呋喃喹啉类生物碱白鲜碱体外抗真菌活性及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真菌性感染是临床上重要的感染性疾病。然而随着抗真菌剂的广泛应用,临床耐药菌株不断增多,使得真菌耐药性问题日趋严重,因此急需开发新型抗真菌药物和寻找新型治疗方案。目前,从中草药中寻找有效抗真菌成分已成为研究热点。本研究旨在明确植物白鲜皮的活性成分呋喃喹啉类生物碱白鲜碱的体外抗真菌活性,考察其与常用抗真菌制剂氟康唑对白色念珠菌和红色毛癣菌等致病真菌协同抗菌效果,并以模式真菌酿酒酵母为研究对象力求从分子生物学角度阐明其作用机制。首先通过微量稀释法药物敏感性实验、棋盘式微量稀释实验、体外琼脂扩散实验和时间-杀菌曲线研究了白鲜碱对临床分离耐药真菌的体外敏感性。在此基础上,针对模式真菌酿酒酵母,运用基因芯片技术、实时荧光定量PCR、Western blotting技术、药物荧光吸收检测、激光扫描共聚焦、流式细胞术等研究了白鲜碱对模式真菌的作用机制。本研究在国内外首次将白鲜碱与氟康唑联合应用抗临床分离致病性真菌,结果表明,两药联合对26株耐药白色念珠菌中的20株菌具有显著协同效果,对红色毛癣菌和酿酒酵母菌株也具有显著的协同作用,FICI(Fractional inhibitory concentration index)值在0.25-1.5之间;两药合用药片的抑菌圈直径明显扩大且抗真菌活性的增强大于2 log10 CFU/mL。本研究在国际上首次利用DNA芯片技术从全基因组水平评价白鲜碱对模式真菌酿酒酵母基因表达谱的影响,揭示白鲜碱的抗菌作用分子机制,结果表明在白鲜碱诱导下,酵母细胞中的889个基因差异表达(表达倍数≥2),511个上调,378个下调,其中多药耐药、脂质生物合成、DNA复制和重组等pathway受到白鲜碱的影响。实时荧光定量RT-PCR和western blotting从基因水平和蛋白水平较好的检测了部分芯片结果。本研究还表明,白鲜碱能促使酿酒酵母细胞中若丹明6G外排增加,这与PDR5基因表达增高相关;64μg/mL的白鲜碱能明显提高酵母DNA含量(P<0.05),与DNA复制和重相关基因高表达相一致;32和64μg/mL的白鲜碱能显著破坏酿酒酵母细胞膜(P<0.05),这与细胞膜麦角固醇基因ERG高表达的芯片结果相一致。本研究为临床治疗真菌感染提供了新型治疗方案,为白鲜碱临床应用打下良好的基础。
Clinical infectious diseases are usually caused by three main types of micro-organisms including viruses, bacteria and fungi, so the treatment of fungal infections is an important part of clinical anti-infective treatment. At present, the application of drugs against fungi are restricted, because the drugs have high toxicity and are easy to produce drug resistance resulting in the risng of the recurrence rate and re-infection rates. There was an urgent need to develop new antifungal drugs with high efficiency and low toxicity. Currently, it is an important research direction and hot spot in the search for antifungal active ingredient from Chinese herbal medicine. In the past century, people have found more than 300 kinds of Chinese herbal medicines with anti-fungal activity. Furoquinoline alkaloids dictamnine, isolated from the root bark of Dictamnus dasycarpus Turcz (Rutaceae plants dry root bark), which has the activities of inhibiting platelet aggregation, anti-insects, vascular relaxation and so on. Recent studies have shown that dictamnine can induce the cytotoxicity of cervical cancer, colon cancer and oral cancer cell in human. It is worth noting that dictamnine has obvious antifungi activity.
     At present, the combined application of antifungal agents has become one of the clinical important development of the clinical anti-fungal treatment. However, combination therapy at home and abroad reported are limited in a small number of combination between the antifungal agents and some combinations can produce the antagonism. So, screening the antifungal composition from Chinese herbal medicine and combining with current antifungal agents is an effective treatment program. Through the combination of antifungal agents can improve the therapeutic effect and reduce of the drug toxicity.
     This study investigated the in vitro drug sensitivity of dictamnine alone and in combination with fluconazole (FLC) against clinical isolates fungi and by using the tests of minimal inhibitory concentration recommended by CLSI and checkerboard microdilution method, agar diffusion test, time-kill curves. The results showed that dictamnine have the antifungal activity. The interaction between FLC and dictamnine was synergistic in 20 out of 26 Candida albicans strains, Trichophyton rubrum and Saccharomyces cerevisiae (S. cerevisiae). At the same time, the two drugs found no antagonism. FICIs (Fractional inhibitory concentration index) ranging from 0.25 to 1.5. The MIC value of two drugs used in combination was lower than that of each drug used alone, the result showed that fluconazole and dictamnine have significant synergy antifungal activity in vitro. The results of agar diffusion test show synergy more intuitively. When fluconazole at 16μg combinated with different dose of dictamnine, the inhibition zone expanded significantly compared to the control. The boundary was clear and there is no colony growth in inhibition circle. To our knowledge, this is first report on evaluation of in vitro antifungi activity against clinical pathgenic fungi in combination with fluconazole and dictamnine. MTT cytotoxicity experiment showed that high-dose of dictamnine (≥1024μg/mL)had the the toxic effects on spleen cells of health mice, and this dose of dictamnine was hihger than MIC value of dictamnine against clinical drug-resistant fungal. So, viewing from the cytotoxic, dictamnine can be used as lead compounds for drug design. The experimental results can provide a reference of clinical medicine with dictamnine.
     DNA microarray have a great value in drug screening, target gene identification, drug testing and administration of personalized delivery, gene discovery, genomic library mapping, species identification of traditional Chinese medicine, DNA research, computer applications, and so on. Fortune forecasted that bio-chip will has more impact on human than the micro-electronic chip in the 21st century. Gene chip provides a powerful tool in the study of gene function for the“post-genome project”and in modern medical science and medical diagnostics.
     The yeast S. cerevisiae is an ideal organism for the study of antifungal action, because S. cerevisiae has strong ability of adapting to environmental changes, which has similar characteristics to higher organisms, most notably because the genome sequence of S. cerevisiae has already been completed and the function of almost 70% of the genes is known. Additional, S. cerevisiae DNA chips commercialized can be used to indicate putative gene function, understand biochemical pathways, and investigate relationships between regulators and their target genes. The advantages mentioned above make the possibility of studying the mechanism of antifungal agents on whole-genome by using S. cerevisiae as a model. In this study, the chips will provide a powerful tool for studying the global gene expression profile of S. cerevisiae induced by dictamnine. Microarray data analysis revealed that a large number of genes (889) were differentially expressed in response to dictamnine treatment. 511 genes increased in expression and 378 genes were inhibited. Transcriptome data was interpreted using the hierarchical cluster tool, T-profiler. The genes included in multidrug resistance response, lipid biosynthesis pathway, sulfate assimilation, DNA replication and DNA recombination were significantly regulated by dictamnine. The transcription factors rRPE, PAC, Novel Filamenta, PDR3, MSN2/4, RPN4, TBP and UPC2 were also affected by dictamnine. The results of microarray can lay the foundation for the study on the mechanism of dictamnine against other pathogenic fungi, especailly yeast-like fungi.
     In addition, quantitative real-time RT-PCR and western-blotting were performed to verify the microarray results of selected genes. There was positive correlation between microarray data and real time RT-PCR data for all 11 genes, six genes were induced and five genes were reduced in response to dictamnine. The western-blotting results showed that the quantity of protein multidrug efflux protein Pdr5p was increased, which was consistent with the results of microarray. The results lays the foundation for further study on drug-resistance mechanisms of pathogenic fungi treated by dictamnine.
     In order to furtherly verify the microarray results and clarify the action mechanism of dictamnine against fungi, we studied the effect of dictamnine on model fungus S. cerevisiae using the methods of glucose-dependent efflux of rhodamine 6G, laser scanning confocal microscopy and flow cytometry. The results showed that dictamnine can inhibit the growth of S. cerevisiae, the higher drug concentration, the stronger inhibition. Large dosage of dictamnine (2×MIC) can effect the intra-cellular hereditary substance, the contents of DNA was increased and inhibit the budding and sporing of S. cerevisiae; dictamnine can activate the efflux pump of S. cerevisiae, this is consistent with the result of microarray and western-blotting; the results of flow cytometry showed that dictamnine can fracture the cell membrane. Tests mentioned above are to lay the foundation in further explore the mechanism of the active ingredient from anti-fungal medicine.
     This paper provides the new treatment protocols to clinical treatment of fungal infections; provides a useful theoretical basis for studying the action mechanisms of dictamnine against pathogenic fungi; and lays the foundation for the development and utilization of dictamnine.
引文
[1] FRANKLIN T J, SNOW G A. Biochemistry and molecular biology of antimicrobial drug action (fifth edition) [M]. London : Kluwer academic publishers, 1998:39.
    [2] HENAR VALDIVIESO M, DURAN A, RONCERO C. Chitin synthases in yeast and fungi[J]. EXS, 1999, 87:55.
    [3] STEVENS D A. Drug interaction studies of a glucan synthase inhibitor (L Y 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens[J]. Antimirob Agents Chemother, 2000, 44:2547-2548.
    [4] LI R K, RINALD M G. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole[J]. Antimicrob Agents Chemother, 1999, 43:1401.
    [5] TOSHIKAZU OKI, YOKO YAMAZAKI, TAMOTSU FURUMAI et al. Pradimicin, a Mannose-binding Antibiotic, Induced Carbohydrate-mediated Apoptosis in U937 Cells[J]. Biosci Biotecnol Biochem, 1997, 61:1408-1410.
    [6] KI T, KAKUSHIMA M, HIRANO M, et al. In vitro and invo antifungal activities of BMS 181184[J]. J Antibiot (Tokyo), 1992, 45:1512.
    [7] OAKLEY K L, MOORE C B, DENNING D W. Activity of pradimicin BMS2181184 against aspergillusspp[J]. Int J Antimicrob Agents, 1999, 12:267-269.
    [8] BRAJTBURG J, POWDERLY W G, KOBAYASHI G S, et al. Amphotericin B: delivery systems[J]. Antimicrob Agents Chemother, 1990, 34:381-384.
    [9] FAVRE B, RYDER NS. Differential inhibition of fungal amd mammalian squalene epoxidases by the benzylamine SDZ SBA 586 in comparison with the allylamine terbinafine[J]. Arch Biochem Biophys, 1997, 340:265-269.
    [10]刘洪涛,张军东.真菌耐药性研究进展[J].中国药学杂志,2003,38(5):328-331.
    [11] GEORGOPAPADAKOU N H. Antifungals: mechanism of action and resistance , established and novel drugs[J]. Current Opinion in Microbiology, 1998, 1:547-557.
    [12] GHANNOUM M A, RICE L B. Antifungal agents : mode of action , mechanisms of resistance , and correlation of these mechanisms with bacterial resistance[J]. Clin Microbio Rev, 1999, 12:501-517.
    [13] KONTOYIANNIS D P, LEWIS R E. Antifungal drug resistance of pathogenic fungi[J]. The Lancet, 2002, 359:1135-44.
    [14] WHITE, T. C. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus[J]. Antimicrob Agents Chemother. 1997, 41:1482-1487.
    [15] ASAI K, TSUCHIMORI N ,OKONOGI K et al. Formation of azole - resistant candida albicans by mutation of sterol 14α-demet hylase P450[J].Antimicrob Agents Chemother,1999,43:1163-1169.
    [16] BERNHARDT H ,ZIMMERMANN K , KNOKE M ,et al Fungal resistance [J] Inf ect ion, 1999, 27(Suppl 2):S52-54.
    [17] STERLING T R, MERZ W G. Resistance to amphotericin B:emerging clinical and microbiological patterns[J]. Drug Resist Updat, 1998, 1:161-165.
    [18] SCHUETZER MUEHLBAUER M, WILLINGER B, KRAPF G, et al. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin[J]. Mol Microbiol, 2003, 48:225-235.
    [19] PEREA S , JOSE L , KIRKPATRICK W R, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candi da albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients[J]. Antimicrob Agents Chemother, 2001, 45:2676-2684.
    [20] ANAISSIE E J. Immunomodulation for the treatment of invasive fungal infections[J]. Clin Infect D is, 1998, 26:1264-1265.
    [21]杜冠华,胡娟娟,夏丽娟,等.药物筛选的发展与现状[J].药学学报,1998,33(11):876-879.
    [22]贺浪冲,杨广德.固定在硅胶表面膜的酶和受体活性及其色谱特性[J].科学通报,1999,44(6):632-637.
    [23]贺浪冲,杨广德,王嗣岑,等.用细胞膜色谱研究钙通道受体的相互作用[J].中国病理生理杂志.1999,14(7):959.
    [24] JAYAWICKREME C K, KOST T A.Gene expression system in the development of high-throughput screens [J]. Curr Opin Biotechnol, 1997, 8:629-634.
    [25]戴亚斌,何农跃,刘梅.基因芯片技术及其在微生物检测中的应用[J].动物医学进展,2006,27(10):41-46.
    [26] JELLS C L. Defining critical residues in the epitope for HIV-neutralizing monoclonal antibody using phage display and peptide array technologies[J]. Gene, 1993, 1379:63-68.
    [27] LIPSHUTZ D, MORRIS D, CHEE M, et al. Using oligonucleotide probe array to access genetic diversity[J]. Biotechniques, 1995, 19:422-447.
    [28] TELENTI A, IMBODEN P, MARCHESI F,et al. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis[J]. Antimicrob Agents Chemother, 1993, 37:2054-2058.
    [29] GINGERAS T R, GHANDOUR G, WANG E, et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays[J]. Genome Res, 1998, 8:435-448.
    [30] STRIZHKOV B N, DROBYSHEV A L, MIKHAILOVICH V M, et al. PCR amplification on a microarray of gel-immobilized oligonucleotides: detection of bacterial toxin- and drug-resistant genes and their mutations[J]. Biotechniques, 2000, 29:844-848.
    [31] WILSON M, DERISI J, KRISTENSEN H H, et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization[J]. Proc Natl Acad Sci U S A, 1999, 96:12833-12838.
    [32] MODRUSAN Z, MARLOWE C, WHEELER D, et al. CPT-EIA assays for the detection of vancomycin resistant vanA and vanB genes in enterococci[J]. Diagn Microbiol Infect Dis, 2000, 37:45-50.
    [33] DERISI J, VAN DEN HAZEL B, MARC P, et al. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants[J]. FEBS Lett, 2000, 470:156-60.
    [34] SCHENAM, SHALON D, HELLER R, et al. Parallel human genome analysis:microarray based exp ression monitoring of 1000 genes[J]. Proc Natl Acad Sci USA, 1996, 93:10614-10619.
    [35] DERISI J, PENLAND L, BROWN P O, et al. Use of a cDNA microarray to analyse gene exp ression patterns in human cancer[J]. Nat Genet, 1996, 14:457-460.
    [36] GOLUB T R, SLONIM D K, TAMAYO P, et al. Molecular classification of cancer: class discovery and class p rediction by gene expressio nmonitoring[J]. Science, 1999, 286:531-537.
    [37] STAM R W, DEN BOERML, MEIJERINK J P, et al. Differential mRNA expression of Ara-C2metabolizing enzymes exp lains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia[J]. Blood, 2003, 101:1270-1276.
    [38] FERRANDO A A, NEUBERG D S, STAUNTON J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia[J].Cancer Cell, 2002, 1:75-87.
    [39] LIN Y M, FURUKAWA Y, TSUNODA T, et al. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas[J]. Oncogene, 2002, 21: 4120-4128.
    [40] BAIRD R, WORKMAN P. Emerging molecular therapeutic drugs interfering with signal transduction pathways[A]. In: BRONCHUD M, FOOTEM A, GIACCONE G, et al, eds. Principles of molecular oncology[M]. Totowa: Humana Press Inc. , 2003. 569-606.
    [41] LJUBIMOVA J Y, LAKHTER A J, LOKSH A, et al. Overexp ression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis[J]. Cancer Res, 2001, 61:5601-5610.
    [42] FREIMANN S, BEN-AMI I, HIRSH L, et al. Drug development for ovarianhyper-stimulation and anti-cancer treatment: blocking of gonado trop in signaling for epiregulin and amphiregulin biosynthesis[J]. Biochem Pharmacol, 2004, 68: 989-996.
    [43] KASHCHAK N, TSARYK R, STOIKA R. Bystander effect of normalfibroblasts for macrophages cocultured with suscep tible transformed target cells[J]. Cell Biol Int, 2005, 29:41-50.
    [44] WULFKUHLE J, ESP INA V, LIOTTA L, et al. Genomic and p roteomic technologies for individualisation and improvement of cancer treatment[J]. Eur J Cancer, 2004, 40:2623-2632.
    [45] TAXMAN D J, MACKEIGAN J P, CLEMENTS C, et al. Transcrip tional profiling of targets for combination therapy of lung carcinoma with paclitaxel and mitogen activated protein extracellular signal regulated kinase kinase inhibitor[J]. Cancer Res, 2003, 63:5095-5104.
    [46] MAXWELL P J, LONGLEY D B, LATIF T, et al. Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling[J]. Cancer Res, 2003, 63:4602-4606.
    [47] HOWELL W M, CALDER P C, GRIMBLE R F. Gene polymorphisms, inflammatory diseases and cancer[J]. Proc Nutr Soc, 2002, 61:447-456.
    [48] ELEK J, PARK KH, NARAYANAN R. Microarray-based expression profiling in prostate tumors[J]. In Vivo, 2000, 14:173-82.
    [49]成丽俊.基因芯片技术在药物筛选中的应用[J].国外医学计划生育分册, 2002,2l(1):18-20.
    [50]杨红,熊清,杨足君,等.基因芯片技术及其在补血中药研究中的应用[J].生物技术讯,2006,17(4):673-676.
    [51]尹秀芝,李鸣良,杨冰心,等.月见草酊治疗563例手足癣疗效观察和分析[J].临床皮肤科杂志,1989(3):134-135.
    [52]陈松申.蛇床子乌梅煎治疗足癣39例.浙江中医杂志[J].1991,26(2):70.
    [53]何慧英,陆华国,许唐尧.复方苦参酊抗真菌实验及临床疗效观察[J].浙江中医学院学报,1991,15(5):32-33.
    [54]石丽霞,范申云,常世家,等.中药足癣净的研制、应用及体外抑菌实验[J].实用中西医结合杂志,1994,7(4):200-201.
    [55]曹立言.足癣净治疗足癣300例[J].安徽中医学院学报. 1994,13(3):38.
    [56]林青,赵远,曹东,等.中药外洗剂“舒阴洁”的主要药效学研究[J].云南中医中药杂志,1995,16(4):32-34.
    [57]谢舜辉,谢义达,曾宪稆.益气健脾灭霉汤治疗小儿念珠菌性肠炎26例[J].上海中医药杂志,1995,(1):25.
    [58]毕云,刘庆彤,罗恒进等.中药治疗念珠菌性口腔炎、肠炎及肺念珠菌病临床观察[J].实用中医药杂志,1996,(2):3-4.
    [59]范瑞强.复方香莲外洗液和外用霜治疗外阴阴道念珠菌病的临床观察[J].中国皮肤性病学杂志,1996,10(1):42.
    [60]陈学荣,陈德才.癣净洗剂治疗顽固性足癣116例观察[J].实用中医药杂志,1996,(5):35.
    [61]林伟民.中医药治疗孢子丝菌病31例疗效观察.中医杂志,1996 ,37 (4):223-224.
    [62]魏群生,郭振东,施绮云,等.洁肤康护肤液杀菌性能的实验室观察[J].中国消毒学杂志,1998,15(4):207-209.
    [63]赵劲风,陈国林,陈昌华.妇炎克颗粒剂体内外抑菌作用的研究[J].中国新药与临床药理,2000,11(4):221-223.
    [64]梁君儿,黎小斌,何成群.香荷药条治疗白色念珠菌性阴道炎的实验研究[J].实用医学杂志,2000,16(12):983-984.
    [65]谭元生,胡宏,黄大香,等.复方苦参洗液的药效学研究[J].湖南中医学院学报,2000,20(1):12-14.
    [66]刘庆彤,毕云,刘明,等.真菌ⅠⅡⅢ号合剂治疗念珠菌性口腔炎、肺念珠菌病及念珠菌性肠炎临床与实验研究[J].中医杂志,2001,42(2):98-100.
    [67]董幼祺,王邦才,张永兴.洁肠合剂治疗小儿霉菌性肠炎临床与实验研究[J].中国中西医结合杂志,2001,21(6):419-421.
    [68]杨国晶,朱慧明,洪英杰,等.复方苦槿霜抗真菌作用的实验研究[J].激光杂志,2004,25(5):94-96.
    [69]曾勇,孟宪丽,周邦靖,等.消炎抗癣霜抗真菌实验研究[J].成都中医药大学学报,2005,28(2):50-53.
    [70]徐洪波,喻文球.藿黄散洗剂抗皮肤癣菌实验研究[J].江西中医学院学报,2006,18(6):38-39.
    [71]刘小琴,万福珠,郑世玲.紫苏、白苏的抑菌实验[J].天然产物研究与开发,1999,12(1):42-45.
    [72]王理达,胡迎庆,屠鹏飞,等.13种生药提取物及化学成分的抗真菌活性筛选[J].中草药,2001,32(3):241-244.
    [73]宫毓静,安汝国,虞慧,等.164种中药乙醇提取物抗真菌作用研究[J].中草药,2002,33(1):42-47.
    [74]杜青云,胡永狮.姜黄挥发油洗剂对家兔石膏样毛藓菌感染模型的作用研究[J].药学实践杂志,2003,21(1):9091.
    [75]夏忠弟,李沛涛.山苍子油乳剂对白色念珠菌超微结构的影响[J].湖南医科大学学报,1992,17(4):329-332.
    [76]方芳,吕昭萍,王正文,等.山苍子油抗念珠菌的敏感性及作用机理的电镜研究[J].中华皮肤科杂志.2002,25(5):349-351.
    [77]侯幼红,王正文.七种中草药对白念珠菌体外粘附作用及电镜观察[J].中国皮肤性病杂志,1990,4(3):136.
    [78]纪丽莲,张强华.八种菊科中草药抗霉菌及饲料霉变的研究.生命科学研究[J].2003,7(4):350-354.
    [79]屠鹏飞,郭洪祝,果德安.中药与天然药物活性成分研究及新药的发现[J].北京大学学报(医学版),2002,34(5):513-518.
    [80]王昊,杨凤琴,潘梅,等.10种中药对致病性浅部真菌的抑菌实验研究[J].中医杂志,1997,38(7):431-432.
    [81]赵利琴.山胡椒属萜类及其生物活性研究进展[J].时珍国医国,2006,17(2):171-174.
    [82] BISHT G S, AWASTHI A K, DHOLE T N.Antimierobial activity of Hedychium Spicatum[J]. Fitoterapia, 2006, 77:240-242.
    [83]杨得坡,王发松,张宏达,等.竹叶楠叶挥发油的化学成分与抗真菌活性研究[J].广西植物,2000,20(2):181-184.
    [84] DE ALMEIDA ALVES T M, RIBEIRO F L, KLOOS H, et al. Polygodial,the Fungitoxic Component from the Brazilian Medicinal Plant Polygonum Punctatum[J]. Mem Inst Oswaldo Cruz, 2001, 96:831-833.
    [85] WEDGE D E, GALINDO J C, MACíAS F A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs[J]. Phytochemistry, 2000, 53:747-757.
    [86] SINGH M, PAL M, SHARMA R P. Biological activity of the lab-dane diterpenes [J].Planta Med,1999,65:2-8.
    [87] ALVAREZ L, PéREZ M C, GONZáLEZ J L, Navarro Vet al. SC-1, an antimycotic spirostan saponin from Solanum chrysotrichum[J]. Planta Med, 2001, 67:372-374.
    [88]王理达,果德安,胡迎庆,等.四种抗真菌天然产物对威克海姆原藻超微结构的影响[J].北京医科大学学报,2000,32(3):219-222.
    [89]汪长中,程惠娟,官妍等.苦参碱对体外白念珠菌生物膜抑制作用[J].中国公共卫生,2008,24(12):1491-1492.
    [90] DICKSON M, GAGNON J P.Key factors in the rising cost of new drug discovery and development[J]. Nature Reviews Drug Discovery, 2004, 3:417.
    [91] DO Q T, BERNARD P. Pharmacognosy and reverse pharmacognosy: a new concep t for accelerating natural drug discovery[J]. Drugs, 2004, 7:1017-1027.
    [92]李艳园,彭如习,陈桦,等.HPLC法测定白鲜皮中白鲜碱的含量[J].中药材,2006,29(8):802-803.
    [93] WU T S, WANG M L, SHYUR H J, et al. Chemical constituents and bioactive principles from the root bark of Dictamnus dasycarpus[J]. J Chin Pharm, 1994, 46:447-455.
    [94] El SAYED K, Al-SAID M S, El-FERALY F S, et al. New quinoline alkaloids from Ruta chalepensis[J]. Nat Prod, 2000, 63:995-997.
    [95] PFYFFER G E , TOWERS G H. Photochemical interaction of dictamnine , a furoquinoline alkaloid , with fungal DNA [J]. Can J Microbiol, 1982, 28:468-473
    [96]李劲松,宋诗铎,魏殿军.苏东念珠菌耐药相关基因研究[J].解放军预防医学杂志,2006,24(1):12-15. [97 PARKINSON T , FALCONER D J , HITCHCOCK C A. Fluconazole resistance due to energy dependent drug efflux in Candi da glabrata[J]. Antimicrob Agent Chemother,1995,29:1696.
    [98] DENNING D W, VENKATESWARLU K, OAKLEY K L ,et al. Itraconazole resistance in aspergillus fumigatus[J]. Antimicrob Agent Chemother,1997, 41:1364-13648.
    [99]苏英,李春阳,吴绍熙.念珠菌对唑类抗真菌药耐药机理及其相关因素的研究进展[J].国外医学皮肤性病学分册,1999,25(4):200-203.
    [100] National committee for clinical laboratory standards.Reference method forbroth dilution antifungal susceptibility testing of yeast;Approved Standard M27-A.Lancaster Avenue,Villanova.Pennsylvania:CLSI,1997.1-12.
    [101]李厚敏,刘伟,李若瑜.美国临床实验室标准化委员会2003年版产孢丝状真菌药敏实验方案简介[J].中华检验医学杂志,2005,28(1):121-123.
    [102] ODDS, F C. Synergy, antagonism, and what the chequerboard puts between them[J]. J Antimicrob Chemother, 2003, 52:1.
    [103] MELETIADIS J, MOUTON J W, MEIS J F, et al. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates[J]. Antimicrob Agents Chemother, 2003, 47:106-117.
    [104] QUAN, H, CAO Y Y, XU Z, et al. Potent In Vitro Synergism of Fluconazole and Berberine Chloride against Clinical Isolates of Candida albicans Resistant to Fluconazole[J]. Antimicrob Agents Chemother, 2006, 50:1096-1099. [105. KLEPSER M. E, WOLFE E J, JONES R N, et al. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans[J]. Antimicrob Agents Chemother, 1997, 41:1392-1395.
    [106] MARCHETTI O, MOREILLON P, GLAUSER M P, et al. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans[J]. Antimicrob Agents Chemother, 2000, 44:2373-2381.
    [107] ELIOPOULOS, G. M., R. C. MOELLERING, J R. Antimicrobial combinations, p. In V. Lorian ed. Antibiotics in laboratory medicine [M]. The Williams & Wilkins Co., Baltimore, Md. 1996. 330-396.
    [108] NASH J D, BURGESS D S, TALBERT R L. Effect of fluvastatin and pravastatin, HMG-CoA reductase inhibitors, on fluconazole activity against Candida albicans[J]. J Med Microbiol, 2002, 51:105-109.
    [109] ESPINEL-INGROFF A, BARCHIESI F, CUENCA-ESTRELLA M, et al. Comparison of visual 24-hour and spectrophotometric 48-hour MICs to CLSI reference microdilution MICs of fluconazole, itraconazole, posaconazole, and voriconazole for Candida spp.: a collaborative study[J]. J Clin Microbiol, 2005, 43:4535-4540.
    [110] SCHENA M, HELLER R A,THERIAULT T P, et a1. Microarays:biotechnology's discovery platform for functional genomics[J]. Trends Biotechnol, 1998, 16:301-306.
    [111] PARVEEN M, HASAN M K, TAKAHASHI J. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis[J]. J Antimicrob Chemother, 2004, 54:46-55.
    [112] BAMMERT G F, FOSTEL J M. Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol[J]. Antimicrob Agents Chemother, 2000, 44:1255-1265.
    [113] ZHANG L, ZHANG Y, ZHOU Y, et al. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays[J]. J Antimicrob Chemother, 2002, 49:905-915.
    [114] CAVALIERI D, TOWNSEND J P, HARTL D L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis[J]. Proc Natl Acad Sci, 2000, 97:12369-12374.
    [115] MURATA Y, WATANABE T, SATO M, et al. Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells[J]. J Biol Chem, 2003, 278:33185-33193.
    [116] PAULINI H, EILERT1 U, SCHIMMER O. Mutagenic compounds in an extract from Rutae Herba (Ruta graveolens L.). I. Mutagenidty is partially caused by furoquinoline alkaloids [J]. Mutagenesis, 1987, 2:271-273.
    [117] GASCH A P, SPELLMAN P T, KAO C M, et al. Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes[J]. Mol Biol Cell, 2000, 11:4241-4257.
    [118] ZAKRZEWSKA A, BOORSMA A, BRUL S, et al. Transcriptional Response of Saccharomyces cerevisiae to the Plasma Membrane-Perturbing Compound Chitosan[J]. Eukaryot Cell, 2005, 4:703-715.
    [119] MYERS A M, PAPE L K, TZAGOLOFF A. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae[J].EMBO J, 1985, 4:2087-2092.
    [120] DECOTTIGNIES A, GOFFEAU A. Complete inventory of the yeastABCproteins[J]. Nat Genet, 1997, 15:137-145.
    [131] GAUR M,CHOUDHURY D ,PRASAD R. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans[J]. J Mol Microbiol Biotechnol, 2005, 9:3-15.
    [122] ROGERS B ,DECOTTIGNIES A , KOLACZKOWSKI M, et al. The pleiotropic drug ABC transporters from Saccharomyces cerevisiae[J]. J Mol Microbiol Biotechnol, 2001, 3:207-214.
    [123] EGNER R, ROSENTHAL F E , KRALLI A, et al. Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP2binding cassette multidrug resistance transporter[J]. Mol Biol Cell, 1998, 9:523-543.
    [124] HIRAGA K, WANIGASEKERA A, SUGI H, et al. A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae[J]. Biosci Biotechnol Biochem, 2001, 65:1589-1595.
    [125] NAKAMURA K, NIIMI M, NIIMI K,et al. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters[J]. Antimicrob Agents Chemother, 2001, 45:3366-3374.
    [126] AKACHE B ,TURCOTTE B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins[J]. J Biol Chem, 2002, 277:21254-21260.
    [127] MAMNUN Y M, PANDJAITAN R, MAHE Y, et al. The yeast zinc finger regula2 tors Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as ho2 mo2and heterodimers in vivo[J]. Mol Microbiol, 2002, 46:1429-1440.
    [128] VAN DEN HAZEL H B, PICHLER H, DO VALLE MATTA M A, et al. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs[J]. J Biol Chem, 1999, 274:1934-1941.
    [129] OWSIANIK G, BALZI, I L, GHISLAIN M. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae[J]. Mol Microbiol, 2002, 43:1295–1308.
    [130] ENFERT C D, GOYARD S, RODRIGUEZ-ARNAVEILHE S, et al. Candida DB: a genome database for Candida albicans pathogenomics[J]. Nucleic AcidsResearch, 2005, 33:353-357.
    [131] ALBERTSON G D, NIIMI M, CANNON R D, et al. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance[J]. Antimicrob Agents Chemother, 1996, 40:2835-2841.
    [132] SHIANNA K V, DOTSON W D, TOVE S, et al. Identification of a UPC2 homolog in Saccharomyces cerevisiae and its involvement in aerobic sterol uptake[J]. J Bacteriol, 2001, 183:830-834.
    [133] LESTER R L, DICKSON R C. Sphingolipids with inositolphosphate-containing head groups[J]. Adv Lipid Res, 1993, 26:253-274.
    [134] FAN X, SHI H, LIS J T. 2005. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP[J]. Nucleic Acids Res, 33:838-845.
    [135] HUISINGA K L, PUGH B F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae[J]. Mol Cell, 2004, 13:573-585.
    [136] AKACHE B, TURCOTTE B. New regulators of drμg sensitivity in the family of yeast zinc cluster proteins[J]. J Biol Chem, 2002, 277:21254-21260.
    [137] HELLAUER K, AKACHE B , MACPHERSON S, et al. Zinc cluster protein Rdr1p is a transcriptional repressor of the PDR5 gene encoding a mμLtidrμg transporter[J]. J Biol Chem, 2002, 277:17671-17676.
    [138] JOLLY C, MITAR I, SATTENTAU Q J. Requirement for an Intact T-Cell Actin and Tubulin Cytoskeleton for Efficient Assembly and Spread of Human Immunodeficiency Virus Type 1[J]. J Virol, 2007, 81:5547-5560.
    [139] GREEN L J, MARDER P, MANN L L, et al. LY303366 Exhibits Rapid and Potent Fungicidal Activity in Flow Cytometric Assays of Yeast Viability[J]. Antimicrob Agents Chemother, 1999, 43:830-835.
    [140] ATTFIELD P V, KLETSAS S, VEAL D A, et al. Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts[J]. Journal of Applied Microbiology, 2000, 89:207-214.
    [141] PINA-VAZ C, GON?ALVES RODRIGUES A, PINTO E, et al. Antifungal activity of Thymus oils and their major compounds[J]. J Eur Acad DermatolVenereol, 2004, 18:73-78.
    [142] DECOTTIGNIES A, GRANT A M, NICHOLS, et al.. ATPase and mμLtidrug transport activities of the overexpressed yeast ABC protein Yor1p[J]. J Biol Chem 1998, 273:12612-12622.
    [143] RINALDI T, RIEEI C, PORTO D, et al. A mutation in a novel yeast proteazomal gene,RPN11/MPR1,produce a cell cycle arrest, overreplication of nuclear and mitochondrial DNA. and an altered mitochondrial morphology[J]. Mot Biol Cell, 1998, 9:2917-2931.
    [144] SAZER S, SHERWOOD S W. Mitoehondrial growth and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast[J]. J Cell Sci, 1990, 97:509-516.
    [145] PINA-VAZ C, SANSONETTY F, RODRIGUES AG et al. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species [J]. J Med Microbiol, 2000, 49:831-840.
    [146] PINA-VAZ C, RODRIGUES A G, SANSONETTY F et al. Antifungal activity of local anaesthetics against Candida species[J]. Infect Dis Obstet Gynecol, 2000, 8:124–134.
    [147]王麦玲,张继文,钱勇,等.白鲜皮杀菌活性成分的研究[J].农药,2006,45(11):739-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700