核盘菌弱毒相关DNA病毒1特性及其应用潜能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)是一种分布广泛的重要植物病原真菌。由其引起的菌核病是多种农作物的重要病害,严重威胁农产品的产量和品质。·真菌病毒广泛存在于真菌中,一些真菌病毒可以引起病原真菌致病力衰退,对作物真菌病害具有良好的生物防治潜力。
     从来自油菜罹病植株的菌核中分离获得了核盘菌菌株DT-8。DT-8表现出弱毒特性,其菌丝生长缓慢、菌丝细且分支杂乱、色素分布不均、菌核小且菌核原基形成时间晚于健康菌株4~6天,致病力非常弱。在DT-8的菌丝中分离获得了两条小的ssDNA片段,大小分别为2kb和500bp左右。挑取DT-8的菌丝尖端进行培养,可以获得不携带这两条DNA片段的培养物,它们在生长、菌核形成和致病力等方面与正常菌株没有显著区别,但通过与DT-8接触后,它们可以重新获得2kb和500bp的DNA片段,并表现出弱毒特性,推定这两条的DNA片段与DT-8菌株的弱毒现象相关。经克隆和测序分析发现2.0kb DNA片段为单链环状DNA病毒,500bpDNA为其亚基因组,命名该病毒为核盘菌弱毒相关DNA病毒1(Sclerotinia sclerotiorum hypovirulence associated DNA virus1, SsHADV-1)。
     病毒SsHADV-1的基因组全长2166nt,编码两个基因,病毒链编码外壳蛋白(coat protein, CP),互补链编码复制相关蛋白(Replication associated protein, Rep);两个开放阅读框由大基因间隔区(Large intergenic region, LIR)和小基因间隔区(Small intergenic region, SIR)隔开,在LIR中包含复制和转录起始的相关元件,这些结构都与双生病毒科中玉米线条病毒属的病毒基因组结构相似。对序列进行系统进化分析,发现Rep的氨基酸序列与双生病毒同源性较高可以聚为一簇,Rep中包含有类似双生病毒的保守结构域和滚环复制相关的模体;而CP在已知蛋白数据库中找不到任何同源序列。透射电镜观察SsHADV-1病毒粒子形态,呈等轴球形,直径20~22nm。该发现首次证实了真菌中存在DNA病毒,也为双生病毒的起源和进化研究提供了新的材料。
     一般认为真菌病毒缺乏体外传播途径,只能通过寄主的菌丝融合和繁殖进行传播,真菌病毒的这种特性也是限制利用病毒控制真菌病害的重要因子。对峙培养试验结果表明SsHADV-1可以在核盘菌不同营养亲和型之间较高频率地扩散,预示SsHADV-1在自然界的扩散可能不会受到寄主营养体不亲和性的限制。当纯化的病毒粒子与核盘菌菌落接触后,可以直接侵入核盘菌菌丝,使其转变成弱毒菌株;进一步研究发现病毒粒子可以直接侵染所有测试的不同营养体亲和型的核盘菌菌株,表明SsHADV-1对寄主的营养亲和型没有选择性。病毒DNA没有侵染性,不能直接侵染菌丝,甚至也不能侵染核盘菌的原生质体,表明SsHADV-1的直接侵染需要有完整的病毒粒子;但研究也发现病毒DNA可以在聚乙二醇(PEG)的介导下成功转染核盘菌原生质体。这些试验结果不仅进一步证实了SsHADV-1可以引起核盘菌的致病力衰退,也首次表明有些真菌病毒,如SsHADV-1,存在体外传播途径。
     SsHADV-1存在体外传播途径,预示该病毒对菌核病具有良好的生防潜力。用2mg/ml SsHADV-1病毒粒子预处理离体或活体拟南芥,可以有效抑制核盘菌的侵染和菌核病发病,在所形成的病斑上可以分离到携带SsHADV-1的菌株,表明在拟南芥叶片上的SsHADV-1病毒粒子对核盘菌有侵染能力。再者,菌核病病斑形成2天后喷洒SsHADV-1病毒粗提液,可以抑制烟草和油菜叶片上的病斑扩展,保护植株免遭核盘菌杀死,表明直接利用病毒粒子具有防治菌核病的潜能。大田试验也取得了显著的防病效果,喷洒携带SsHADV-1的核盘菌菌丝片段(~1×1O5cfu/mL)使菌核病发病率降低33.56%,促进油菜产量提高16.44%。将病毒粒子涂抹在活体拟南芥叶片表面,在15天后仍能检测到病毒存在,表明病毒粒子在体外相对稳定。研究表明SsHADV-1的寄主范围非常窄,只能侵染核盘菌属内真菌,不能够侵染与核盘菌亲缘关系相近的灰葡萄孢;荧光原位杂交试验和PCR扩增试验均表明SsHADV-1不能在拟南芥细胞中复制和增殖。这些试验结果表明可以利用SsHADV-1控制油菜菌核病。
     为深入研究病毒和寄主的相互关系,本研究成功建立了包含部分重复序列的SsHADV-1病毒全长的侵染性克隆载体。分别将2.0、1.8、1.3或1个单位长度的病毒基因组序列正向重复连入载体pKS中,利用PEG介导转染核盘菌原生质体的方式实现侵染。含有两个病毒LIR的的侵染性克隆载体转染后能够得到表型异常的再生菌株,经过核酸提取、特异性引物扩增和对峙培养传毒试验分析,证明转染子中存在游离的可水平传播的SsHADV-1病毒全长;然而含有1个单位长度的病毒基因组的载体转染后不能获得带毒的转染子。统计含有两个LIR结构的不同重复长度的载体转染成功率,发现重复片段越长,获得带毒转染子的频率越高,因此推测在SsHADV-1侵染性克隆载体释放游离病毒时,病毒重复序列之间的同源重组可能是产生病毒主要的途径。
     构建了缺失CP基因的SsHADV-1侵染性克隆载体,发现不含CP的缺陷病毒可以在核盘菌原生质体内复制,但是病毒核酸积累量很低而且不能系统侵染,在再生菌株中检测不到稳定存在的病毒;用绿色荧光蛋白基因eGFP替换CP基因,转染后可以在再生菌株的部分菌丝内观察到绿色荧光,但随再生菌株的生长,不能再检测到绿色荧光,说明缺乏CP的病毒在寄主中不稳定,容易丢失。这些结果说明CP基因在SsHADV-1复制和系统侵染中有非常重要的作用,是病毒不可缺少的蛋白。本研究建立的侵染性克隆体系为研究SsHADV-1与核盘菌的互作提供了非常好的平台,有助于研究真菌DNA病毒和寄主的相互关系。
Sclerotinia sclerotiorum (Lib.) de Bary is a notorious fungal pathogen with worldwide distribution. It could cause severe diseases in Brassica and affect the yield and quality of crop severely. Mycoviruses are known to infect and multiply in all major taxa belonging to the kingdom Fungi. Typically, mycoviruses have either double-stranded (ds) or single-stranded (ss) RNA genomes. They are thought not to be infectious as free particles and to lack an extracellular phase in their life cycles. Mycovirus-mediated hypovirulence is a phenomenon in which the virulence of fungal pathogens is reduced or even completely lost as a consequence of virus infection, thus these kinds of mycovirus are considered to be promising biocontrol agents against plant pathogenic fungi.
     Strain DT-8was isolated from the sclerotia in the diseased rapeseed plant stem. It developed abnormal colony morphology on potato dextrose agar (PDA) and exhibited hypovirulent phenotype when inoculated onto Arabidopsis thaliana or detached leaves of Brassica napus. The total DNA of strain DT-8was extracted and besides the fungal genomic DNA, there were two additional DNA bands with sizes of about2kb--large DNA element (LDE) and0.5kb-small DNA element (SDE), respectively, which were hypovirulence related. The genome of this circular ssDNA virus, named Sclerotinia sclerotiorum hypovirulence-associated DNA virus1(SsHADV-1), is2166nt, coding for a replication initiation protein (Rep) and a coat protein (CP). ORFs are separated by a large intergenic region (LIR) and a small intergenic region (SIR). There are geminivirus related bi-promoter and conserved sequences which are important for virus replication in the LIR.
     Although phylogenetic analysis of Rep showed that SsHADV-1is related to geminiviruses, it is notably distinct from geminiviruses both in genome organization and particle morphology. Surprisingly, we could not find any CP-related proteins in the known protein databases. Negatively stained viral particles observed with an electron microscope were nontwinned isometric particles,20~22nm in diameter, which are clearly different from the geminivirus. The molecular mass of CP is about35kDa by SDS/PAGE analysis. The0.5kb SDE, which is also circular single-stranded, is proved to be subgenomic DNA of SsHADV-1according to the sequence analysis. Thus, this is the first time that we demonstrated that a DNA virus could replicate in a fungus in nature and reported an ssDNA virus infecting fungi.
     We found that this virus was surprisingly easy to transmit from strain DT-8to strains belonging to other vegetative compatibility groups (VCGs). Furthermore, Polyethylene glycol (PEG) mediated transfection of fungal protoplasts was successful with either purified SsHADV-1particles or viral DNA isolated directly from infected mycelium. Then we continued to test the infectivity of SsHADV-1towards S. sclerotinia. We demonstrated that purified particles of SsHADV-1are infectious when applied extracellularly to its fungal host S. sclerotiorum. Virus particles isolated from infected host can infect the hyphae of virus-free S. sclerotiorum directly when applied to hyphae grown on PDA plates or spread on leaves of Arabidopsis thaliana and Brassica napus.
     When applied on leaves, virus infection could suppress development of lesions induced by S. sclerotiorum. Although SsHADV-1can infect host strains belonging to different VCGs when applied externally, it has a narrow host range. Virus particles are likely to be very stable on the leaves of Arabidopsis plants since viral DNA could be detected at15dpi on unwounded leaves and at10dpi on wounded leaves, respectively; however, this virus could not infect and move in plant cells. Our findings may prompt a change in the generalization that mycoviruses lack an extracellular phase in their life cycles; and the potential of using DNA mycoviruses as natural fungicides appear to be promising and may stimulate the search for other DNA mycoviruses.
     To advance the exploration of SsHADV-1and its interaction with the fungal host, we constructed the infectious clones of SsHADV-1that contain tandemlytandemly repeated viral sequences with at least one full length SsHADV-1and two LIRs. Different repeated lengh of SsHADV-1were used to construct the vectors which are2units,1.8units,1.3units and1unit. When introduced into virulent S. sclerotinia strains by PEG-mediated transfection, a resurrected, cytoplasmically replicating DNA form is generated from the infectious copy except for the1unit vector. Comparision of the successful transformation efficiency among different infectious clone vectors showed the longer the repeated sequences, the higher the successful transformation efficiency. It suggested that the homologous recombination may play the major role in unit-length SsHADV-1DNA release from the vector.
     Efforts to test whether the CP deleted SsHADV-1could exist in S. sclerotiorum cells has been made, however, we could only detect low level of viral DNA which were easily lost during subculture, strains containing stable replicating CP deleted SsHADV-1could not be abtained. eGFP was used to subsititute for CP to construct the infectious clone vector and although the efficient and stable expression constructs were not observed, transient expression of introduced foreign genes was confirmed. Thus, the coat protein of SsHADV-1plays an essential role in virus maintenance and accumulation.
引文
1.陈士云,杨宝玉,高梅影,戴顺英.一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌.应用与环境生物学报,2005,11:173-176
    2.陈玉卿,张洁夫,伍贻美.芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定.中国油料,1993,2:4-7
    3.傅廷栋.杂交油菜的育种和应用.武汉:湖北科技出版社,1995
    4.何祖传,钱屹松,周健.油菜菌核病的发生规律及防治措施.现代农业科技,2008,8:87
    5.蓝海燕,王长海,张丽华等.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究.生物工程学报,2000,16:142-146
    6.李国庆,杨龙,姜道宏,黄俊斌.重寄生菌盾壳霉及其防治核盘菌菌核病的研究进展.湖北植保(创刊20周年特辑),2009,54-58
    7.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究I.华中农业大学学报,1995,125-129
    8.刘勇,柯绍英.双低油菜农杆菌介导法导入草酸氧化酶基因研究.西南农业学报,2007,20:1176-1179
    9.罗宽,任新国,周比文,陈道炎,杨健.油菜菌核病菌菌核上寄生真菌的研究.中国油料,1987,3:40一44
    10.齐永霞,陈方新,苏贤岩等.安徽省油菜菌核病菌对多菌灵的抗药性监测.中国农学通报,2006,9:371-373
    11.石志琦,周明国,叶钟音等.油菜菌核病菌对多菌灵的抗药性监测.江苏农业学报,2000,16:226-229
    12.腾飞.核盘菌弱毒相关RNA病毒(SsDRv)感染雪腐核盘菌的初步研究.[硕士学位论文].武汉,华中农业大学,2008
    13.杨新美.油菜菌核病在我国的寄主范围及生态特性的调查研究.植物病理学,1959,15:111-1217
    14.郑在武.菌核病在武穴油菜苗期发生严重.湖北植保,2005,1:7
    15. Adams PB, Ayers WA. Ecology of Sclerotinia species. Phytopathology,1979,69: 896-898
    16. Ahn, IP and Lee, YH. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol Plant Micro In,2001,14,496-507
    17. Allen TD, Dawe AL, Nuss DL. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell,2003,2:1253-65
    18. Allen TD and Nuss DL. Specific and Common Alterations in Host Gene Transcript Accumulation following Infection of the Chestnut Blight Fungus by Mild and Severe Hypoviruses. J Virol,2004,78:4145-4155
    19. Alvarez F, Castro M, Principe A, et al. The plant-associated Bacillusamyloliquefaciens strains MEP218 and ARP23 capable of roducing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. JAppl Microbiol,2012,112:159-174
    20. Anagnostakis SL. Biological control of chestnut blight. Science,1982, 215:466-471
    21. Anagnostakis SL, Hau B, Kranz J. Diversity of vegetative compatibilitygroups of Cryphonectria parasitica inConnecticut and Europe. Plant Dis,1986,70:536-38
    22. Anagnostakis SL, Chen B, Geletka LM, et al. Hypovirus transmission toascospore progenyby field-released transgenic hypovirulent strains of Cryphonectria parasitica. Phytopathology,1998,88:598-604
    23. Aoki NH, Moriyama MK, Arie T, et al. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res,2009,140:179-187
    24. Attoui H, Mertens PPC, Becnel J, et al. Reoviridae. In:Fauquet C M, Mayo M A, Maniloff J, Desselberger U, and Ball L A, eds. Virus Taxonomy, ninth Report of the International Committee on Taxonomy of Viruses. London, UK:Elsevier press, 2011,541-637.
    25. Bailey KL, Johnston AM, Kuteher HR, et al. Managing crop losses from foliar diseases with fungicides, rotation, and tillage in the Saskatchewan Parkland spring sown oilseed rape.Crop Protection,2000,17:405-411
    26. Banks GT, Buck KW, ChainEB,et al. Antiviral activity of double stranded RNA from a virus isolated from Aspergillus foetidus. Nature,1970,227:505-507.
    27. Barbara B, Richard LK, Michael NP. Recombinant expression of the coat protein of Botrytis virus X and development of an immunofluorescence detection method to study its intracellular distribution in Botrytis cinerea. J Gen Virol,2012,93: 2502-2511
    28. Bardin SD, Huang HC. Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol,2001,23:88-98
    29. Bashi ZD, Rimmer SR, Khachatourians GG, et al. Factors governing the regulation ofSclerotinia sclerotiorum cutinase A and polygalacturonase 1 during different stages of the infection. Can J Microbiol,2012 a,58:605-616
    30. Bashi ZD, Rimmer SR, Khachatourians GG, et al. Brassica napus polygalacturonaseinhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizingactivities and delay symptoms in transgenic plants. Can JMicrobiol,2012 b,10.1139/cjm-2012-0352
    31. Bateman DF, Beer SV. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotinia rolfsii. Phytopathology,1965,55:204-211
    32. Bateman DF, and Basham HG Degradation of plant cell walls and membranes by microbial enzymes. In:Heitefuss R and williams P H eds, Physiol Plant Pathol. Berlin, Springer-Verlag Press,1976,316-355
    33. Biraghi, A. Possible active resistance to Endothia parasiticain Castanea sativa. In Reports to 11thCongress of the International Union of Forest Research Organizations.International Union of Forest Research Organizations,Rome.1953, p.643-645
    34. Boland GJ, Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol,1994,16:93-108
    35. Bolton MD, Thomma BP, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol,2006, 7:1-16
    36. Borah BK and Dasgupta I. Begomovirus research in India:a critical appraisal and the way ahead. J Biol sci,2012,37:791-806
    37. Bosque-Perez NA. Eight decades of maize streak virus research. Virus Res,2000, 71:107-21
    38. Boulton MI. Construction of infectious clones for DNA viruses: mastreviruses.Methods Mol Biol,2008,451:503-23
    39. BrandV, Leeuwen JM, Schapendonk M, et al. Metagenomic analysis of the viral flora of pine marten and European badger feces. J Virol,2012,86:2360-2365
    40. Broglie K. Transgenic plants with enhanced resistance to the fungal pathogen Rhizocton solani. Science,1991,254:1194-1197
    41. Brusini J, Robin C. Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. J Virol Methods. 2013,187:435-42
    42. Bryner SF, Rigling D. Virulence not only costs but also benefits the transmission of a fungal virus. Evolution,2012,66:2540-50
    43. Budge SP, whipps JM. Potential for integrated control of Sclerotina sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology,2001,91:221-227
    44. Buck KW, Chain EB, Darbyshire JE. High cell wall galactosamine content and virus particles in Penicillium stoloniferum. Nature,1969,223:1273-1273
    45. Buck K. Molecular variability of viruses of fungi. In:Molecular Variability of Fungal Pathogens (Bridge, P.D., Couteaudier, Y. and Clackson, J.M., eds),1998, pp.53-72. Wallingford, UK:CAB International.
    46. Carbone I, Liu YC, Hillman BI, MilgroomMG Recombination and migrationof Cryphonectria hypovirus 1 asinferred from gene genealogies and thecoalescent. Genetics,2004,166(4):1611-29
    47. Carolina GC, G Javier O, Eric P, et al. Isolation and characterization of subgenomic DNAs encapsidated in"single" T=1 isometric particles of Maize streak virus. Virology,2004,323:164-171
    48. CasadevallA, Nosanchuk JD, Williamson P,et al. Vesicular transport across the fungal cell wall. Trends Microbiol,2009,17:158-162
    49. Castro M, Kramer K, Valdivia L, et al. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol Lett, 2003,228:87-91
    50. Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell,2010,9:1724-1727
    51. Chen B, Choi GH, Nuss DL. Mitoticstability and nuclear inheritance ofintegrated viral cDNA in engineering hypovirulentstrains of the chestnut blightfungus. EMBO J,1993,12:2991-98
    52. Chen B, Nuss DL. Infectious cDNA clone of hypovirus CHV1-Euro7:A comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol,1999,73:985-992
    53. Chen B, Choi G, Nuss DL. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science,1994,264:1762-1764
    54. Chen B, Gao S, Choi GH and Nuss DL. Extensive alteration of fungal gene transcript accumulation and elevation of G-protein-regulated cAMP levels by a virulence-attenuating hypovirus. Proc Natl Acad Sci USA,1996,93:7996-8000
    55. Chen C, Harel A, Gorovoits R, et al. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol Plant-Microbe Interact,2004,17:404-413
    56. Chiba S, Salaipeth L, Lin YH, et al. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix:molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol,2009,83:12801-12812
    57. Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N. Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J Virol,2013,87:2330-41
    58. Cho WK, Yu J, Lee KM, et al. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics,2012,13:173
    59. Choi GH, Shapira R, Nuss DL. Co-translational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypo virulence of the chestnut blight fungus. Proc Natl Acad Sci USA,1991, 88:1167-1171
    60. Choi GH, Nuss DL. Hypovirulence of chestnut blight fungus conferred by an infectious cDNA. Science,1992,257:800-803
    61. Choi GH, Dawe AL, Churbanov A, et al. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics.2012,190:113-27
    62. Cortesi P and Milgroom MG. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl Environ Microbiol,1998,64:2988-2994
    63. Cortesi P, McCulloch CE, Song H, Lin H and Milgroom MG. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics,2001,159:107-118
    64. Craven MG, Pawlyk DM, Choi GH, and Nuss DL. Papain-like protease p29 as asymptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J Virol,1993,67:6513-6521
    65. Crisanto G, Elena RP, M. Mar C, et al. Geminivirus DNA replication and cell cycle interactions. Vet Microbiol,2004,98:111-119
    66. Darissa O, Willingmann P, Schafer W, Adam G. A novel double-stranded RNA mycovirus from Fusarium graminearum; nucleic acid sequence and genomic structure. Arch Virol.2011,156:647-58
    67. Dawe VH, Kuhn CW. Virus-like particles in the aquatic fungus, Rhizidiomyces. Virology,1983a,130:10-20
    68. Dawe VH, Kuhn CW. Isolation and characterization of a double-stranded DNA mycovirus infecting the aquatic fungus, Rhizidiomyces. Virology,1983b, 130:21-28
    69. Dawe AL, McMains VC, Panglao M, et al. An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology,2003,149: 2373-84
    70. Dawe AL, Segers GC, Allen TD, McMains VC, Nuss DL. Microarray analysis of Cryphonectria parasitica Galpha- and Gbetagamma-signalling pathways reveals extensive modulation by hypovirus infection. Microbiology,2004,150:4033-43
    71. Dayaram A, Opong A, Jaschke A, et al. Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res,2012,166:130-135
    72. Deng F, Allen TD, Hillman BI, Nuss DL. Comparative analysis of alterations in host phenotype and transcript accumulation following hypovirus and mycoreovirus infections of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell,2007,6:1286-98
    73. Ding SW. RNA-based antiviral immunity. Nat Rev Immunol,2010,10:632-644
    74. Dong XB, Ji RQ, Guo XL, et al. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta,2008,228:331-340
    75. Domingo E, Holland J. RNA virus mutations and fitness for survival. Annu Rev Microbiol,1997,51:151-178
    76. Dowd PF. Insect fungal symbionts:a promising source of detoxifying enzymes. J Ind Microbiol,1992,9:149-161.
    77. Drake CS, Gwen NR, Mattew CS, et al. Replicational release of geminivirus genomes from tandemly repeated copies:Evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci USA,1991,88:8029-8033
    78. Dry IB, Krake LR, Rigden JE, et al. A novel subviral agent associated witha geminivirus:The first report of a DNA satellite. Proc Natl Acad Sci USA,1997, 94:7088-7093
    79. Dutton MV, Evans CS. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment. Can J Microbial,1996,42:881-895
    80. El-Sherbeini M, Bostian KA. Viruses in fungi:Infection of yeast with the Kl and K2 killer viruses. Proc Natl Acad Sci USA,1987,84:4293-4297
    81. Fauquet CM, Mayo MA, Maniloff J, et al. (eds) Virus Taxonomy:Eighth Report of the International Committee on Taxonomy of Viruses. San Diego:Elsevier Academic Press.2005
    82. Fauquet CM, Bisaro DM, Briddon RW, et al. Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol,2003,148:405-21
    83. Favaron F, Sella L, Ovidio R. Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol PlantMicrobe Interact,2004,17:1402-1409
    84. Fravel DR, Connick WJ, Grimm CC, et al. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii. J Agr Food Chem,2002,50:3761-3764
    85. Gao K, Xiong Q, Xu J, Wang K, Wang K. CpBirl is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet Biol.2013,51:60-71
    86. Garcia-Arenal F, Fraile A, Malpica JM. Variability and genetic structure of plant virus populations. Annu Rev Phytopathol,2001,39:157-186
    87. Gerlagh M, Goossen-van de Gejin HM, Fokkema NJ, et al. Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology,1999,89:141-147
    88. Ghabrial SA, Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol, 2009,47:353-384
    89. Ghabrial SA. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes,1998,16:119-131
    90. Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol,2006,9:553-558
    91. Godoy G, Steadman JR, Dickman M B, et al. Use of mutants to demonstratethe role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant P,1990,37:179-191
    92. Goker M, Scheuner C, Klenk HP, et al. Codivergence of mycoviruses with their hosts. PLoS One,2011,6(7):e22252. doi:10.1371.
    93. Graves AH. Relative blight resistancein species and hybrids of Castanea. Phytopathology,1950,40:1125-31
    94. Grente J. Les formes hypo virulences d' Endothia parasitica et les espoirs de lutte contrele chancre du chataignier. C R Acad Agric France,1965,51:1033-1037
    95. Grente J, Sauret S. L'hypovirulence exclusive phenomene original in pathologie vegetal. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 1969.268:2347-2350
    96. Grente J, Berthelay Sauret S. Biological control of chestnut blight in France. Proceedings of the American Chestnut Symposium. Morgantown,1978,30-34
    97. Grimsley N, Hohn R, Davies JW, et al. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature,1987,325:177-179
    98. Guimaraes RL, Stotz HU. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol,2004,136:3703-3711
    99. Guo L, Sun L, Chiba S, et al. Coupled termination/reinitiation for translation of the downstream open reading frame B of the prototypic hypo virus CHV1-EP713. Nucleic Acids Res,2009,37:3645-3659
    100. Gutierrez C. DNA replication and cell cycle in plants:learning from geminiviruses. EMBO J,2000,19(5):792-9
    101. Hajek AE, Stleger RJ. Interactions between fungal pathogens and insect hosts. Annu Rev Entomol,1994,39:293-322
    102. Hammond TM, Andrewski MD, Roossinck MJ, Keller NP. Aspergillus Mycoviruses Are Targets and Suppressors of RNA Silencing. Eukaryot Cell,2008, 7:350-357
    103. Hanley-Bowdoin L, Settlage SB, Orozco BM, et al. Geminiviruses:models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol,2000,35:105-40
    104. Harrison BD. Advances in geminivirus research. Annu Rev Phytopathol, 1985,23:55-82.
    105. Heald FD, Gardner MW, Studhalter RA. Air and wind dissemination of ascospores of the chestnut blight fungus. JAgric Res,1915,3:4930-526
    106. Hegedus DD, Rimmer SR. Sclerotinia sclerotiorum:when "to be or not to be" a pathogen? FEMS Microbiol Lett,2005,251(2):177-84
    107. Hillman BI, Supyani S, Kondo H,et al. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to theColtivirus genus of animal pathogens. J Virol,2004,78:892-898
    108. Holley RC, Nelson B. Effect of plant population and inoculum density on incidence of Sclerotinia wilt of sunflower. Phytopathology,1986,76:71-74
    109. Hollings M. Viruses associated with a die-back disease of cultivated mushroom. Nature,1962,196:962-65
    110. Hollings M. Mycoviruses:Viruses that infect fungi. Adv Virus Res,1978,22: 1-53
    111. Hollings M, Stone O M. Viruses that infect fungi. Ann Rev Phytopathol, 1971,9:93-118
    112. Howitt RL, Beever RE, Pearson MN, et al. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant 'potex-like'viruses. J Gen Virol,2001,82:67-78
    113. Howitt RL, Beever RE, Pearson MN, Forster RL. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant 'potex-like' viruses. Arch Virol,2006,151:563-79
    114. Huang S, Soldevila AI, Webb BA, et al. Expression, assembly, and proteolytic processing of Helminthosporium victoriae 190S totivirus capsid protein in insect cells. Virology,1997,234,130-137
    115. Huang HC, Bremer E, Hynes RK, et al. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol control,2000,18:270-276
    116. Huang HC, Kozub GC. Longevity of normal and abnormal selerotia of Sclerotinia sclerotiorum. Plant Dis,1994,78:1164-1166
    117. Inglis GD, Boland GJ. The microflora of bean and rapeseed petals and the influence of microflora of bean petals on white mold. Can J Plant Pathol,1990, 12:129-134
    118. Irani H, Heydari A, Javan-Nikkhan M, et al. Pathogenicity variation and mycelial compatibility groups in Sclerotinia sclerotiorum. Journal of plant protection Re,2011,51:299-336
    119. Jain A, Singh S, Sarma BK, et al. Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. JAppl Microbiol,2012,112:537-550
    120. Jeger MJ, Termorshuizen AJ, Nagtzaam MPM, et al. The effect of spatial distributions of mycoparasites on biocontrol efficacy:a modelling approach. Biocontrol Sci Techn,2004,14:359-373
    121. Jeske H. Geminiviruses. Curr Top Microbiol Immunol.2009,331:185-226
    122. Jiang D, Ghabrial SA. Molecular characterization of Penicillium chrysogenum virus:reconsideration of the taxonomy of the genus Chrysovirus. J Gen Virol.2004,85:2111-21
    123. Jiang D, Fu Y, Guoqing L, Ghabrial SA. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv Virus Res,2013,86:215-248
    124. Xie J, Ghabrial SA. Molecular characterizations of two mitoviruses co-infecting a hyovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology,2012,428:77-85
    125. Kasza Z, Vagvolgyi C, Fevre M, et al. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr Microbiol,2004,48:208-213
    126. Kesarwani M, Azam M, Natarajan K, et al. Oxalate decarboxylase from Collybia velutipes:Molecular cloning and its over-expression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem,2000,275: 7230-7238
    127. Khalifa ME, Pearson MN. Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus. Virology, 2013,441:22-30
    128. Kim KS, Min JY, Dickman MB. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant-Microbe Interact,2008,21:605-612
    129. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby's Dictionary of the Fungi (CAB International, Wallingford),9th Ed.
    130. Kohn LM, Ignazio Carbone, Anderson J B. Mycelial interactions inSclerotinia sclerotiorum. Exp Mycol,1990,14:255-267
    131. Kondo H, Chiba S, Toyoda K, Suzuki N. Evidence for negative-strand RNA virus infection in fungi. Virology,2013,435:201-209
    132. Kozlakidis Z, Herrero N, Ozkan S, et al. Sequence determination of a quadripartite dsRNA virus isolated from Aspergillus foetidus. Arch Virol,2013, 158:267-72
    133. Krupovic M, Ravantti JJ, Bamford DH. Geminiviruses:A tale of a plasmid becoming a virus. BMC Evol Biol,2009,9:112
    134. Kwon SJ, Cho SY, Lee KM, et al. Proteomic analysisof fungal host factors differentially expressed by Fusarium graminearum infected withFusarium graminearum virus-DK21.Virus Res,2009,144:96-106
    135. Lee KM, Yu J, Son M, et al. Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS One, 2011,6:e21629
    136. Levy A and Tzfira T. Bean dwarf mosaic virus:a model system for the study of viral movement. Mol Plant Pathol,2010,11:451-61
    137. Li CX, Li H, Sivasithamparam K, et al. Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Aust J Agric Res,2006,57:1131-1135
    138. Li CX, Li H, Siddique A B, et al. The importance of the type and time of inoculation and assessment in the determination of resistance in Brassia napus and B. juncea to Sclerotinia sclerotiorum. Aust JAgric Res,2007,58:1198-1203
    139. Li CX, Liu S Y, Sivasithamparam K, Barbetti M J. New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorumin Chinese and Australian Brassica napusand B. juncea germplasm screened under Western Australian conditions. Australas Plant Path,2008,38:149-152
    140. Li DC, Shu C, Lu J. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia, 2005,159:223-229.
    141. Li G, Jiang D, Wang D, et al. Double-stranded RNAs associated with hypovirulence of Sclerotinia sclerotiorum. Prog Nat Sci,1999,9:837-841
    142. Li H, Fu Y, Jiang D, et al. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res,2008,135:95-106
    143. Li H, Li HB, Bai Y, et al. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J Microb,2011a,49: 884-889.
    144. Li H, Havens WM, Nibert ML, Ghabrial SA. RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (family Totiviridae). J Virol,2011b,85:7343-7352
    145. Li HX, Lu YJ, Zhou MQ et al. Mutation in β-tubulin of Sclerotinia sclerotiorum conferring resistance to carbendazim in rapeseed field isolate. Chin J Oil Crop Sci,2003,25:56-60
    146. Lin HY, Lan XW, Liao H, et al. Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721. J Virol,2007,81:1813-1820
    147. Lin YH, Chiba S, Tani A, et al. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology,2012, 426:42-50
    148. Lindberg GD. Reduction in pathogenicity and toxin production in diseased Helminthosporium victoriae. Phytopathology,1960,50:457-460
    149. Linder-BassoD, Dynek JN, Hillman BI. Genome analysis of Chryphonectria hypovirus 4, the most common hypovirus species in North America. Virology, 2005,337:192-203
    150. Liu, H, Fu Y, Jiang D, et al. A novel mycovirus that is related to the human pathogen Hepatitis E virus and Rubi-Like viruses. J Virol,2009,83:1981-1991
    151. Liu H, Fu Y, Xie J, et al. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol Biol,2012,12:91
    152. Liu YC, Linder-Basso D, Hillman BI, et al. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol Ecol,2003,12:1619-28
    153. Liu X, Yin YN, Yan LY. Sensitivity to iprodione and boscalid of Sclerotinia sclerotiorum isolates collected from rapeseed in China. Pestic Biochem Physiol, 2009,95:106-112
    154. Lumsden RD, Dow RL. Histopathology of Sclerotinia sclerotiorum infection of bean. Phytopathology,1973,63:708-715
    155. Ma HX, Feng XJ, Chen Y, et al. Occurrence and Characterization of Dimethachlon Insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China. Plant Dis,2009,93:36-42
    156. MacDonald WL, Fulbright DW. Biological control of chestnut blight:Use and limitation of transmissible hypovirulence. Plant Dis,1991,75:656-661
    157. Magliani W, Conti S, Gerloni M, et al. Yeast killer systems. Clin Microbiol Rev,1997,10:369-400
    158. Magro P, Marciano P, Lenna PD. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Lett,1984,24:9-12
    159. Mandal AK and Dubey SC. Genetic diversity analysis of Sclerotinia sclerotiorum causing stem rot in chickpea using RAPD, ITS-RFLP, ITS sequencing and mycelial compatibility grouping. World J Microbiol Biotechnol, 2012,28(4):1849-55
    160. Mansoor S, Briddon RW, Zafar Y, et. al. Geminivirus disease complexes:An emerging threat. Trends Plant Sci,2003,8:128-134
    161. Manuel J, Selin C, Fernando WGD, et al. Stringent response mutants of Pseudomonas chlororaphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro. Microbiology,2012,158:207-216
    162. Marciano P, Di Lenna P, Magro P. Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotorum isolates on sunflower. Physiol Plant Pathol,1983,22:339-345
    163. Marquez LM, Redman RS, Rodriguez RJ, et al. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science,2007,315:513-515
    164. McCabe PM, Pfeiffer P, and van Alfen NK. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol,1999,7:377-381
    165. Melzer MS, Ikeda SS, Boland GJ. Interspecific transmission of double-stranded RNA and Sclerotinia sclerotiorum to S. minor. Phytopathology, 2002,92:780-784
    166. Milgroom MG. Biological control of chestnut blight with hypovirulence:A critical analysis. Annu. Rev. Phytopathol,2004,42:311-38
    167. Moffat AS. Plant pathology:Geminiviruses emerge as serious crop threat. Science,1999,286:1835
    168. Moleleki N, van Heerden SW, Wingfield MJ, et al. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl Environ Microbiol,2003,69: 3952-3956
    169. Morsy MR, Oswald J, He J, et al. Teasing apart a three-ways ymbiosis: Transcriptome analyses of Curvularia protuberata in response to viral infectionand heat stress. Biochem Biophys Res Commun,2010,401:225-230
    170. Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett,2009,583:1825-1832
    171. Mullineaux, PM, Donson, J, Morris-Krsinich, BAM, et al. The nucleotide sequence of maize streak virus. EMBO J,1984,3:3063-3068
    172. Nash TE, Dallas MB, Reyes MI, et al. Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol,2011,85:1182-1192
    173. Nathalie P, Sandrine C, Genevieve BG, et al. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology,2001,147:717-726
    174. Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S. Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol,2011,49:219-48
    175. Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett,2009,583:1825-1832
    176. Ng TFF, Willner DL, Lim YW, et al. Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PloS ONE,2011,6:e20579
    177. Nuss DL. Hypovirulence:mycoviruses at the fungal-plant interface. Nature Reviews Microbiol,2005,3:632-642
    178. Nuss DL. Biological Control of Chestnut Blight:an Example of Virus-Mediated Attenuation of Fungal Pathogenesis.Microbiol Rev,1992,56: 561-576
    179. Ojaghian MR. Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica,2011,39:185-193
    180. Parameswaran P, Sklan E, Wilkins C, et al. Six RNA viruses and forty-one hosts:Viral small RNAs and modulation of small RNA repertories in vertebrate and invertebrate systems. PLoS Pathog,2010,6:e 1000764
    181. Park Y, Chen X, Punja ZK. Diversity, complexity and transmission of double-stranded RNA elements in Chalara elegans (syn. Thielaviopsis basicola). Mycol Res,2006,110,697-704
    182. Patterson CL, Grogan RG Differences in epidemiology and control of lettuce drop caused by Sclerotinia minor and S. sclerotiorum. Plant Dis,1985,69: 766-770
    183. Pavari A. Chestnut blight in Europe. Unasylva,1949,3:8-13
    184. Pearson MN, Beever RE, Boine B, et al. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol,2009,10:115-128
    185. Pearson MN, Bailey AM. Viruses of botrytis. Adv Virus Res,2013,86: 249-72
    186. Purdy LH. Sclerotinia sclerotiorum:history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology,1979,69: 875-880
    187. Rietz S, Bernsdorff FE, Cai D. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. JExp Bot,2012,63:5507-5519
    188. Rigden JE, Dry IB, Krake LR, et al. Plant virus DNA replication processes in Agrobacterium:Insight into the origins of geminiviruses. Proc Natl Acad Sci USA, 1996,93:10280-10284
    189. Rio LED, Martinson CA, Yang XB. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Dis,2002,999-1004
    190. Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol, 1991,57:1478-1484
    191. Riou C, Freyssinet G, Fevre M. Purification and characterization of extracellular pectinolytic enzymes produced by Sclerotinia sclerotiorum. Appl Environ Microbiol,1992,58:578-583
    192. Rock KR, Guthrie RJ, Woods RD. Purification of maize streak virus and its relationship to steal disease of sugar cane and Panicum maximum. Ann Appl Biol, 1994,77:289-296
    193. Rojas MR, Hagen C, Lucas WJ, et al. Exploiting chinks in the plant's armor: Evolution and emergence of geminiviruses. Annu Rev Phytopathol,2005,43: 361-394
    194. Rollins JA. The Sclerotinia sclerotiorum pacl gene is required for sclerotial development and virulence. Mol Plant-Microbe Interact,2003,16:785-795
    195. Rosario K, Dayaram A, Marinov M, et al. Diverse circular ssDNA viruses discovered in dragonflies (Odonata:Epiprocta). J Gen Virol,2012,93 (Pt 12): 2668-2681
    196. Rollins JA, Dickman MB. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol,2001,67:75-81
    197. Ryder LS, Harris BD, Soanes DM, et al. Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology,2012,158:84-97
    198. Sasaki A, Onoue M, Kanematsu S, et al. Extending chestnut blight hypo virus host range within diaporthales by biolistic delivery of viral cDNA. Mol Plant Microbe Interact,2002,15:780-789
    199. Sasaki A, Kanematsu S, Onoue M, et al. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Arch Virol, 2006,151:697-707
    200. Saupe SJ. Molecular Genetics of Heterokaryon Incompatibility in Filamentous ascomycetes. Microbiol Mol Biol Rev,2000,64:489-502
    201. Schmitt MJ and Breinig F. The viral killer system in yeast:from molecular biology to application. FEMS Microbiol Rev,2002,26:257-276
    202. Segers GC, van Wezel R, Zhang X, et al. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cells,2006,5:896-904
    203. Segers GC, Zhang X, Deng F, et al. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci USA,2007, 104:12902-12906
    204. Selth LA, Randies JW, Rezaian MA. Agrobacterium tumefaciens supports DNA replication of diverse geminivirus types. FEBS Lett.2002,516:179-82
    205. Shapira R, Choi GH, and Nuss DL. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J,1991a,10:731-739
    206. Shapira R and Nuss DL. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J Biol Chem,1991b,266:19419-19425
    207. Smit WA, Wingfield BD, Wingfield M J. Reduction of Laccase Activity and Other Hypovirulence Associated Traits in dsRNA-Containing Strains of Diaporthe ambigua. Phytopathology,1996,86:1311-1316
    208. Stammler G, Benzinger G, Speakman J. A rapid and reliable method for monitoring the sensitivity of Sclerotinia sclerotiorum to Boscalid. J Phytopathol, 2007,155:746-748
    209. Steadman JR. Control of plant disease caused by Selerotinia species. Phytopathology,1979,69:904-907
    210. Sun Q, Choi GH, and Nuss DL. A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci USA,2009,106:17927-17932
    211. Suzuki N, Chen B, and Nuss DL. Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J Virol,1999,73:9478-9484
    212. Suzuki N and Nuss DL. The contribution of p40 to hypo virus-mediated modulation of fungal host phenotype and viral RNA accumulation. J Virol,2002, 144:260-267
    213. Suzuki N, Maruyama K, Moriyama M, et al. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and virus transmission. J Virol,2003,77:11697-11707
    214. Suzuki N, Supyani S, Maruyama K, Hillman BI. Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. J Gen Virol. 2004,85:3437-48
    215. Suzaki K, Ikeda KI, Sasaki A, et al. Horizontal transmission and host-virulence attenuation of totivirus in violet root rot fungus Helicobasidium mompa. J Gen Plant Pathol,2005,71:161-168
    216. Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood,Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol,2011,28:2731-2739
    217. Whon TW, Kim MS, Roh SW, et al. Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere. J Virol,2012, 86(15):8221
    218. Thompson C, Dunwell JM, John EE, et al. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica,1995, 85:169-172
    219. Turkington TK, Morrall R AA. Use of petal infestation to forecast Sclerotinia stem rot of canola:the influence of inoculum variation over the flowering period and canopy density. Phytopathology,1993,83:682-689
    220. Urayama S, Kato S, Suzuki Y, et al. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. J Gen Virol, 2010,91:3085-3094
    221. Van Heerden SW, Geletka LM, Preisig O, et al. Characterization of South African Cryphonectria cubensis Isolates Infected with a C. parasitica Hypovirus. Phytopathology,2001,91:628-632
    222. Van Regenmortel M. Virus species and virus identification:past and current contoversies. Infect Genet Evol,2007,7:133-144
    223. Vanitharani R, Chellappan P, Fauquet CM. Geminiviruses and RNA silencing. Trends Plant Sci,2005,10(3):144-51
    224. Varga J, Toth B, Vagvolgyi C. Recent advances in mycovirus research. Acta Microbiol ImmunolHung.2003,50:77-94
    225. Veliceasa D, Enunlu N, Kos PB, et al. Searching for a new putative cryptic virus in Pinus sylvestris L. VirusGenes,2006,32(2):177-86
    226. Voth PD, Mairura L, Lockhart BE, et al. Phylogeography of Ustilago maydis virus H1 in the USA and Mexico. J Gen Virol.2006,87:3433-3441
    227. Wang JX, Ma HX, Chen Y, et al. Sensitivity of Sclerotinia sclerotiorum from oilseed crops to boscalid in Jiangsu Province of China. Crop Prot,2009,28: 882-886
    228. Wang S, Kondo H, Liu L, Guo L, Qiu D. A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Virus Res, 2013,174:69-77
    229. Wang XY, Li Q, Niu XW, et al. Characterization of a canola C2 domaingene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum J Exp Bot,2009,60:2613-2620
    230. Wei CZ, Osaki H, Iwanami T, et al. Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix. J Gen Virol,2003,84: 2431-2437
    231. Wei CZ, Osaki H, Iwanami T, et al. Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae. Arch Virol,2004,149:773-777
    232. Whipps JM and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. My col Res,1992,96:897-907
    233. Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, et al. Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism.Eur J Plant Pathol,2008,121:323-330
    234. Wickner RB. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol Rev,1996,60:250-265
    235. Wickner RB, et al. (2008). "The Yeast dsRNA Virus L-A Resembles Mammalian dsRNA Virus Cores". Segmented Double-stranded RNA Viruses: Structure and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-21-9.
    236. Williams B, Kabbage M, Kim H, et al. Tipping the balance:Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog,2011,7:e1002107.
    237. Woodruff JB. Chestnut blight in Italy. Trees (the journal of the U.S. National Arborist Association),1946, April:8-9,16
    238. Wu M, Zhang L, Li G, Jiang D, Ghabrial SA. Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology.2010,406:117-26
    239. Wu MD, Jin FY, Zhang J, et al. Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. J Virol,2012,86:6605-6619
    240. Xie J, Wei D, Jiang D, et al. Characterization of hypovirulence associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol,2006,87:241-249
    241. Xie J, Ghabrial SA. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology,2012,428:77-85
    242. Xu L and Chen W. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. Mol Plant Microbe Interact,2013,26(4):431-441
    243. Yin YN, Liu X, Shi ZQ, Ma ZH. A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum. Pestic Biochem Physiol,2010,97:36-42
    244. Zakharchenko NS, Kochetkov VV, Buryanov YI, et al. Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Appl Biochem Microbiol,2011,47:661-666
    245. Zeng FY, Gong XY, Hamid MI, et al. A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol, 2012a,49:347-357
    246. Zeng WT, Kirk W, Hao JJ. Field management of Sclerotinia stem rot of soybean using biological control agents. Biol Control,2012b,60:141-147
    247. Zhang X and Nuss DL. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc Natl Acad Sci USA,2008,105:16749-16754
    248. Zhang X, Segers GC, Sun Q, et al. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an Inducible DCL-2-dependent pathway. J Virol,2008,82:2613-2619
    249. Zhao J, Udall J, Quijada P, et al. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet,2006,112:509-516
    250. Zhou T, Boland G J. Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can J Plant Pathol, 1999,21:93-99
    251. Zhu W, Wei W, Fu Y, et al. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One,2013, 8(1):e53901
    252. Zisis K, Caroline HV, Jamal BD, et al. Oxalate Molecular characterisation of two novel double-stranded RNA elements from Phlebiopsis gigantean. Virus Genes,2009,39(1):132-136
    253. Zuppini A, Navazio L, Sella L, et al. Anendopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling andprogrammed cell death in soybean cells. Mol Plant-Microbe Interact,2005,18:849-855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700