-3 of B. cinerea was severely debilitated in pathogenicity and in mycelial growth, compared with the other virulent strains of B. cinerea. A species of double-stranded (ds) RNA of approximately 3.0 kb in length was detected in strain CanBc-1, but was not detected in strain CanBc-3 and the other 21 strains of B. cinerea. Single-conidium (SC) isolates of strain CanBc-1 differed greatly in pathogenicity. Some SC isolates of strain CanBc-1 (such as CanBc-1c-66) became virulent on leaves of oilseed rape and the 3.0-kb dsRNA was eliminated from these SC isolates. Strains CanBc-1 and CanBc-1c-66 were found to be resistant to fungicides Carbendazim and dimmethachlon.
     Secondly, the full-length cDNA sequence of Botrytis cinerea debilitation-related virus (BcDRV,3.0-kb dsRNA) was obtanined. It is 2806 bp in length and AU-rich (66.7%). Based on sequence analysis of BcDRV, we found the BcDRV belongs to genus Mitovirus (Narnaviridae). TEM observation showed that strain CanBc-1 shows degenerative symptoms in hyphal cytoplasma and contained numerous malformed mitochondria without formation of cristae inside. It appears that mitochondria of Botrytis cinerea may be the targets of BcDRV.
     Thirdly, we also analyszed the mechanisms responsible for debilitation of hypovirulent strain CanBc-1 of B. cinerea. Strain CanBc-1 was compared with the virulent strains CanBc-1c-66 and CanBc-2 of B. cinerea for formation of infection cushions on onion scales and leaves of oilseed rape and tomato as well as production of pectinases, toxic metabolites, oxalic acid and laccase in different growth media. Results showed that the three investigated strains of B. cinerea could produce polygalacturonases, toxic metabolites, oxalic acid and laccase in cultures, and the genes coding for endopolygalacturonases (Bcpg1-6), laccases (Bclcc1 and Bclcc2) and botrydial were detected to express normally. Formation of infection cushions was common on epidermis of onion scales and oilseed-rape leaves which inoculated with strains CanBc-1c-66 and CanBc-2, but was rare on the plant tissues inoculated with strain CanBc-1. It is indicated that rare formation of infection cushions is the main cause for the failure of infection of onion and oilseed-rape by the hypovirulent strain CanBc-1 of B. cinerea.
     Finally, expression profile analysis was performed on hypovirulent for strains CanBc-1 and CanBc-1c-66 of B. cinerea. A total of 2288 differentially expressed genes (DEGs) were identified. Among these genes,1392 were up-regulated and 896 were down-regulated in strain CanBc-1. The 2288 DEGs were then grouped into 19 KEGG functional categories. They include carbohydrate metabolism (8%), lipid metabolism (5%), nucleotide metabolism (2%), amino acid metabolism (4%), glycan biosynthesis and metabolism (1%), metabolism of Cofactors and vitamins (2%), biosynthesis of polyketides and terpenoids (1%), energy metabolism (3%), xenobiotics biodegradation and metabolism (1%), enzyme family (10%), transcription (2%), translation (2%), folding (2%), sorting and degradation (2%), replication and repair (2%), membrane transport (5%), Signal Transduction, Signaling Moleculars and Interaction, Cellular Process and unclassified function (43%). We found 12 DEGs which had been confirmed as the pathogenicity-related factors in B. cinerea or in other plant pathogens. These genes may be involved in the pathogenesis process of B. cinerea.
引文
1.陈宇飞,文景芝,李立军.葡萄灰霉病研究进展.东北农业大学学报,2006,37:693—699.
    2.樊慕贞,朱杰华,黄天成.草霉灰霉病的发生和防治研究.河北农业大学学报,1995,18:21—29.
    3.方中达.植病研究方法(第三版) 中国农业出版社,1998:124—125.
    4.冯翠萍,李艳琼,纳玲洁.安徽农业科学,2006,34:271—272.
    5.甘晓静,黎起秦.作物灰霉病综合防治技术.广西植保,2004,17:13—16.
    6.胡伟群,陈杰.灰霉病的化学防治进展.现代农药,2002,4:8-11.
    7.李宝聚,陈立芹,孟伟军.温湿度调控对番茄灰霉病菌产生的细胞壁降解酶的影响.植物病理学报,2003,33:209—212.
    8. 李保聚,朱国仁番茄灰霉病发展症状诊断及综合防治植物保护,1998,24:18—20.
    9.李保聚,朱国仁,赵华奎.番茄灰霉病在果实上的侵染部位及防治新技术.植物保护,1999,29:63—67.
    10.李春格.灰葡萄抱代谢产物的除草活性及活性物质的分离纯化.保定:河北农业大学硕士学位论文,2003.
    11.李科孝,谢宏伟.大棚韭菜灰霉病的发生规律与防治.植物保护,2001,27:46.
    12.李明远,李兴红.蔬菜灰霉病的发生与防治.植保技术与推广,2002a,22:31—33.
    13.李明远,李兴红.蔬菜灰霉病的发生与防治(续).植保技术与推广,2002b,22:37—39.
    14.刘波,叶钟音,刘经芬.速克灵抗性灰葡萄孢菌菌株性质的研究.植物保护学报,1992,19:297—301.
    15.刘春元,刘建华,刘文原.海棠灰霉病菌生物学特性的研究.河南农业大学学报,2003,1:61—64.
    16.罗军.金华市金东区2种不同品种草莓灰霉病的发生情况调查.安徽农学通报,2009,15:124-129.
    17.马辉刚,李瑞明.番茄灰霉病菌生物学特性研究.江西农业大学学报,1998a,20:207-209.
    18.马辉刚,李瑞明,胡水秀.木霉素防治番茄灰霉病田间药效试验.植物保护,1998b,24:38-39.
    19.屈立峰.黄瓜灰霉病的发生与综合防治.农业科技通讯,1996,3:27.
    20.任秀云,吕德国,安志强.草莓灰霉病及其生理特性的研究.北方果树,1993,3:18—20.
    21.邵小花.草莓灰霉病的发生规律与防治.上海农业科技,1990,2:23—24.
    22.石良,王道本.立枯丝核菌的衰退及其生防潜能研究.华中农业大学学报,1992,11:48—51.
    23.腾飞.核盘菌弱毒相关RNA病毒(SsDRv)感染雪腐核盘菌的初步研究.[硕士学位论文].武汉,华中农业大学,2008.
    24.王朝华,张立新,董金皋.植物病原真菌毒素中除草活性物质的筛选.河北农业大学学报,2002,25:65—69.
    25.王春艳.草莓灰霉病发生危害及防治研究初报.植物保护,1997,23:32—33.
    26.王惠,董金皋,商鸿生.灰葡萄抱毒素的生物活性测定和除草活性成分分离研究.中国农业科学,2004,37:233—237.
    27.魏景超.真菌鉴定手册[M].上海科学技术出版社,1979.
    28.杨燕涛.国内保护地蔬菜灰霉病侵染规律及防治技术研究进展.农药,2003,42:6—10.
    29.易齐.蔬菜灰霉病的发生与防治.病虫测报,1992,4:13.
    30.喻大昭,杨小军,杨立军等.49种植物源粗提物对黄瓜灰霉菌的生物活性筛选.植物保护学报,2004,31:217—218.
    31.张从宇,高智谋.番茄灰霉病菌生物学性状研究,安徽技术师范学院学报,2002,16:10—14.
    32.张建人.南方草莓灰霉病的发生与综合防治.植物保护,1991,17:32—33.
    33.张树学.防治保护地蔬菜灰霉病.西北园艺,2001,6:38—39.
    34.张玉勋,王翠花,陈发炜,公维新.保护地蔬菜灰霉病发生规律及防治.山东农业科学,1995,6:42—43.
    35.张志元,官春云.油菜对菌核病抗(耐)病性鉴定与抗病育种研究进展.湖北农业科学,2003,3:38—43.
    36.张中义.中国真菌志(第二十六卷).北京:科学出版社,2006,1—27.
    37.赵海棠,胡芝莲,安学君.春大棚茄瓜类蔬菜灰霉病等病害的发生与防治.植保技术与推广,2000,20:17—18.
    38.赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效试验初报.应用与环境生物学报,1999,5:85—8.
    39.周明国,叶钟音,刘经芬,等.南京市郊灰霉病菌对苯骈咪唑类菌剂田间抗性的监测[J].南京农业大学学报,1987,2:53—58.
    40.周明国,叶钟音.南京市郊灰霉菌对苯并咪哇类杀菌剂田间抗性检测.南京农业大学学报,1987,6:53—57.
    41.朱建兰.番茄灰霉病菌的生物学特研究.甘肃农业大学学报,1995,30:73—78.
    42. Albouy J, Lapierre H. Observations en microscope electronique de souches viruses de Mycogone perniciosa (Magn) cost et dufour agent dune mole du champignon de couche. Ann Phytopathol,1972,4:353-362.
    43. Alizadeh HR, Sharifi-Tehrani A, Hedjaroude GA. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Commun Agric Appl Biol Sci,2007,72:795-800.
    44. Allen TD, Dawe AL, Nuss DL. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryotic Cell,2003,2:1253-65.
    45. Anagnostakis SL, Chen B, Nuss DL. Hypovirus transmission to ascospore progeny by field-released transgrnic hypovirulent strains of Cryphonectria parasitia. Phytopathology,1998,88:598-604.
    46. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res,1997,7:986-95.
    47. Backhouse D, Willetts HJ. A histochemical study of sclerotia of Botrytis cinerea and Botrytis fabae. Can J Microbiol,1984,30:171-178.
    48. Backhouse D, Willetts HJ. Development and structure of infection cushions of Botrytis cinerea. Trans Br Mycol Soc,1987,89:89-95
    49. Bellen GJ, Scholten G. Acquired resistance to benomyl and some other system fungicides in a strain of Botrytis cinerea in cyclamen. Eur. J. Plant Pathol.,1971,77: 83-90.
    50. Berrocal-Lobo M., Molina A., Solano R. Constitutive expression of ethylene-response factos 1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J.,2002,29:23-32
    51. Biles GL, Abeles FB, Wilson CL. The role of ethylene in anthracnose of cucumber Cucumis sativus, caused by Colletotrichum logenarium. Phytopathology,1990,80: 732-735.
    52. Biossonnet-Menes M, Lecoq H. Transmission de virus por fusion de protoplasts chez Pyricularia oryzae. Physiol Veg,1976,14:151-256.
    53. Boland GJ, Hall R. An index of plant hosts susceptible to Sclerotinina sclerotiorum. Can J Plant Pathol,1994,16:93-108.
    54. Bortfeld M, Auffarth K, Kahmann R, Basse CW. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrbl. The Plant Cell,2004,16:2233-2248.
    55. Boysen M, Boriam D, Mocal C. Identification at strain level of Rhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Curr Genetic,1996,29:174-181.
    56. Brito N, Espino JJ, Gonzalez C. The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant-Microbe Interact,2006,19:25-32.
    57. Buck K W. Fungal Virology-An overview. In:Buck K W (eds.), Fungal Virology. Boca Raton, CRC Press,1986,1-84.
    192. Castro M, Kramer K, Valdivia L, Ortiz S, Benavente J, Castillo A. A new double-stranded RNA mycovirus from Botrytis cinerea. FEMS Microbiol Lett 1999, 175:95-99.
    58. Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol Lett,2003,228:87-91.
    59. Catlett NL, Yoder OC, Turgeon BG. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell,2003,2:1151-1161
    60. Cessna G, Sears VE, Dickman MB, Low PS. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 2000,12:2191-2199.
    61. Chague V, Danit L-V, Siewers V, Schulze Gronover C, Tudzynski P, Tudzynski B, Sharon A. Ethylene sensing and gene activation in Botrytis cinerea:a missing link in ethylene regulation of fungus-plant interactions? Mol Plant-Microbe Interact,2006, 19:33-42.
    62. Chague V, Elad Y, Barakat R, Tudzynski P, Sharon A. Ethylene biosynthesis in Botrytis cinerea. FEMS Micorbiol. Ecol,2002,40:143-149.
    193. Chaloux PH, Liu YC, Milgroom MG, MacDonald WL. The effects of dsRNAs on growth and sporulation of Cryphonectria parasitica isolates recovered from previous hypovirus introduction sites. Phytopathology,1998,88:545.
    63. Chen B, Choi GH, Nuss DL. Attenuation of fungal virulence by synthetis infectious hypovirus transcripts. Science,1994,264:1762-1764.
    64. Choquer M, Boccara M, Vidal-Cros A. A semi-quantitative RT-PCR method to readily compare expressionlevels within Botrytis cinerea multigenic families in vitro and in planta. Curr Genet,2003,43:303-309.
    65. Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M. Botrytis cinerea virulence factors:new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett,2007,277:1-10.
    66. Chu YM, Jeon JJ, Yea SJ, Kim YH, Yun SH, Lee YW, Kim KH. Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol,2002,68: 2529-2534.
    67. Chu YM, Lim WS, Yea SJ, Cho JD, Lee YW, Kim KH. Complexity of dsRNA mycovirus isolated from Fusarium graminearum, Virus Genes,2004,28:135-143.
    68. Collado IG, Aleu J, Hernandez-Galan R, Duran-Patron R. Botrytis species:an intriguing source of metabolites with wide ranges of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Organic Chem,2000,4:1261-1286.
    69. Collado IG, S'anchez AJ, Hanson JR. Fungal terpene metabolites:biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep,2007,24:674-686.
    70. Colmenares AJ, Aleu J, Duran-Patron R, Collado IG, Hernandez-Galan R. The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J. Chem. Ecol.,2002,28:997-1005.
    71. Craven MG, Pawlyk DM, Choi GH, Nuss DL. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol,1993,67:6513-6521.
    72. Cui W, Beever RE, Parkes SL. An osmosensing histidine kinase mediates Diearboximide fungieide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet Biol,2002,36:187-198
    73. Cutler HG, Springer JP, Arrendale RF, Arison BH, Cole PD, Roberts RG. Cinereain: a Novel metabolite with plant growth regulating properties from Botrytis cinerea. Agric Biol Chem,1988,52:1725-1733.
    74. David L, Strider D. Disease of floral crops. Publisher:New York, NY:Praeger,1985.
    75. De Guido MA, Minafra A, Santomauro A, Faretra F. Molecular characterization of mycoviruses in Botryotinia fuckeliana. XIV International Botrytis Symposium,2007, 21-26.
    76. Dean RA. Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol,1997,35:211-34.
    77. Dehlne HW, Spengler G. Untersuchungen zum einfluss von ethephon auf pflanzenkrankheiten. Phytopathology,1982,2:27-28.
    78. Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG, Williamson B. Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry,2001,57: 689-692.
    79. Deng F, Xu R, Boland GJ. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology,2003,93:1407-1414.
    80. Dieleman-Van Zaayen A. Intracellular appearance of mushoom virus in fruiting bodies and basidiospored of Agaricus bisporus. Virology,1972,47:94-100
    81. Dixon KP, Xu JR, Smirnoff N, Talbot NJ. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell,1999,11,2045-2058.
    82. Doehlemann G, Molitor F, Hahn M. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol,2005,42:601-610.
    83. Doehlemann G, Berndt P, Hahn M. Different signaling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol,2006a,59:821-835
    84. Doehlemann G, Berndt P, Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology,2006b,152:2625-2634.
    85. Doherty M, Coutts RHA, Brasier CM, Buck KW. Sequence of RNA-dependent RNA polymerase genes provides evidence for three more distinct mitoviruses in Ophiostoma novo-ulmi isolate Ld. Virus Genes,2006,33:141-144.
    86. Elad Y. Control of infection and sporulation of Botrytis cinerea on bean and tomato leaves by yeasts and other saprophytic microorganisms. Bulletin of the International Organization of Biological Control,1993a,14:195-199.
    87. Elad Y. Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology,1993b,42:324-331.
    88. Elad Y. Biological control of grape grey mould by Trichoderma harzianum. Crop Protection,1994,13:35-38.
    89. Elad Y, Kohl J, Fokkema N J. Control infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur J Plant Pathol,1994a,100: 315-336.
    90. Elad Y. Kohl J. Fokkema N J. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology,1994b,84:1193-1200.
    91. El-Kazzaz MK, Sommer NF, Kader AA. Ethylene effects on in vitro and in vivo growth of certain post harvest fruit-infecting fungi. Phytopathology,1983,73:998-1001.
    92. Espino J J, Brito N, Noda J, Gonzalez C. Botrytis cinerea endo-(β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol,2005,66:213-221.
    93. FAO, Recommended methods for the detection and measurement of resistance of plant pathogen to fungicides. General principles-FAO method no.26. FAO Plant Protection Bulletin,1982,30:39-50.
    94. Fourie JF, Holz G. Initial infection processes by Botrytis cinerea on nectarine and plum fruit and the development of decay. Phytopathology,1995,85:82-87.
    95. Fournier E, Levis C, Fortini D, Leroux P, Giraud T, Brygoo Y. Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia,2003,95:251-261.
    96. Fox DS, Heitman J. Good fungi gone bad:the corruption of calcineurin. Bioassays, 2002,24:894-903.
    97. Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryotic Cell,2007,6:546-54.
    98. Fullerton RA, Harris FM, Hallet IC, Rind distortion of lemon caused by Botrytis cinerea Pers. NZ J Crop Horticult Sci,1999,27:205-214.
    99. Garcia-Arenal F, Sagasta EM. Scanning electron microscopy of Botrytis cinerea penetration of bean (Phaseolus vulgaris) hypocotyls. Phytopathol Z,1980,99:37-42.
    100. Germeier C, Hedke K, Tiedemann A. The use of pH-indicators in diagnostic media for acid-producing plant pathogens. J Plant Dis. Prot.,1994,101:498-507.
    101. Ghabrial SA, Sanderlin RS, Calvert LA. Morphology and virus-like particle content of Helminthosporium victoriae colonies regenerated from protoplasts of normal and diseased isolates. Phytopathology,1979,69:931-936.
    102. Ghabrial SA, Soldevila AI, Havens WM. Molecular genetics of the viruses infecting the plant pathogenic fungus Helminthosporium victoriae. In Molecular Biology of Double-Stranded RNA:Concepts and Applications in Agriculture, Forestry and Medicine, ed. S Tavantzis, Boca Raton, FL:CRC Press,2002,213-36.
    103. Ghabrial SA, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol, 2009; 47:353-384.
    104. Giesbert S, Lepping HB, Tenberge KB, Tudzynski P, The xylanolytic system of Claviceps purpurea:cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phytopathology,1998, 88:1020-1030.
    105. Gioti A, Simon A, Le Pecheur P, Giraud C, Pradier JM, Viaud M, Levis C. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. J Mol Biol, 2006,358:372-386.
    106. Godoy G, Steadman JR, Dickman MB, Dam R. Use of mutants to demonstrate the role of OA in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol,1990,37:179-191.
    107. Gourgues M, Brunet-Simon A, Lebrun MH, Levis C. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol,2004,51:619-629.
    108. Govrin EM, Levine A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol,2000,10,751-757.
    109. Grente J, Sauret SL. Hypovirulence exclusive phenomene original in pathology vegetal. C. R. Acad.Sci.Ser. D.,1969,268:2347-2350.
    110. Grente J. Les formes hypovirulences d'Endothia parasitica et les wspoirs de lutte contrele chancre du chataignier.C. R. Acad. Agric. France,1965,51:1033-1037.
    111. Grente J, Berthelay-Sauret SS. Biological control of chestnut blight in France. In: MacDonald W L Cech F C.et al eds. Proceedings of the American chestnut symposium. Morgantown, West Virginia University,1978,30-34.
    112. Gullino ML, Garibaldi A. Resistance to fungicides in Botrytis cinerea:Present situation. Notiziario Malattie delle Plume,1986,63-71.
    113. Hammar S, Fulbright DW, Adams GC. Association of double-stranded RNA with low virulence in an isolate of Leucostoma persoonii. Phytopathology,1989,79:568-572.
    114. Havir EA, Anagnostakis SL, Oxalate production by virulent but not by hypovirulent strains of Endothia parasitica. Physiol. Plant Pathol.,1983,23:369-376.
    115. Hegedus DD, Rimmer SR. Sclerotinia sclerotiorum:when "to be or not to be" a pathogen? FEMS Microbiol Lett,2005,251:177-184.
    116. Heiniger U, Rigling D. Biological control of chestnut blight in Europe. Annu Rev Phytopathol,1994,32:581-599.
    117. Hoffman DD, Diers BW. Selected Soybean Plant Introductions with Partial Resistance to Sclerotiuia sclerotiorum. Plant Dis.,2002,971-980.
    118. Hollings M. Viruses associated with dieback disease of cultivated mushrooms. Nature,1962,196,962-965.
    119. Holz G, Coertze S, Williamson B. The ecology of Botrytis on plant surfaces. In: Botrytis:Biology, Pathology and Control (Elad Y, Williamson B, Tudzynski P, Delen N, eds.), Netherlands:Kluwer Academic Publishers, Dordrecht.2004,9-27.
    120. Hong Y, Dover SL, Cole TE, Brasier CM, Buck KW. Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi. Virology,1999, 258:118-127.
    121.Howitt RLJ, Beever RE, Pearson MN, Forster RLS. Presence of double-stranded RNA and virus-like particles in Botrytis cinerea. Mycol Res,1995,99:1472-1478.
    122. Howitt RLJ, J Beever RE, Pearson MN, Forster RLS. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant 'potex-like' viruses. J Gen Virol,2001,82:67-78.
    123. Howitt RLJ, Beever RE, Pearson MN, Forster RLS. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant potex-like viruses. Arch Virol,2006,151:563-579.
    124. Ian BD, Khor HY, Don GH. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genet Biol,2004,41:102-108.
    125. Ihrmark K, Johannesson H, Stenstrom E, Stenlid J. Transmission of double-stranded RNA in Heterobasidion annosum. Fungal Genet Biol,2004,36:147-154
    126. Jarvis WR. Botryotinia and Botrytis species:taxonomy, physiology, and pathogenicity. Monograph No.15. Ottawa, Ontario, Canada:Canadian Department of Agriculture,1977.
    127. Jiang D, Ghabrial SA.. Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J Gen Virol,2004,85: 2111-2121.
    128. Jung MK, Wilder TB, Oakley BR. Amino acid alterations in the benA (β-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Mitil and Cytoskeleton,1992,22:170-174.
    129.Jurick WM, Rollins JA. Deletion of the adenylate cyclase (sacl) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol,2007,44:521-530.
    130. Kalatn T, Eald Y, Yunis H. Resistnace to diethoefencab (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol,1989,38:86-92.
    131. Kamakura T, Yamaguchi S, Saitoh K, Teraoka T, Yamaguchi I. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium. Mol Plant-Microbe Interact,2002,15:437-444.
    132. Kars I, van Kan JA L. Extracellular enzymes and metabolites involved in pathogenesis of Botrytis. In:Botrytis:Biology, Pathology and Control (Elad Y, Williamson B, Tudzynski P & Delen N, eds), Kluwer Academic Publishers, Dordrecht, the Netherlands,2004,99-118.
    133. Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, van Kan JA. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J,2005a,43:213-225.
    134. Kars I, McCalman M, Wagemakers L, van Kan JA. Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis:Bcpmel and Bcpme2 are dispensable for virulence of strain B05-10. Mol Plant Pathol,2005b, 6:641-652.
    135.Kato Y. Negatively correlated cross resistance between benzimidazole fungieides and mehty1N-(3,5-dichlorophenyl) carbamate. J Pesticide Sci,1984,9:489-495.
    136. Kim J, Min JY, Bae YS, Kim HT. Molecular Analysis of Botrytis cinerea Causing Ginseng Grey Mold Resistant to Carbendazim and the Mixture of Carbendazin Plus Diethofencarb. Plant Pathol,2009,25:322-327.
    137. Kim S, Ahn IP, Rho HS, Lee YH. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol,2005, 57:1224-37.
    138. Klimpel A, Schulze Gronover C, Williamson B, Stewart JA, Tudzynski B. The adenylate cyclase (BAC) in Botrytis cinerea is requiered for full pathogenicity. Mol Plant Pathol,2002,3:439-450.
    139. Koenraadt H, Somverille S G, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl resistant field Strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,1992,82:1348-1354.
    140. Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol Plant-Microbe Interact,2002,15: 1268-1276.
    141. Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M. Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea. PLoS Pathog,2009,5:1-13
    142. Kunz C, Vandelle E, Rolland S, Poinssot B, Bruel C, Cimerman A, Zotti C, Moreau E, Vedel R, Pugin A, Boccara M. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol,2006, 170:537-550.
    143. Lakshman DK, Tavantzis SM. Spontaneous appearance of genetically distinct double-stranded RNA elements in Rhizoctonia solani. Phytopathology,1994,84:633-639.
    144. Latoerre BA, Spadaro 1, Rioja ME. Occurrence of resistant strains of Bortytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Port,2002,21:957-961.
    145. Lau GW, Hamer JE. Acropetal:A Genetic Locus Required for Conidiophore Architecture and Pathogenicity in the Rice Blast Fungus. Fungal Genet. Biol,1998, 24:228-239.
    146. Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev,2000,64:746-785.
    147. Lenski RE, May RM. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J.Theoretical Biol.,1994,169: 253-265.
    148. Leroux P, Fritzr R, Gredt M. Etudes en laboratoire de souches de Botrytis cinerea Pers., resistantes a la dichlozoline, au dicloran, au quintozene, a la vinchlozoline et au 26019RP (ou glycophene). Phytopathol. Z.1977,89:347-58.
    149. Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci,2002,58:876-888.
    150. Li H, Fu Y, Jiang D, Li G, Ghabrial SA, Yi X. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res,2008,135:95-106.
    151. Lindberg GR. Reduction in pathogenicity and toxin production in diseased Helminthosporium victoriae. Phytopathology,1959,50:457-461.
    152. Liu H, Fu Y, Jiang D, Li G, Xie J, Peng Y, Yi X, Ghabrial SA. A novel mycovirus that is related to the human pathogen Hepatitis E virus and rubi-like viruses. J Virol, 2009,83:1981-1991.
    153. Ma Z, Yan L, Luo Y, Michailides TJ. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochem. Physiol.,2007,88:300-306.
    154. Mansfield JW, Richardson A. The ultrastructure of interactions between Botrytis species and broad bean-leaves. Physiol Plant Pathol,1981,19:41-48.
    155. Manteau S, Abouna S, Lambert B, Legendre L. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol,2003,43:359-366.
    156. Marumo S, Katayama M, Komori E, Ozaki Y, Natsume M, Kondo S. Microbial production of abscisic acid by Botrytis cinerea. Agr Biol Chem,1982,46:1967.
    157. Masner P, Muster P and Schmid J, Possible methionine biosynthesis inhibition by pyrimidinamine fungicides in Botrytis cinerea. Pesticide Sci,1994,42:163-166.
    158. Melzer MS, Ikeda SS, Boland GJ. Interspecific transmission of double-stranded RNA and Sclerotinia sclerotiorum to S. minor. Phytopathology,2002,92:780-784
    159. Moleleki N, van Heerden SW, Wingfield MJ, Wingfield BD, Preisig O. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl Environ Microbiol,2003,69: 3952-3956.
    160. Moller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res,1992,20:6115-6116.
    161. Monteiro-vitorillo CB, Bell JA, Fulbright DW. A cytoplasmically transmissible hypovirulence phenotype associated with mitochondrial DNA mutations in the chestnut blight fungus Cryphonectria parasitica. Proc Natl Acad Sci,1995,92:5933-5939.
    162. Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol,2005,42:200-212.
    163.Moyo S, Gashe BA, Collision EK, Mpuchane S. Optimizing growth for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. Int J Food Microbiol,2003,85:87-100.
    164. Nagahama K, Ogawa T, Fujii T, Tazaki M., Tanase S, Morino Y, Fukuda H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J Gen Microbiol,1991,137:2281-2286.
    165.Nuss DL, Koltin Y. Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol,1990,28:37-58.
    166. Nuss DL. Biological control of chestnut blight:an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev,1992,56:561-576.
    167. Nuss DL. Hypovirulence:mycoviruses at the fungal-plant interface. Nat Rev Microbiol,2005,3:632-642.
    168. Oshima M, Fujimura M, Bannos S, Hashimoto C, Motoyama T, Ichiishi A, Yagamushi I. A point mutation in the two component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 2002,92:75-80.
    169. Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol,2009,10:115-128.
    170. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol,2000,81:3107-3114.
    171.Prins, T.W. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In:Fungal Pathology (Kronstad, J.ed), Kluwer Academic Publishers, 2000,33-64.
    172. Prospero S, Conedera M, Heiniger U, Rigling D. Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology,2006,96:1337-1344.
    173. Quidde T, Buttner P, Tudzynski P. Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and clong and functional analysis of a gene coding for a putative avenacinase. Eur. J. Plant Pathol.,1999,105:273-283.
    174. Rawlinson C J and Maclean D J. Virus-like particles in axenic cultures of Puccinia graminis tritici. Trans Br Mycol Soc.,1973,81:590-594.
    175. Reino JL, Hernandez-Galan R, Duran-Patron R, Collado IG. Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol,2004,152:563-566.
    176. Reis H, Pfiffi S, Hahn M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol,2005,6:257-267.
    177. Rigling D, Heiniger U, Hohl HR. Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica. Phytopathology,1989, 79:219-223.
    178. Rijkenberg FHJ, de Leeuw GTN, Verhoeff K. Light and microscopy studies on the infection of tomato fruits by Botrytis cinerea. Can J Bot,1980,58:1394-1404.
    179. Rogers HJ, Buck KW, Brasier CM. A mitochondrial target for double-stranded RNA in diseased isolates of the fungus that causes Dutch elm disease. Nature,1987,329: 558-560.
    180. Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P. Functional analysis of H2O2-generating systems in Botrytis cinerea:the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol,2004,5:17-27.
    181. Rosslenbroich HJ, Brandes W, Kriiger BW, Kuck KH, Pontzen R., Stenzel K, Suty A. Fenhexamid (KBR 2738)—A novel fungicide for control of Botrytis cinerea and related pathogens. The 1998 Brighton Conference, Pests and Diseases,1998,327-334.
    182. Rui O, Hahn M. The Sit 2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol,2007,8:173-184.
    183. Sasaki A, Kanematsu S, Suzaki K, Miyanishi M, Suzuki N, Nuss DL, Yoshida K. Extending chestnut blight hypovirus host range within Diaporthales by biolistic delivery of viral cDNA. Mol Plant-Microbe Interact,2002,15:780-789.
    184. Schoonbeek HJ, Del Sorbo G, de Waard MA. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant-Microbe Interact,2001,14:562-571.
    185. Schouten A, van Baarlen P, van Kan JAL. Phytotoxic Nepl-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. N Phytol.,2008,177:493-505.
    186. Schulze Gronover CS, Kasulke D, Tudzynski P, Tudzynski B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact,2001,14:1293-1302.
    187. Schulze Gronover CS, Schorn C, Tudzynski B. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant-Microbe Interact,2004, 17:537-546.
    188. Schumacher MM, Enderlin CS, Selitrennikoff CP. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol,1997,34:340-347.
    189. Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell,2007,6:211-221.
    190. Seong K, Hou Z, Tracy M, Kistler HC, Xu JR. Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology,2005,95:744-750.
    191. Sharman S, Heale JB. Penetration of carrot roots by the grey mould fungus Botrytis cinerea Pers. Physiol Plant Pathol,1977,10:63-71.
    192. Shin KS, Lee YJ. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch Biochem Biophys, 2000,384:109-115.
    193.Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, Tudzynski B, Tudzynski P. Functional analysis of the cytochrome P450 monooxygenase gene bcbotl of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant-Microbe Interact,2005,18:602-612.
    194. Smit WA, Wingfield BD, Wingfield MJ. Reduction of laccase activity and other hypovirulence-associated traits on dsRNA-containing strains of Diaporthe ambigua. Phytopathology,1996,68:1311-1316.
    195. Smith CM. History of bnezimidazole use and resistance in fungieides resistance in North America. American Phytopathol. Soc,1988,23-25.
    196. Solano R, Stepanova A, Chao Q, Ecker JR. "Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene-insensitive 3 and ethylene-insensitive-response factos 1. Genes Dev,1998,12:3703-3714
    197. Soulie MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A:Disruption of Botrytis cinerea class I chitin synthase gene Bcchsl results in cell wall weakening and reduced virulence. Fungal Genet Biol,2003,40:38-46.
    198. Soulie MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cros A. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol,2006,8:1310-1321.
    199. Staats M, van Baarlen P, Schouten A, van Kan JAL, Bakker FT. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genet Biol,2007,44: 52-63.
    200. Staples RC, Mayer, AM. Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol Lett,1995,134:1-7.
    201. Suzaki K, Ikeda K, Sasaki A, Kanematsu S, Matsumoto N, Yoshida K. Horizontal transmission and host-virulence attenuation of totivirus in violet root rot fungus Helicobasidium mompa. J Gen Plant Pathol,2005,71:161-68.
    202. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B. Magnaporthe grisea Pathogenicity Genes Obtained Through Insertional Mutagenesis, Mol Plant-Microbe Interact,1998,11:404-412.
    203. Tan CMC, Pearson MN, Beever RE, Parkes SL. Why Fungi Have Sex? South Africa Virus Genes,2007,28:135-143.
    204. ten Have A., Mulder W, Visser J, van Kan JAL. The endopolygalacturonase gene Bcpgl is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 1998,11:1009-1016.
    205. ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JAL. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol,2001,33:97-105.
    206. ten Have A, Tenberge KB, Benen JA, Tudzynski P, Visser J, van Kan JAL. The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. The Mycota XI, Agricultural Applications (Kempken F, ed),2002,341-358.
    207. ten Have A, Dekkers E, Kay J, Phylip LH, van Kan JAL. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology,2004,150,2475-2489.
    208. Tenberge KB. Morphology and cellular organisation in Botrytis interactions with plants. In:Botrytis:Biology, Pathology and Control. Elad Y, Williamson B, Tudzynski P, Delen N, eds. Netherlands:Kluwer Academic Publishers, Dordrecht. 2004,67-84.
    209. Tudzynski B, Gronover CS. Signalling in Botrytis cinerea. Botrytis:Biology, Pathology and Control. Elad Y, Williamson B, Tudzynski P, Delen N, eds,. Netherlands:Kluwer Academic Publishers, Dordrecht.2004,85-97.
    210. Tudzynski B, Sharon A. Biosynthesis, biological role and application of fungal hormones.in:The Mycota X:Industrial Application. H. D. Osiewacz, ed.2002, Spring-Verlag, Berlin
    211. Tudzynski P, Siewers V. Approaches to molecular genetics and genomics of Botrytis. Botrytis:Biology, Pathology and Control. Elad Y, Williamson B, Tudzynski P, Delen N, eds, Netherlands:Kluwer Academic Publishers, Dordrecht.2004.53-60.
    212. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M. Disruption of Botrytis cinerea pectin methylesterase gene Bcpmel reduces virulence on several host plants. Mol Plant-Microbe Interact,2003,16:360-367.
    213. van Kan JA, van't Klooster JW, Wagemakers CA, Dees DC, van der Vlugt-Bergmans CJ. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant-Microbe Interact,1997,10:30-38.
    214. Van Baarlen P, Staats M, van Kan JAL. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol,2004,5:559-574.
    215. van Kan JAL. Licensed to kill:the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci,2006,11:247-253.
    216. Verhoeff K, Leeman M, van Peer R., Posthuma L, Schot N, van Eijk GW. Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol,1988,122:327-336.
    217. Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM, Levis C. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol,2003,50:1451-1465.
    218. Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P, Kunduru AR, Leroux P., Legendre L. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant-Microbe Interact,2006,19:1042-1050.
    219. Viaud MC, Balhadere PV, Talbot NJ. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell,2002,14:917-930
    220. Viterbo A, Yagen B, Mayer AM. Cucurbitacins,'attack' enzymes and laccase in Botrytis cinerea. Phytochemistry,1993,32:61-65.
    221. Voigt CA, Schafer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J.,2005,42:364-375.
    222. Wang H, Dong JG, Shang HS. An ABAGE-Like metabolite of Boryrrs cinerea isolate BC4 inhibited the growth of hypocotyls and roots of Amaranlhus relroflexus seedlings. Agricultuarl Sciences in China,2005a,4:548-588.
    223. Wang H, Dong JG, Shang HS. An ABAGS-Like metabolite of Boryrrs cinerea isolate BC4 and its inhibitory activity to seed germination of weeds. Agricultuarl Sciences in China,2005b,4:845-850.
    224. Wang P, Nuss DL. Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GFP-binding-protein-linked signaling pathway involved in fungal pathogenesis. Prol Natl Acad Sci,1995, 92:1529-1533.
    225. Wei CZ, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix. J Gen Virol, 2003,84:2431-2437.
    226. Wu M, Zhang L, Li G, Jiang D, Hou M, Huang H. Hypovirulence and double-stranded RNA in Botrytis cinerea. Phytopathology,2007,97:1590-1599.
    227. Wubben JP, Mulder W, ten Have A, van Kan JAL, Visser J. Cloning and partial characterisation of endopolygalacturonase genes from Botrytis cinerea. Appl. Environ. Microbiol,1999,65:1596-1602.
    228. Wubben JP, ten Have A, van Kan JAL, Visser J. Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet,2000,37,152-157.
    229. Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol,2006,87:241-49.
    230. Xu JR. Map kinases in fungal pathogens. Fungal Genet Biol,2000,31:137-152.
    231. Yardes O, Katan T. Muattions in the beta-tublin gene of benomyl-resistant phenotypes of Botrytis cinerea. BCPC Monograph Fungicide Resistance,1994:60.
    232. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. P Natl Acad Sci USA.2010 107:8387-8392
    233. Zhang L, Fu Y, Xie J, Jiang D, Li G, Yi X. A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum. Virol J.2009,6:1-9.
    234. Zhao H., Kim YK, Huang L, Xiao CL. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharvest Biol Technol,2010,56:12-18.
    235. Zhao X, Kim Y, Park G, Xu JR. A Mitogen-Activated Protein Kinase Cascade Regulating Infection-Related Morphogenesis in Magnaporthe grisea. The Plant Cell, 2005,17:1317-1329.
    236. Zheng L, Campbell M, Murphy J, Lam S, Xu JR. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant-Microbe Interact, 2000,13:724-732.
    237. Ziogas BN., Nikou D, Markoglou AN, Malandrakis AA, Vontas J. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. Eur J Plant Pathol,2009, 125:97-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700