天然产物的抗真菌和抗肿瘤活性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物药一直是天然药物的重要来源,也是人类防病治病的主要来源。真菌感染和恶性肿瘤的发病率呈逐年上升趋势,并且临床上真菌耐药与肿瘤耐药时有发生,促使人们将希望寄托于寻找新型的天然抗菌和抗癌药物,以期发现疗效更好或具有新靶点的化合物。·目前为止,世界上许多国家对抗真菌和抗肿瘤新药的研究投入大量的人力和财力。自然界数以百万计的动植物、微生物和海洋生物是新药研发的重要源泉。地衣(lichen)是植物界一个特殊的类群,是真菌(fungi)和藻类(algae)高度结合的共生复合体。近几年的文献报道从地衣植物中分离得到了许多具有活性的新化合物。通过对从云南光肺衣中分离得到的retigeric acid B(RAB)抗白色念珠菌活性的研究,发现此化合物具有中等的抗真菌活性,最低抑制浓度为8~16μg/ml。用棋盘式微量稀释法评价RAB与氟康唑、酮康唑、伊曲康唑药物联合用药的关系,药物相互作用采用Loewe additivity (LA)模型的非参数法采用分数抑菌浓度指数(fractional inhibitory concentration index, FICI和基于Blics independence (BI)理论的AE模型评价。当RAB与氟康唑、酮康唑、伊曲康唑药物联合用药时,对临床分离的白色念珠菌具有协同的抗真菌活性。它与唑类联用后,唑类对耐药菌株最低抑制浓度有的能下降1000倍以上。FICI和AE模型两种评价方法一致性良好,对耐药菌株,RAB与唑类的联合用药都具有协同作用;对敏感菌株,RAB与唑类的联合用药具有协同或者不相关,无拮抗作用。本文还应用琼脂扩散法和时间-杀菌曲线法测定RAB与唑类药物对耐药白色念珠菌CA10的联合抗真菌作用。在琼脂扩散法实验中,联合用药的抑菌圈明显比单独用药的抑菌圈大而且干净。时间-杀菌曲线采用活菌计数法和XTT法评价活菌数,结果所示所测浓度RAB与唑类单用都只有很弱或者几乎没有抗菌活性,而联合用药后与单用药相比活菌数产生了>2Log10CFU/ml的降低,证明RAB与唑类动态联合抗真菌作用同样具有协同效果。研究它们的协同机制,采用荧光分光光度法和流式细胞仪测定RAB对罗丹明123的累积、吸收和外排,发现RAB能显著增加罗丹明123的累积。用荧光定量PCR测定外排泵基因CDR1的表达,发现RAB能下调耐药菌CA10的CDR1的表达,对敏感菌的CDR1表达影响不大。用荧光显微镜观察RAB对菌株CaSA1(Cdrlp-GFP)的影响,加入RAB后,绿色荧光分布不均匀,比对照组荧光强度明显减弱,而且部分细胞膜上无绿色荧光。通过上述实验推测RAB能抑制外排泵的活性从而增加联用药物的浓度。此外本文还测定了RAB对真菌细胞膜主要成分麦角甾醇含量的影响。麦角甾醇和24(28)-去氢麦角甾醇(dehydroergosterol,DHE)在281.5nm处都有吸收峰,但是在230nm处只有24(28) - DHE有吸收峰。利用这个特点,实验采用皂化的方法提取真菌细胞膜甾醇成分,并用紫外分析法测定。结果显示RAB具有降低麦角甾醇的作用,麦角甾醇的缺失会影响真菌膜的流动性和通透性。同时用荧光定量PCR检测了RAB对羊毛甾醇α-去甲基化酶基因(ERG11)的影响。RAB能降低敏感和耐药菌ERG11的表达,敏感菌降低0.42倍,耐药菌降低0.23倍。电镜观察,与正常菌超微结构相比,RAB作用的细胞壁与细胞膜皱缩不完整,细胞膜与细胞壁结构松散,内容物外泄,细胞体积明显变大。通过检测RAB对药物外排泵功能的影响、麦角甾醇的含量的影响及重要耐药相关基因,RAB协同抗白色念珠菌的可能机制是:(1)通过抑制外排泵的活性,从而增加唑类药物的细胞内累积从而发挥抗菌活性;(2)和唑类具有相同的抑制麦角甾醇合生物合成途径。(3)通过对膜结构的破坏增加唑类的渗透,增加累积。
     在抗肿瘤活性研究方面,论文主要研究了从中药茄属类植物龙葵中分离得到的甾体生物碱类化合物solamargine (SM)、solasonine、β2-solamargine和它们的苷元solasodine的抗肿瘤活性,分析了它们的活性与糖链的关系。它们的活性大小分别是SM>solasonine>β2-solamargine>solasodine,SM结构中含有2个鼠李糖,与其它两个甾体皂苷(solasonine和β2-solamargine)相比,它所表现的是活性最好和细胞内累积含量最高,而对于正常细胞,它的细胞毒性明显低于肿瘤细胞。含糖侧链的甾体皂苷活性强于其相应的苷元;含三糖侧链的甾体皂苷(SM和solasonine)活性大于含二糖侧链的甾体皂苷(β2-solamargine)。其中两个含三糖侧链的甾体皂苷,鼠李糖多(SM)的活性强于鼠李糖少(solasonine)的。SM对正常细胞视网膜上皮细胞RPE1和肾系膜细胞MC的杀伤作用比肿瘤细胞弱,暗示SM对细胞的杀伤具有一定的选择性。并且SM对肿瘤耐药细胞K562/A02和KB/VCR细胞同样表现出较强的细胞毒作用。对K562/A02的细胞毒性甚至强于K562细胞。对于活性最好的SM,进一步研究了SM的诱导肿瘤细胞死亡的机制。低浓度的SM能诱导肿瘤细胞凋亡,而高浓度的SM则能使肿瘤细胞发生胀亡。我们首先用DAPI荧光染色观察不同浓度梯度的SM对细胞核的影响;然后用Annexin V/PI双染并用流式细胞仪测定凋亡率。在凋亡途径的研究中,我们观察到,SM能诱导早期溶酶体膜的通透性增加,表现为溶酶体体积肿胀,组织蛋白酶B的释放以及在胞液中的激活。溶酶体通过释放溶酶体酶进入胞质降解蛋白质等参与凋亡。释放的溶酶体组织蛋白酶能通过剪切Bcl-2家族,然后转移到线粒体,引起一系列的促凋亡反应,溶酶体组织蛋白酶也可以激活Bax引起线粒体膜通透性增高,释放凋亡诱导因子细胞色素C激活caspase,导致细胞发生凋亡。SM通过溶酶体-线粒体途径诱导肿瘤细胞凋亡。
     对于高浓度IC80的SM能迅速破坏细胞膜,我们采用LDH、核酸泄漏的测定方法和PI的荧光染色法来评价。实验结果表明SM对肿瘤细胞K562和KB细胞膜能诱导通透性增加的作用。通过活细胞实时观察加药处理后,细胞的形态变化。肿瘤细胞随着药物的刺激,细胞膜出现大小不一的泡,然后细胞体积增大,最后泡崩裂,胞内容物溢出,细胞溶解而死亡,整个细胞死亡过程非常迅速而且剧烈。对于SM能使细胞膜通透性增加,溶剂分子大量进入细胞,将细胞膜胀破释放出细胞内容物。对此实验采用含不同分子量的聚乙二醇的培养基来测定SM引起的膜孔径大小的变化,从而判断SM对细胞膜的破坏程度。孔径越大,对膜损伤也越大。细胞膜具有选择通透性,水分子可以自由通过细胞膜,溶剂分子的相对分子质量越大,进入细胞就慢,发生细胞膨胀所需的时间也长。当聚乙二醇的分子量≥3350时,在所测定时间内(10min)能明显抑制细胞膜出泡,并且当聚乙二醇与SM共培养时,随着聚乙二醇分子量的增加,SM对肿瘤细胞的抑制率下降,聚乙二醇1000对SM的细胞毒性没有影响。SM能增加细胞内游离钙离子的浓度,通过用BAPTA-AM螯合细胞内游离钙后,一定程度上延缓了细胞膜出泡的时间:而通过用EGTA螯合培养基里的钙离子从而阻止胞外钙离子进入细胞,但是也只是短时间的阻止细胞膜出泡,所以SM诱导膜出泡不依赖于钙离子。SM能降低细胞内ATP水平、降解细胞骨架,对细胞周期没有影响。SM引起肿瘤细胞发生胀亡的原因不是单一的,而是多种因素共同作用的结果。
     此外对SM的亚细胞分布进行了研究,采用磁色谱法分离溶酶体和采用蔗糖密度梯度离心分离线粒体并且利用液质联用测定化合物在细胞器的累积。有研究表明受体介导内吞会引起溶酶体碱化,配体与细胞膜上受体结合后会形成内吞体,而内吞体与溶酶体融合,导致溶酶体体积增加,从而使溶酶体中pH上升。本实验中,通过分离亚细胞器并且测定各个细胞器内的药物含量,发现在耐药细胞中,SM能优先累积于溶酶体内,可能由于耐药细胞溶酶体的pH较低,SM又是一个甾体类的生物碱,具有弱碱性,从而被离子化,而不易通过脂质层;而在敏感细胞中,SM在线粒体与溶酶体内的含量没有明显的差异,可能由于敏感细胞溶酶体pH比耐药细胞高,SM离子化较少。
     本论文在抗真菌方面首次研究了retigeric acid B的抗真菌作用,并且能逆转真菌耐药,可作为临床唑类抗真菌药物的增强剂;抗肿瘤方面,首次报道了SM能通过溶酶体-线粒体途径诱发肿瘤细胞发生凋亡;并且当浓度为IC80(10μM)的SM能迅速诱导肿瘤细胞发生胀亡。细胞凋亡是程序性细胞死亡的过程,细胞凋亡后对周围组织影响不大;而细胞胀亡因细胞膜的破坏导致内容物的外泄,会引起周围组织炎症反应发生,所以只有合理用药才能控制好药物的毒性而达到更好的抗肿瘤效果。论文还对SM的亚细胞分布进行了研究,发现该化合物能优先累积于耐药细胞的溶酶体中,为研究该化合物的作用靶点及吸收方式提供了依据。
Natural plant has been an important source of natural medicines, but also a major source of treating and preventing human disease. The incidence of fungal infections and cancer are increasing every year. An increase number of reports of clinical resistance to antifungal agents and anticancer agents highlight the need for searching for new antifungal and anticancer drugs which may have a new target and treat better. So far the research on antifungal and anticancer drugs has been supported by many countries. Millions of plants, animals, microorganisms, and marine organisms are an important source of new drug discovery. Lichens are quite a special large group in the the plant kingdom as high degree of integration of the symbiotic complex between fungi and algae. Recently, a lot of new bioactive compounds have been isolated as reported in the literature. The vitro antifungal activity of retigeric acid B (RAB), a pentacyclic triterpenoid from the lichen species Lobaria kurokawae, was evaluated alone and in combination with fluconazole, ketoconazole, and itraconazole against Candida albicans using checkerboard microdilution, agar diffusion assay, and time-killing tests. The minimum inhibitory concentrations (MICs) for RAB against ten different C. albicans isolates ranged from 8 to 16μg/ml.A synergistic action of RAB and azole was observed in azole-resistant strains, whereas synergistic or indifferent effects observed in azole-sensitive strains, when interpreted by separate approach of FICI (fractional inhibitory concentration index) and AE model (difference between the predicted and measured fungal growth percentages). In agar diffusion assay, the combination yielded significantly clearer and larger zones than those of either drug alone on the plain agar plate. In time-killing tests, we used both colony counts and a colorimetric assay to evaluate the combinational antifungal effects of RAB and azoles. For the tested concentration of RAB and azole hardly have activity against C. albicans but the combination yielded a>2log10CFU/ml decrease compared with either drug used alone which further confirmed their synergistic interactions. These findings suggest natural products of RAB may play a certain role in increasing the susceptibilities of azole-resistant C. albicans strains. Next we studied the underlying synergistic antifungal mechanisms of RAB in combination with azoles against C. albicans. Increased accumulation of rhodamine 123 (Rh123) in C. albicans was measured by both spectrophotometric method and flow cytometry. The inhibitory properties to the drug efflux of C. albicans were determined spectrophotometrically. A special indicator organism, CASA1 which has a green fluorescent protein gene inserted in place of one allele of the CDR1 structural gene, was used to investigate regulation of CDR1. After treated by RAB, the distribution of green fluorescence was changed, the intensity of fluorescence was decreased compared with the control, and some of them lost the green fluorescence. The downregulation expression level of CDR1 was detected by real-time reverse transcription polymerase chain reaction. Above all, RAB synergize the antifungal effect of azoles against C. albicans by inhibiting efflux pump activity. Cellular ergosterol synthesis was measured using its unique spectrophotetric absorbance profile. Both ergosterol and 24(28)-DHE absorb at 281.5 nm, whereas only 24(28)-DHE absorbs at 230 nm. The decreased cellular ergosterol synthesis was measured using its unique spectrophotetric absorbance profile and we found that when cells were treated with RAB, the expression of ERG11 was downregulated and ergosterol level was decreased. ERG11 expression in C. albicans after treatment by 16μg/ml RAB was markedly lower than untreated isolates (0.42-fold for azole-sensitive strain and 0.23-fold for azole-resistant strain, respectively). Low ergosterol content will enhance the membrane fluidity. An increase in membrane fluidity directly results in increased passive diffusion of drugs and sensitization of Candida cells to antifungals. Transmission electron microscopy investigation found the wrinkled cell membrane and the impaired cell wall due to RAB treatment. RAB synergize the antifungal effect of azoles against C. albicans by inhibiting efflux pump activity, targeting the ergosterol biosynthesis pathway resulted ergosterol depletion, and impairing the function of fungal cell membranes and increasing penetration of an antifungal agent.
     About the anticancer activity, the paper studied the activity of steroidal alkaloid glycoside isolated from Chinese herb Solanum Solanum nigrum L. Solamargine (SM), solasonine,β2-solamargine, and solasodine have the same aglycon solanidine, but different saccharide chains. We discussed the structural activity relationships between the steroidal alkaloidal saponins and inhibition of the growth of cancer cells. SM with a two-rhamnosyl on the trisaccharide chain achieved higher intracellular concentrations and was potently toxic. As compared with the tumor cell lines, SM had a lower cytotoxicity on the normal cell retinal pigment epithelial cell line RPE-1 and mesangial cells MC. The cytotoxicity of SM did not correlate with the expression level of the multidrug resistance MDR1 and had the strong cytotoxicity on K562/A02 and KB/VCR. Solasonine, which has a trisacharide chain, has also exhibited moderate cytotoxicity, while other two compounds, without the trisacharide chain, had no anticancer activity. These studies revealed the trisaccharide chain was critical for activity in these steroidal alkaloid saponins. It is likely that apoptosis can be induced by low doses of SM, and oncosis by high doses, both types of cell death are induced by intermediate concentration of SM. Apoptosis was evaluated by DAPI staining and annexin V/PI double staining. Further investigation with human K562 leukemia cells found that SM could induce an early lysosomal rupture within 2h as assessed by acridine-orange relocation and alkalinization of lysosomes. Intracellular lysosomal rupture is also confirmed with the release of cathepsin B to cytosol detected by western blot. Subsequent mitochondrial damage including mitochondrial membrane permeabilization detected by decrease membrane potential as well as the release of cytochrome c from mitochondria was also observed. The down-expression of Bcl-2, up-regulation of Bax, caspase-3 and caspase-9 activities followed by above changes revealed that the cytoxicity of SM was involved in a lysosomal-mitochondrial death pathway induced by SM.
     Cell membrane integrity was assessed by detecting the leakage of cytoplasmic content, the release of lactate dehydrogenase (LDH), and the uptake of propidium iodide (PI). The rapid ability of SM (IC80) to make PI permeate into tumor cells, LDH release, and leakage of cytoplasmic content at the same rate (within minutes), suggests a killing mechanism that involves plasma membrane perturbation. We use whole-cell recording to measure the time courses of membrane blebbing and disruption in human K562 leukemia and squamous cell carcinoma KB cells. SM induced membrane blebbing within 5 min of sustained application. Both chelating extracellular calcium with EGTA and clamping intracellular calcium concentrations with a high concentration of the cell-permeable chelator BAPTA-AM did not prevent blebbing. Polyethylene glycols having molecular weights≥3350 blocked membrane blebbing. We also evaluated the effects of PEGs of various molecular weights on antitumor effect of SM. PEG 1000 had no effect on antitumor effect of SM. Chelating extracellular calcium with EGTA did not prevent blebbing after a delay, showing that the formation of blebs does not depend on the influx of calcium. Blebbing was also not affected when the intracellular calcium concentration was clamped by the cell-permeable chelator BAPTA-AM. Blebbing is independent of calcium. SM reduced intracellular ATP levels, disrupted the cytoskeletal systems, and had no effect on cell cycle.
     In addition, the quantity drugs associated with intracellular compartments was studied. We used a magnetic capture technique that allows for isolation of lysosomes and sucrose density gradient centrifugation for isolation of mitochondrial. After incubation with SM, cells were separated into fractions containing cytosol, lysosomes, and mitochondria and quantitation of compounds by LC/MS/MS. It is reported that receptor-mediated endocytosis cause lysosomal alkalinization and swollen. The amounts of SM that accumulated in the lysosomes and mitochondrial were determined. SM was found to preferentially accumulate within lysosomes in drug-resistant cells. These results suggest the internalization of SM in cancer cells may be related to rhamnose receptor-mediated endocytosis through endosomes, leading to localization in the lysosomes. In addition, the lumenal PH of lysosomes is known to be considerably lower in MDR cells, resulting in an enhanced lysosome-to-cytosol pH differential. SM, as a weakly basic compound, may become ionized and unable to diffuse back through the lipid monolayer of lysosomal membrane.
     In this thesis, we described the antifungal activity of RAB and its capacity to reverse azole resistance. It can be used clinically as an antifungal agent to potentiate azole antifungal agents. About the anticancer activity, it's the first report SM (IC80) can induce oncosis on cancer cell. Apoptosis is the process of programmed cell death and has little effect upon surrounding tissue. However, oncosis resulting from cell membrane damage and the leakage of contents can cause inflammation of surrounding tissue. Rational use of anticancer agents will reduce the dose toxicity and achieve a better anticancer effect. The intracellular distribution of SM was also studied in this paper. SM was found to preferentially accumulate within lysosomes in drug-resistant cells, which is important to drug delivery and its target research
引文
1. Calderone RA, Fonzi WA.2001. Virulence factors of Candida albicans. Trends Microbiol.9:327-335.
    2. Diz Dios P, Otero Varela I, Iglesias Martin I, Ocampo Hermida A, Martinez Vazquez C.1999. Failure of indinavir to inhibit Candida albicans in vitro. Eur J Clin Microbiol Infect Dis.18:55-56.
    3. Ruhnke M, Eigler A, Tennagen I, Geiseler B, Engelmann F, Trautmann M.1994. Emergence of Fluconazole-Resistant Strains of Candida albicans in Patients with Recurrent Oropharyngeal Candidosis and Human Immunodeficiency Virus Infection. J Clin Microbiol.32:2092-2098.
    4. Denning DW, Baily GG, Hood SV.1997. Azole resistance in Candida. Eur J Clin Microbiol Infect Dis.16:261-280.
    5. Loeffler J, Stevens DA.2003. Antifungal drug resistance. Clin Infect Dis 36: 31-41.
    6. Cutler JE.1991. Putative virulence factors of Candida albicans. Annu Rev Microbiol.45:187-218.
    7. Pfaller MA, Jones RN, Messer SA, Edmond ME, Wenzel RP, The scope participant group.1998. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans:frequency of occurrence and antifungal susceptibility in the scope program. Diagn Micr and Infec Dis. 30:121-129.
    8. Nguyen MH, Peacock JE, Morris AJ, Tanner DC, Nguyen ML, Snydman DR, Wagener HM, Rinaldi MG, Yu VL.1996. The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med. 100:617-623.
    9. Sanglard D, kuchler K, Ischer F, Pagani JL, Monod M, Bille J.1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother.39: 2378-2386,
    10. Kitchen VS, Savage M, Harris JR.1991. Candida albicans resistance in AIDS. J Infec.22:204-205.
    11. Redding S, Smith J, Farinacci G, Rinaldi M, Fothergill A, Rhine-Chalberg JR, Pfaller M.1994. Resistance of Candida albicans to Fluconazole During Treatment of Oropharyngeal Candidiasis in a Patient with AIDS:Documentation by In Vitro Susceptibility Testing and DNA Subtype Analysis. Clin Infect Dis.18:240-242.
    12. Denning DW, Baily GG, Hood SV.1997. Azole resistance in Candida. Eur J Clin Microbiol Infect Dis.16:261-280.
    13. Loeffler J, Stevens DA.2003. Antifungal drug resistance. Clin Infect Dis.36: 31-41.
    14. Muller FMC, Weig M, Peter J, Walsh TJ.2000. Azole cross-resistance to ketoconazole, fluconazol, itraconazole and voriconazole in linical Candida albicans isolates from HIV-infected children with oropharyngeal candidosis. J Antimicrob Chemother.46:338-341.
    15. Cowen LE, Lindquist S.2005. Hsp90 Potentiates the Rapid Evolution of New Traits:Drug Resistance in Diverse Fungi. Science.309:2185-2189。
    16. Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD.2004. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother. 54:376-385.
    17. Sterling TR, Merz WG.1998. Resistance to amphotericin B:emerging clinical and microbiological patterns. Drug Resist Update.1:161-165.
    18. Young LY, Hull CM, Heitman JH.2003. Disruption of Ergosterol Biosynthesis Confers Resistance to Amphotericin B in Candida lusitaniae. Antimicrobl Agents Chemother.47:2717-2724.
    19. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA.2002. Antifungal Susceptibility of Candida Biofilms:Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins. Antimicrob Agents Chemother.46: 1773-1780.
    20. Ramage G, Vandewalle K, Bachmann SP, Wickes BL, Lopez-Ribot J.2002. In Vitro Pharmacodynamic Properties of Three Antifungal Agents against Preformed Candida albicans Biofilms Determined by Time-Kill Studies. Antimicrob Agents Chemother.46:3634-3636.
    21. Baillie GS, Douglas LJ.1998. Iron-Limited Biofilms of Candida albicans and Their Susceptibility to Amphotericin B. Antimicrob Agents Chemother.42: 2146-2149.
    22. Hawser SP, Douglas LJ.1995. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother.39:2128-2131.
    23. Lafleur MD, Kumamoto CA, Lewis K.2006. Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells. Antimicrob Agents Chemother.50:3839-3846.
    24. Al-Dhaheri RS, Douglas LJ.2008. Absence of Amphotericin B-Tolerant Persister Cells in Biofilms of Some Candida Species. Antimicrob Agents Chemother.52: 1884-1887.
    25. Lafleur MD, Qi QG, Lewis K.2010. Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans. Antimicrob Agents Chemother. 54:39-44.
    26. Perlin DS.2007. Resistance to echinocandin-class antifungal drugs. Drug Resist Update.10:121-130
    27. Farowski F, Vehreschild JJ, Comely OA.2010. Micafungin in a nutshell:state of affairs on the pharmacological and clinical aspects of the novel echinocandin. Therapy.7:555-563.
    28. Alcazar-Fuoli L, Rodriguez-Tudela JL, Mellado E.2008. Antifungal drug resistance in molds:Clinical and microbiological factors. Curr Fungal Infec Rep. 2:36-42
    29. Johnson EM.2008. Issues in antifungal susceptibility testing. J Antimicrob Chemother.61:13-18.
    30. Bachmann SP, Patterson TF, Lopez-Ribot JL.2002. In Vitro Activity of Caspofungin (MK-0991) against Candida albicans Clinical Isolates Displaying Different Mechanisms of Azole Resistance. J Clin Microbiol.40:2228-2230.
    31. Peman J, Canton E, Espinel-Ingroff A.2009. Antifungal drug resistance mechanisms. Expert Rev Anti-Infe Ther.7:453-460.
    32. Perlin DS.2007. Resistance to echinocandin-class antifungal drugs. Drug Resist Update.10:121-130.
    33. Osborne CS, Leitner I, Favre B, Ryder NS.2005. Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated with Resistance to Terbinafine. Antimicrob Agents Chemother.49:2840-2844.
    34. Nikova VK, Kohut P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I.2003. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Bioph Res Commun.309: 666-671.
    35. Leber R, Fuchsbichler S, Klobuenikova V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F.2003. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother.47:3890-3900.
    36. Whelan WL, Kerridge D.1984. Decreased activity of UMP pyrophosphorylase associated with resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother.26:570-574.
    37. Pujol C, Pfaller MA, Soll DR.2004. Flucytosine Resistance Is Restricted to a Single Genetic Clade of Candida albicans。 Antimicrob Agents Chemother.48: 262-266.
    38. Sanglard D, Odds FC.2002. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis.2:73-85.
    39. Hope WW, Tabernero L, Denning DW.2004. Molecular Mechanisms of Primary Resistance to Flucytosine in Candida albicans. Antimicrob Agents Chemother.48: 4377-4386.
    40. Bellmann R, Egger P, Gritsch W.2003. Amphoteriein B lipid formulations in critically ill patients on continuous veno-venous haemofitration. J Antimicrob Chemother.51:671-681.
    41. Caillot D, Chavanet P, Casasnovas O, Solary E, Zanetta G, Buisson M, Wagner O, Cuisenier B, Bonnin A, Camerlynck P.1992. Clinical evaluation of a new lipid-based delivery system for intravenous administration of amphotericin B. Eur J Clin Microbio Infect Dis.11:722-725。
    42. Clemons KV, Stevens DA.2000. Efficacies of Sordarin Derivatives GM193663, GM211676, and GM237354 in a Murine Model of Systemic Coccidioidomycosis。 Antimicrob Agents Chemother.44:1874-1877.
    43. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA.2005. Combination Treatment of Invasive Fungal Infections. Clin Microbiol Rev.18:163-194.
    44. Hiemenz J, Cagnoni P, Simpson D, Devine S, Chao N, Keirns J, Lau W, Facklam D, Buell D.2005. Pharmacokinetic and Maximum Tolerated Dose Study of Micafungin in Combination with Fluconazole versus Fluconazole Alone for Prophylaxis of Fungal Infections in Adult Patients Undergoing a Bone Marrow or Peripheral Stem Cell Transplant. Antimicrob Agents Chemother.49:1331-1336.
    45. Nivoix Y, Zamfir A, Lutun P, Kara F, Remy V, Lioure B, Rigolot JC, Entz-Werle N, Letscher-Bru V, Waller J, Leveque D, Koffel JC, Beretz L, Herbrecht R.2006. Combination of caspofungin and an azole or an amphotericin B formulation in invasive fungal infections. J Infect.52:67-74.
    46. Kontoyiannis DP, Lewis RE.2003. Combination chemotherapy for invasive fungal infections:what laboratory and clinical studies tell us so far. Drug Resist Update.6:257-269.
    47. Cruz MC, Goldstein AL, Blankenship JR, Poeta MD, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J.2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J.21:546-559.
    48. Onyewu C, Wormley FL, Perfect JR, Heitman J.2004. The Calcineurin Target, Crzl, Functions in Azole Tolerance but Is Not Required for Virulence of Candida albicans. Infect Immun.72:7330-7333.
    49. Sun SJ, Li Y, Guo Q.2008. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods.Antimicrob Agents Chemother.52:409-417.
    50. Egner R, Rosenthal FE, Kralli A, Sanglard D, Kuchler K.1998. Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter. Mol Biol Cell.9:523-543.
    51. Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, JiangYY.2006. Potent In Vitro Synergism of Fluconazole and Berberine Chloride against Clinical Isolates of Candida albicans Resistant to Fluconazole. Antimicrob Agents Chemother.50: 1096-1099.
    52. Ghannoum MA, Fu Y, Ibrahim AS, Mortara LA, Shafiq MC, Edwards JE, Criddle RS.1995. In vitro determination of optimal antifungal combinations against Cryptococcus neoformans and Candida albicans. Antimicrob Agents Chemother. 39:2459-2465.
    53. Barchiesi F, Schimizzi AM, Caselli F, Novelli A, Fallani S, Giannini D, Arzeni D, Di Cesare S, Di Francesco LF, Fortuna M, Giacometti A, Carle F, Mazzei T, Scalise G.2000. Interactions between triazoles and amphotericin B against Cryptococcus neoformans. Antimicrob Agents Chemother.44:2435-2441
    54. Graybill JR, Williams DM, Van Cutsem E, Drutz DJ.1980. Combination therapy of experimental histoplasmosis and cryptococcosis with amphotericin B and ketoconazole. Rev Infect Dis.2:551-558.
    55. Odds FC.2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother.52:1
    56. Perfect JR, Durack DT.1982. Treatment of experimental cryptococcal meningitis with amphotericin B,5-fluorocytosine, and ketoconazole. J Infect Dis.146: 429-435.
    57. Pore RS.1992. Amphotericin B synergy testing by the FCST. Curr Microbiol. 24:171-177.
    58. Ernst EJ, Klepser ME, Pfaller MA.1998. In vitro interaction of fluconazole and amphotericin B administered sequentially against Candida albicans:effect of concentration and exposure time. Diagn Microbiol Infect Dis.32:205-210.
    59. Corrado ML, Kramer M, Cummings M, Eng RH.1982. Susceptibility of dematiaceous fungi to amphotericin B, miconazole, ketoconazole, flucytosine and rifampin alone and in combination.Med Mycol.20:109-113.
    60. Lewis RE, Lund BC, Klepser ME, Ernst EJ, Pfaller MA.1998. Assessment of antifungal activities of fluconazole and amphotericin B administered alone and in combination against Candida albicans by using a dynamic in vitro mycotic infection model. Antimicrob Agents Chemother.42:1382-1386.
    61. Martin E, Maier F, Bhakdi S.1994. Antagonistic effects of fluconazole and 5-fluorocytosine on candidacidal action of amphotericin B in human serum. Antimicrob Agents Chemother.38:1331-1338.
    62. Samaranayake YH, Samaranayake LP, Yeung KW.2001. Evaluation of polyene-azole antagonism in liquid cultures of Candida albicans using an automated turbidometric method. Chemotherapy.47:279-291.
    63. Scheven M, Schwegler F.1995. Antagonistic interactions between azoles and amphotericin B with yeasts depend on azole lipophilia forspecial test conditions in vitro. Antimicrob Agents Chemother.39:1779-1783.
    64. Petraitis V, Petraitiene R, Sarafandi AA, Kelaher AM, Lyman CA, Casler HE, Sein T, Groll AH, Bacher J, Avila NA, Walsh TJ.2003. Combination therapy in treatment of experimental pulmonary aspergillosis:synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis.187:1834-1843.
    65. Franzot SP, Casadevall A.1997. Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother.41:331-336.
    66. Roling EE, Klepser ME, Wasson A, Lewis RE, Ernst EJ, Pfaller MA.2002. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbiol Infect Dis.43:13-17.
    67. Li RK, Rinaldi MG.1999. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother.43: 1401-1405.
    68. Nguyen MH, Barchiesi F, McGough DA, Yu VL, Rinaldi MG.1995. In vitro evaluation of combination of fluconazole and flucytosine against Cryptococcus neoformans var. neoformans. Antimicrob Agents Chemother.39:1691-1695.
    69. Ghannoum MA, Elewski B.1999. Successful treatment of fluconazole- resistant oropharyngeal candidiasis by a combination of fluconazole and terbinafine. Clin Diagn Lab Immunol.6:921-923.
    70. Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G. 1998. In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother. 41:59-65.
    71. Barchiesi F, Falconi DF, Scalise G.1997. In vitro activities of terbinafine in combination with fluconazole and itraconazole against isolates of Candida albicans with reduced susceptibility to azoles. Antimicrob Agents Chemother.41: 1812-1814.
    72. Marchetti O, Entenza JM, Sanglard D, Bille J, Glauser MP, Moreillon P.2000. Fluconazole plus cyclosporine:a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother. 44:2932-2938.
    73. Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D.2000. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother.44:2373-2381.
    74. Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, Jiang YY.2006. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother.50: 1096-1099.
    75. Guo XL, Leng P, Yang Y, Yu LG, Lou HY.2008. Plagiochin E, a botanic-derived phenolic compound, reverses fungal resistance to fluconazole relating to the efflux pump. J Appl Microbiol.104:831-838.
    76. Sun SJ, Lou HX, Gao YH, Fan PH, Ma B, Ge WY, Wang XN.2004. Liquid chromatography-tandem mass spectrometric method for the analysis of fluconazole and evaluation of the impact of phenolic compounds on the concentration of fluconazole in Candida albicans. J Pharm Biomed 34:1117-1124
    77. Guo N, Ling GH, Liang XY, Jin J, FanJW, Qiu JZ, Song Y, Huang N, Wu XP, Wang XL, Deng XM, Deng XL, Lu Y. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans. Mycoses. doi:10.1111/j.1439-0507.2010.01935.x
    78. Guo N, Wu XP, Yu L, Liu JB, Meng RZ, Jing J, Lu HJ, Wang XL, Yan SH, Deng XM.2010. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol Med Mic.58:193-201.
    79. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J.2003. Candida albicans Mutations in the Ergosterol Biosynthetic Pathway and Resistance to Several Antifungal Agents. Antimicrob Agents Chemother.47:2404-2412.
    80. Bartizal K, Gill CJ, Abruzzo GK, Flattery AM, Kong L, Scott PM, Smith JG, Leighton CE, Bouffard A, Dropinski JF, Balkovec J.1997. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872) Antimicrob Agents Chemother.41:2326-2332.
    81. Perea S, Gonzalez G, Fothergill AW, Kirkpatrick WR, Rinaldi MG, Patterson T F. 2002. In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. Antimicrob. Agents Chemother.46:3039-3041.
    82.Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S.2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. PNAS.106:2818-2823
    83. Singh SD, Robbins N, Zaas AK, SchellWA, Perfect JR, Cowen LE.2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog.5:1-14
    84. Majno G, Joris I.1995. Apoptosis,oncosis, and necrosis. An overview of cell death. American. J Pathol.146:3-15.
    85. Trump BF, Berezesky IK, Chang SH, Phelps PC.1997. The pathways of cell death:oncosis, apoptosis, and necrosis. Toxicol Pathol.25:82-88.
    86. Van Cruchten S, Van Den Broeck W.2002. Morphologocal and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol.31:214-223.
    87. Kerr JF, Winterford CM, Harmon BV.1994. Apoptosis, its significance in cancer and cancer therapy. Cancer.73:2013-2026
    88. Ly JD, Grubb DR, Lawen A.2003. The mitochondrial membrane potential (Δψm)in apoptosis, an update. Apoptosis.8:115-128.
    89. Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TS, Jones DP, Wang XD.1997. Prevention of Apoptosis by Bcl-2:Release of Cytochrome c from Mitochondria Blocked. Science.275:1129-1132.
    90. Orrenius S, Zhivotovsky B, Nicotera P.2003. Regulation of cell death:the calcium-apoptosis link. Nat Rev.4:552-565
    91. Dianzani U, Bragardo, DiFranco D, Alliaudi C, Scagni P, Buonfiglio D, Redoglia V, Bonissoni S, Correra A, Dianzani I, Ramenghi U.1997. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood.89:2871-2879.
    92. Rothstein TL, Zhong XM, Schram BR, Negmr S, Donohoe TJ, Cabral DS, Foote LC, Schneider TJ.2000. Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule. Immunol Rev.176:116-133.
    93. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ.2003. BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science.300:135-139.
    94. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC.2003. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene.22: 8608-8618.
    95. Szegezdi E, Logue SE, Gorman AM, Samali A.2006. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO rep.7:880-885.
    96. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin Xm, Turk V, Salvesen Gs.2001. Lysosomal Protease Pathways to Apoptosis, cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem.276:3149-3157.
    97. Brunk UT, Dalen H, Roberg K, Hellquist HB.1997. Photo-Oxidative Disruption of Lysosomal Membranes Causes Apoptosis of Cultured Human Fibroblasts. Free Radical Bio Med.23:616-626.
    98. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B.2004. Selective Disruption of Lysosomes in HeLa Cells Triggers Apoptosis Mediated by Cleavage of Bid by Multiple Papain-like Lysosomal Cathepsins. J Biol Chem.279:3578-3587.
    99. Mills EM, Xu D, Fergusson MM, Combs CA, Xu YH, Finkel T.2002. Regulation of Cellular Oncosis by Uncoupling Protein 2. J Biol Chem.277:27385-27392.
    100. Zhang CH, Xu YH, Gu JJ, Schlossman SF.1998. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. PNAS.95: 6290-6295.
    101. Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK.2005. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microb Pathogenesis.38:161-172.
    102. Clark AM.1996. Natural Products as a Resource for New Drugs. Pharmaceut Res.13:1133-1141
    103. Newman DJ, Cragg GM.2007. Natural Products as Sources of New Drugs over the Last 25 Years. J Nat Prod.70:461-477.
    104. Newman DJ, Cragg GM, Snader KM.2003. Natural Products as Sources of New Drugs over the Period 1981-2002. J Nat Prod.66:1022-1037
    105. Harvey A.2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today.5:294-300.
    106. Butler MS.2008. Natural products to drugs:natural product-derived compounds in clinical trials. Nat Prod Rep.25:475-516.
    107. Haefner B.2003. Drugs from the deep:marine natural products as drug candidates. Drug Discov Today.8:536-544.
    108. Santos PS.1964. The antibiotic activities of some Philippine lichens Philippine J. Science.93.325-335.
    109. Huneck.1999. The Significance of Lichens and Their Metabolites. Naturwissenschaften.86:559-570.
    110. Wang XN, Zhang HJ, Ren DM, Ji M, Yu WT, Lou HX.2009. Lobarialides A-C, Antifungal Triterpenoids from the Lichen Lobaria kurokawae. Chem Biodiver. 6:746-753.
    111. Sun LM, Sun SJ, Cheng AX, Wu XZ, Zhang Y, Lou HX.2009.In Vitro Activities of Retigeric acid B Alone and in Combination with Azole Antifungal Agents against Candida albicans. Antimicrob Agents Chem.53:1586-1591.
    112. Takahashi R, Chiang HC, Aimi N, Tanaka O, Shibata S.1972. The structures of retigeric acids A and B from lichens of the Lobaria Retigera group. Phytochemistry. 11:2039-2045.
    113. Zhang JD, Cao YB, Xu Z, Sun HH, An MM, Yan L, Chen HS, Gao PH, Wang Y, Jia XM, Jiang YY.2005. In Vitro and in Vivo Antifungal Activities of the Eight Steroid Saponins from Tribulus terrestris L. with Potent Activity against Fluconazole-Resistant Funga. Biol Pharm Bull.28:2211-2215.
    114. Chiang HC, Wang JJ, Wu RT.1992. Immunomodulating effects of the hydrolysis products of formosanin C and β-ecdysone from Paris formosana hayata. Anticancer Res.12:1475-1478.
    1. Calderone R A, Fonzi WA.2001. Virulence factors of Candida albicans. Trends Microbiol.9:327-335.
    2. Diz Dios P, Otero Varela I, Iglesias Martin I, Ocampo Hermida A, Martinez Vazquez C.1999. Failure of indinavir to inhibit Candida albicans in vitro. Eur J Clin Microbiol Infect Dis.18:55-56.
    3. Ruhnke M, Eigler A, Tennagen I, Geiseler B, Engelmann F, Trautmann M.1994. Emergence of Fluconazole-Resistant Strains of Candida albicans in Patients with Recurrent Oropharyngeal Candidosis and Human Immunodeficiency Virus Infection. J Clin Microbiol.32:2092-2098.
    4. Sobel JD, Wiesenfeld HC, Martens M, Danna P, Hooton TM, Rompalo A, Sperling M, Livengood III C, Horowitz B, Von Thron J, Edwards L, Panzer H, Chu TC.2004. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med.351:876-883
    5. Loeffler J, Stevens DA.2003. Antifungal drug resistance. Clin Infect Dis.36: 31-41.
    6. Denning DW, Baily GG, Hood SV.1997. Azole resistance in Candida. Eur J Clin Microbiol Infect Dis.16:261-280.
    7. Muller FM, Weig CM, Peter, J, Walsh TJ.2000. Azole cross-resistance to ketoconazole, fluconazol, itraconazole and voriconazole in linical Candida albicans isolates from HIV-infected children with oropharyngeal candidosis. J Antimicrob Chemother.46:338-341.
    8. Barrett D.2002. From natural products to clinically useful antifungals. Biochim Biophys Acta.1587:224-233.
    9. Vicente MF, Basilio A, Cabello A, Pelaez F.2003. Microbial natural products as a source of antifungals. Clin Microbiol Infect.9:15-32
    10. Elix JA.1996. Biochemistry and secondary metabolites. p.154-180. In T. H. Nash (ed.), Lichen Biology. Cambridge University Press, Cambridge.
    11. Huneck S.1999. The significance of Lichens and their metabolites. Naturwissenschaften.86:559-570.
    12. Wang L, Narui T, Harada,H Culberson, CF, Culberson WL.2001. Ethnic uses of Lichens in Yunnan, China. Bryologist.104:345-349.
    13. National Committee for Clinical Laboratory Standards.2002. Reference method for broth dilution antifungal susceptibility testing of yeasts;approved standard. NCCLS document M27-A2. National Committee for Clinical Laboratory Standards, Wayne, PA.
    14. Sun S, Li Y, Guo QJ, Shi J.2008. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob. Agents Chemother.52:409-417.
    .15. Meletiadis JW, Mouton JW, Meis FGM, Verweij PE.2003. In vitro drug interaction modeling of combination of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother.47:106-117.
    16. Te Dorsthorst DTA, Verweij PE, Meletiadis J, Bergervoet M, Punt NC, Meis FGM, Mouton JW.2002.In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob Agents Chemother.46:2982-2989.
    17. Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, JiangYY.2006. Potent In Vitro Synergism of Fluconazole and Berberine Chloride against Clinical Isolates of Candida albicans Resistant to Fluconazole. Antimicrob Agents Chemother.50: 1096-1099.
    18. Haynes MP, Buckley HR, Higgins ML, Pieringer RA.1994. Synergism between the Antifungal Agents Amphotericin B and Alkyl Glycerol Ethers. Antimicrob Agents Chemother.38:1523-1529.
    19. Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA.2003. Uses and limitations of the XTT Assay in studies of Candida growth and metabolism. J Clin Microbiol.41:506-508.
    20. Sahuquillo Arce JM, Colombo Gainza E, Gil Brusola A, Ortiz Estevez R, Canton E, Gobernado M.2006. In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus. Rev Esp Quimioter.19:252-257.
    21. Odds FC.2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother.52:1.
    22. Prichard MN, Charles Shipman J.1990. A three-dimensional model to analyze drug-drug interactions. Antiviral Res.14:181-206.
    23. Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW.2001. Antifungal susceptibility testing:practical aspects and current challenges. Clin Microbiol Rev. 14:643-658
    24. Drusano GL, D'Argenio DZ, Symonds W, Bilello PA, Mcdowell J, Sadler B, Bye A, Bilello JA.1998. Nucleoside analog 1592U89 and human immunodeficiency virus protease inhibitor 141W94 are synergistic in vitro. Antimicrob Agents Chemother.42:2153-2159.
    25. Patrick AK, Boritzki TJ, Bloom LA.1997. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro. Antimicrob Agents Chemother.41:2159-2164.
    26. Te Dorsthorst DTA, Verweij PE, Meletiadis J, Bergervoet M, Punt NC, Meis JFGM, Mouton JW.2002. In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob Agents Chemother.46:2982-2989.
    1. Te Dorsthorst DTA, Verweij PE, Meletiadis J, Bergervoet M, Punt NC, Meis JFGM, Mouton JW.2002. In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob Agents Chemother.46:2982-2989.
    2. Sahuquillo Arce JM, Colombo Gainza E, Gil Brusola A, Ortiz Estevez R, Canton E, Gobemado M.2006. In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus. Rev Esp Quimioter.19:252-257.
    3. Haynes MP, Buckley HR, Higgins ML, Pieringer RA.1994. Synergism between the Antifungal Agents Amphotericin B and Alkyl Glycerol Ethers. Antimicrob Agents Chemother.38:1523-1529.
    4. Medoff G, Kobayashi GS, Kwan CN, Schlessinger D, Venkov P.1972. Potentiation of Rifampicin and 5-Fluorocytosine as Antifungal Antibiotics by Amphotericin B. Proc Natl Acad Sci U S A.69:196-199.
    5. Bennett JE, Dismuke WE, Duma RJ, Medoff G, Sande MA, Gallis H, Leonard J, Fields BT, Bradshaw M, Haywood H, McGee ZA, Cate TR, Cobbs CG, Warner JF, Alling DW.1979.A Comparison of Amphotericin B Alone and Combined with Flucytosine in the Treatment of Cryptoccal Meningitis. N Engl J Med.301:126-131
    6. Shukla, S., Saini, P., Smriti, Jha, S., Ambudkar, S.V., and Prasad, R.2003 Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot cell.2:1361-1375.
    7. Cowen, L.E., Sanglard, D., Calabrese, D., Sirjusingh, C., Anderson, J.B., and Kohn, L.M.2000. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol.182:1515-1522.
    8. Hiller D, Sanglard D, Morschhauser J.2006. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother.50:1365-1371.
    9. Pranab K, Mukherjee Chandra J, Kuhn DM, Ghannoum MA.2003. Mechanism of fluconazole resistance in Candida albicans biofilms:phase-specific role of efflux pumps and membrane sterols. Infect Immun.71:4333-4340.
    10. Kohli A, Smriti Mukhopadhyay K, Rattan A, Prasad R.2002. In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother.46:1046-1052.
    11. Pasrija R, Panwar SL, Prasad R.2008. Multidrug transporters CaCdrlp and CaMdrlp of Candida albicans display different lipid specificities:both ergosterol and sphingolipids are essential for targeting of CaCdrlp to membrane rafts. Antimicrob Agents Chemother.52:694-704.
    12. Henry KW, Nickels JT, Edlind TD.2000. Upregulation of ERG Genes in Candida Species by Azoles and Other Sterol Biosynthesis Inhibitors. Antimicrob Agents Chemother 44:2693-2700.
    13. Loffler J, Einsele H, Hebart H, Schumacher U, Hrastnik C, Daum G.2000. Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol Lett.185:59-63.
    14. Coste A, Turner V, Ischer F, Morschhauser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D.2006. A mutation in Taclp, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics.172:2139-2156.
    15. Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K.2003. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents.22:291-300.
    16. Arthington-Skaggs BA, Jradi H, Desai T, Morrison CJ.1999. Quantitation of ergosterol content:novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol.37:3332-3337.
    17. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R.2006. Unexpected link between iron and drug resistance of Candida spp.:iron depletion enhances membrane fluidity and drug diffusion, leading to drug-sensitive cells. Antimicrob Agents Chemother.50:3597-3606.
    18. Diz Dios P, Otero Varela I, Iglesias Martin I, Ocampo Hermida A, Martinez Vazquez C.1999. Failure of indinavir to inhibit Candida albicans in vitro. Eur J Clin Microbiol Infect Dis.18:55-56.
    19. Mukhopadhyay K, Kohli A, Prasad R.2002 Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother.46: 3695-3705.
    20. Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R. 2004. Membrane Sphingolipid-Ergosterol Interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother.48: 1778-1787.
    1. Wong E, Giandomenico CM.1999. Current status of platinum-based antitumor drugs. Chem Rev.99:2451-2466.
    2. Antonini I, Polucci P, Magnano A, Martelli S.2001. Synthesis, antitumor cytotoxicity, and DNA-binding of novel N-5,2-Di(ω-aminoalkyl)-2,6-dihydropyrazolo [3,4,5-kl] acridine-5 -carboxamides. J Med Chem.44: 3329-3333.
    3. Elomri A, Mitaku S, Skaltsounis AL, Tillequin F, Koch M, Pierre A, Guilbaud N, Leonce S, Kraus-Berthiet L, Rolland Y, Atassi G.1996. Synthesis and cytotoxic and antitumor activity of esters in the 1,2-dihydroxy-1,2-dihydroacronycine Series. J Med Chem.39:4762-4766.
    4. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M.1991. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J Natl Cancer I.83:757-766.
    5. Boyd MR, Paull KD.1995. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Develop Res.34:91-109.
    6. Kuo KW, Hsu SH, LiYP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM. 2000. Anticancer activity evaluation of the Solanum glycoalkaloid solamargine. Biochem Pharmacol.60:1865-1873.
    7. Liang CH, Liu LF, Shiu LY, Huang YS, Chang LC, Kuo KW.2004. Action of solamargine on TNFs and cisplatin-resistant human lung cancer cells. Biochem Bioph Res Commun.322:751-758.
    8. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR.2000. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol.2:156-162.
    9. Cham BE, Daunter B.1990. Solasodine glycosides. Selectively cytotoxicity for cancer cells and inhibition of cytotoxicity by rhamnose in mice with sarcoma 180. Cancer Lett.55:221-225.
    10. Cham BE.2007. Solasodine rhamnosyl glycosides specifically bind cancer cell receptors and induce apoptosis and necrosis. Treatment for skin cancer and hope for internal cancers. Res J Biol Sci.2:503-514.
    11. Cham BE.2008. Carcer intralesion chemotherapy with solasodine rhamnosyl glycosides. Res J Biol Sci.3:1008-1017.
    12. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B.2004. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem.279:3578-3587.
    13. Fehrenbacher N, Jaattela M.2005. Lysosomes as Targets for Cancer Therapy. Cancer Res.65:2993-2995.
    14. Ono K, Kim SO, Han JH.2003. Suscepbility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol.23:665-676.
    15. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM., Turk V, Salvesen GS.2001. Lysosomal protease pathways to apoptosis. J Biol Chem.276:3149-3157.
    16. Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N.2006. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta.1765:101-125
    17. Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N.2006. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta.1765:101-125
    18. Bradford PG, Awad AB.2007. Phytosterols as anticancer compounds. Mol. Nutr Food Res.51:161-170.
    19. Terman A, Gustafsson B, Brunk UT.2006. The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact.163:29-37.
    20. Turk B, Stoka V, Rozman-Pungercar J, Cirman T, Droga-Mazovec G, Oreic K. 2002. Apoptotic pathway:involvement of lysosomal proteases. Biol Chem.383: 1035-1044.
    21. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ.2000. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev.14:2060-2071.
    22. Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L, Brunk UT.2002. Lysosomal destabilization in p53-induced apoptosis. PNAS.99:6286-6291.
    23. Zhao M, Antunes F, Eaton JW, Brunk UT.2003. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem.270:3778-3786.
    24. Orrenius S, Zhivotovsky B, Nicotera P.2003. Regulation of cell death:the calcium-apoptosis link. Nat Rev Mol Cell Biol.4:552-565.
    25. Oczky GH, Davies E, Madesh M.2003. Calcium signaling and apoptosis. Biochem Biophys Res Commun.304:445-454.
    26. McConkey DJ, Orrenius S.1997. The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun.239:357-366.
    27. Kindmark H, Kohler M, Brown G, Branstrom R, Larsson O, Berggren PO.2001. Glucose-induced oscillations in cytoplasmic free Ca2+ concentration precede oscillations in mitochondrial membrane potential in the pancreatic β-cell. J Biol Chem.276:34530-34536.
    28. Cho MR, Marler JP, Thatte HS, Golan DE.2002. Control of calcium entry in human fibroblasts by frequency-dependent electrical stimulation. Front Biosci.7: 1-8.
    29. Ankarcrona M, Dypbukt JM, Orrenius S, Nicotera P.1996. Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett.94: 321-324.
    1. Trump BE, Berezesky IK, Chang SH, Phelps PC.1997. The pathways of cell death:oncosis, apoptosis, and necrosis. Toxicol Pathol.25:82-88
    2. Majno G, Joris I.1995. Apoptosis, oncosis, and necrosis an overview of cell death. Am J Pathol.146:3-13
    3. Van Cruchten S, Van den Broeck W.2002. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol.31:214-223
    4. Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK.2005. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microbial Pathogenesis.38:161-172.
    5. Zhang CH, Xu YH, Gu JJ, Schlossman SF.1998. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. PNAS.95: 6290-6295.
    6. Mills EM, Xu D, Fergusson MM, Combs CA, Xu YH, Finkel T.2002. Regulation of Cellular Oncosis by Uncoupling Protein 2. J Biol Chem.277:27385-27392.
    7. Kuo KW, Hsu SH, LiYP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM. 2000. Anticancer activity evaluation of the Solanum glycoalkaloid solamargine. Biochem Pharmacol.60:1865-1873.
    8. Liang CH, Liu LF, Shiu LY, Huang YS, Chang LC, Kuo KW.2004. Action of solamargine on TNFs and cisplatin-resistant human lung cancer cells. Biochem Bioph Res Commun.322:751-758
    9. Hagmann J, Burger MM, Dagan D.1999. Regulation of plasma membrane blebbing by the cytoskeleton. J Cell Biochem.73:488-499.
    10. Nicotera P, Thor H, Orrenius S.1989. Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia. FASEB J.3:59-64.
    11. Bouchard MJ, Wang LH, Schneider RJ.2001.Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science.294:2376-2378.
    12. Berestovsky GN, Ternovsky VI, Kataev AA.2001. Through pore diameter in the cell wall of Chara corallina. J Exp Bot.52:1173-1177.
    13. Scherrer R, Beaman TC, Gerhardt P.1971.Macromolecular sieving by the dormant spore of Bacillus cereus. J Bact.108:868-873.
    14. Ryan CM, Yarmush ML, Tompkins RG 1992. Separation and quantitation of polyethylene glycols 400 and 3350 from human urine by high-performance liquid chromatography. J Pharm Sci.81:350-352.
    15. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Muratkhodiaev JN.1992. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immun.105:93-100
    16. Lecoeur H, Prevost MC, Gougeon ML.2001. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane:A reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry.44:65-72.
    17. Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK.2005. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microbial Pathogenesis.38:161-172.
    18. Mailloux A, Brenet K, Bruneel A, Beneteau-Burnat B, Vaubourdolle M, Baudin B. 2001. Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. Eur J Cell Biol.80:442-449.
    19. Trump BF, Berezesky IK.1996. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis. BBA-Mol Cell Res.1313:173-178.
    20. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J. 1998. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis.130:17-27.
    1. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T.2002. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Caner Chemoth Pharm. 50:343-352.
    2. Smith PJ, Sykes HR, Fox ME, Furlong IJ.1992. Subcellular distribution of the anticancer drug mitoxantrone in human and drug-resistant murine cells analyzed by flow cytometry and confocal microscopy and its relationship to the induction of DNA damage. Cancer Res.52:4000-4008.
    3. Dalton WS, Durie BG, Alberts DS.1986. Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res.46: 5125-5130.
    4. Lazarowski A, Sevlever G, Taratuto A, Massaro M, Rabinowicz A.1999. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr Neurol.21:731-734.
    5. Larsen AK, Escargueil AE, Skladanowski A.2000. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther.85:217-229.
    6. Duvvuri M, Konkar S, Funk RS, Krise JM, Krise JP.2005. A chemical strategy to manipulate the intracellular localization of drugs in resistant cancer cells. Biochemistry.44:15743-15749.
    7. Duvvuri M, Konkar S, Hong KH, Blagg BS, Krise JP.2006. A new approach for enhancing differential selectivity of drugs to cancer cells. ACS Chemical Biology. 1:309-315.
    8. Duvvuri M, Krise JP.2005. Intracellular drug sequestration events associated with the emergence of multidrug resistance:a mechanistic review. Frontiers in Bioscience.10:1499-1509.
    9. Duvvuri M, Feng WH, Mathis A, Krise JP.2004. A cell fractionation approach for the quantitative analysis of subcellular drug disposition. Pharmaceutical Research. 21:26-32.
    10. Bies C, Lehr CM, Woodley JF.2004. Lectin-mediated drug targeting:history and application. Adv Drug Deliv Rev.56:425-35.
    11. Nangia-Makker P, Conklin J, Hogan V, Raz A.2002. Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol Med 8:187-192.
    12. Cham BE.2007. Solasodine rhamnosyl glycosides specifically bind cancer cell receptors and induce apoptosis and necrosis. Treatment for skin cancer and hope for internal cancers. Res J Biol Sci.2:503-514.
    13. Cham BE.2008. Career intralesion chemotherapy with solasodine rhamnosyl glycosides. Res J Biol Sci.3:1008-1017.
    14. Robinson N, Wolke M, Ernestus K, Plum G.2007. A mycobacterial gene involved in synthesis of an outer cell envelope lipid Is a key factor in prevention of phagosome maturation. Infect Immun.75:581-591.
    15. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR.2000. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol.2:156-162.
    16. Zelphati O, Szoka C.1996.Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharmaceut RES.13:1367-1372.
    17. Leonetti JP, Mechti N, Degols G, Lebleu B.1991. Intracellular distribution of microinjected antisense oligonucleotides. PNAS.88:2702-2706.
    18. Hindenburg AA, Gervasoni JE, Krishna S, Stewart VJ, Rosado M, Lutzky J, Bhalla K, baker MA, Taub RN.1989. Intracellular distribution and pharmacokinetics of daunorubicin in anthracycline-sensitive and -resistant HL-60 cells. Cancer Res.49:4607-4614.
    19. Haralampidis K, Trojanowska M, Osbourn AE.2002. Biosynthesis of triterpenoid saponins in plants. History Trends Bioprocessing Biotransformation.75:31-49.
    20. Luca VD, St Pierre B.2000. The cell and developmental biology of alkaloid biosynthesis.5:168-173;
    21. Wink M.2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry.64:3-19.
    22. Wink M.1988. Plant breeding:importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet.75:225-233.
    23. Cipollini ML, Levey DJ.1997. Why are some fruits toxic? Glycoalkaloids in Solanumand fruit choice by vertebrates. Ecology.78:782-798.
    24. Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T.2003. Cytotoxic major saponin from tomato fruits. Chem Pharm Bull.51:234-235.
    25. Crawford L, Kocan RM.1993. Steroidal alkaloid toxicity to fish embryos. Toxicol Lett.66:175-181.
    26. Levinson HZ.1976. The defensive role of alkaloids in insects and plants. Cell Mol Life Sci.32:408-411.
    27. Roddick JG 1989. The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry.28:2631-2634.
    28. Jadhav SJ, Lutz SE, Mazza G, Salunkhe DK.1997. Potato Glycoalkaloids: Chemical, Analytical, and Biochemical Perspectives. ACS Sym Ser.662:94-114.
    29. Kurkdjian A, Guern J.1989. Intracellular pH:measurement and importance in cell activity. Annu Rev Plant Physiol Mol Biol.40:271-303.
    30. Helbig H, Korbmacher C, Stumpff F, Coca-Prados M, Wiederholt M.1988. Na+/H+ exchange regulates intracellular pH in a cell clone derived from bovine pigmented ciliary epithelium. J Cell Physiol.137:384-389.
    31. Raven JA, Smith FA.1979. Intracellular pH and its regulation. Annu Rev Plant Physiol.30:289-311.
    32. Simon S, Roy D, Schindler M.1994. Intracellular pH and the control of multidrug resistance. PNAS.91:1128-1132.
    33. Altan BN, Chen Y, Schindler M, Simon SM.1998. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med.187: 1583-1598.
    34. Lei GH, Piao YJ, Wu JC, Bao YY, Huang H, Zhang W.1998. Effect of receptor-mediated endocytosis on macrophage membrane potential, cytosolic pH and lysosomal pH. Sheng Li Xue Bao.50:111-114.
    35. Lang F, Busch G, Volk H, Haussinger D.1994. Lysosomal pH:A link between cell volume and metabolism. Biochem Soci Trans.22:504-507.
    36. Tapper H, Sundler R.1995. Glucan receptor and zymosan-induced lysosomal enzyme secretion in macrophages. Biochem J.308:829-835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700