低温干旱胁迫对烟草种子发芽和幼苗生长的影响及提高其抗寒抗旱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草(Nicotiana tabacum L.)起源于热带,对水分要求很高。我国大部分烟区尤其是西南山区,干旱缺水常成为制约烟草种植和品质形成的主要因素。另外,烟草是喜温作物,对低温胁迫耐受力较差。低温冷害影响烟草种子发芽、出苗和幼苗生长,最终降低烟叶的质量和产量。因此,提高烟草种子和幼苗的耐寒和耐旱性具有重要意义。本文分别对干旱和低温胁迫下20个烟草品种的耐寒和耐旱性进行了鉴定。对不同耐寒和耐旱品种生理生化特性和叶片细胞超微结构的变化进行了测定和观察。然后,尝试用浸种处理来提高烟草种子及幼苗的抗寒和抗旱性。最后,利用功能高分子材料聚N-异丙基丙烯酰胺(PNIPAm)和聚(2-丙烯酰胺-2-甲基丙磺酸)(PAMPS)来开发出新的智能型烟草丸化种子,以提高种子及幼苗的抗寒和抗旱性。主要研究结果如下:
     1.对20个烟草品种发芽和苗期的耐寒性进行了鉴定。在变温(20-30℃)和低温(11℃)胁迫下测定了种子发芽特性以及幼苗素质等指标,将各性状低温与常温下测定值的比值作为耐寒性评价指标。相关性分析表明,相对发芽率、相对发芽指数、相对地上部高、相对幼苗干重之间显著相关,是较好的耐寒性评价指标;通过聚类分析,将20个品种分为耐寒型(MS云烟85、NC102、云烟97、TN86-8和红花大金元)、中等耐寒型(NC55、RGH51.巴斯玛11号、V2、NC297、云烟201和云烟202)和低温敏感型(MD-609、MS云烟87、MS K326、云烟203、云烟100、G-28、K346和TN90)3类。研究结果将为烟草抗寒性机理研究和育种提供选材依据。
     2.对20个烟草品种发芽和苗期的耐旱性进行了鉴定。测定了正常供水和15%聚乙二醇(PEG-6000)溶液模拟干旱条件下烟草种子发芽特性、幼苗生长和苗期生理变化,结合各性状在正常供水与干旱胁迫下相对值,将20个品种分为耐旱型(MS云烟85、NC102、云烟97、TN86-8和红花大金元)、中等耐旱型(NC55、NC297、V2、云烟202、RGH51、巴斯玛11号、云烟201、TN90和K346)和干旱敏感型(MD-609、MS云烟87、MS K326、云烟203、云烟100和G-28)3类。相关性分析表明,相对发芽指数、相对活力指数、相对幼苗鲜重和相对幼苗干重之间显著相关,是较好的耐旱性评价指标。
     3.根据聚类分析结果分别选用低温敏感和干旱敏感品种、中等耐寒性和中等耐旱性品种以及耐寒性和耐旱性品种,测定其幼苗可溶性蛋白、可溶性总糖、H2O2、O2和叶绿素含量变化,并使用透射电镜对叶片细胞进行观察。结果表明,低温和干旱胁迫下幼苗可溶性蛋白、可溶性总糖、H2O2、O2-浓度升高,而叶绿素a和b浓度降低。耐寒(旱)性品种在低温和干旱胁迫下幼苗可溶性蛋白和可溶性糖浓度高于低温(干旱)敏感品种,耐寒(旱)性品种在低温和干旱胁迫下幼苗H2O2、O2-、叶绿素a和b浓度低于低温(干旱)敏感品种。低温和干旱胁迫下幼苗叶肉细胞中出现质壁分离,叶绿体向细胞中央移动,同时伴随有嗜锇颗粒增多和淀粉颗粒减少现象,并且这种变化在低温(干旱)敏感品种中比耐寒(旱)性品种更为明显。
     4.研究了不同药剂浸种处理对11℃低温逆境下不同耐寒力烟草种子发芽和幼苗生长的影响。采用不同浓度的外源脯氨酸、水杨酸、氯化钙、甘油、二甲基亚砜、乙二醇、聚乙二醇、丙二醇、多效唑、脱落酸浸种处理低温敏感品种MS K326和耐寒品种红花大金元种子,测定了低温逆境下不同烟草品种发芽及幼苗生长和生理生化指标变化。结果表明,脯氨酸、水杨酸、氯化钙、二甲基亚砜和聚乙二醇5种药剂浸种能显著促进烟草种子发芽,提高了低温逆境下幼苗根长、苗高、幼苗干鲜重以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,其中10g/L脯氨酸、120mg/L水杨酸、15mg/L氯化钙、30ml/L二甲基亚砜和100ml/L聚乙二醇综合效果较好,可以作为提高烟草种子及幼苗抗寒性的处理方法。
     5.研究了不同药剂浸种处理对干旱胁迫下不同耐旱力烟草种子发芽和幼苗生长的影响。采用不同浓度的外源多效唑、氯化钙、脯氨酸和水杨酸浸种处理干旱敏感品种MS K326和耐旱品种红花大金元种子,用15%聚乙二醇(PEG-6000)溶液模拟干旱条件,测定了干旱胁迫下不同烟草品种种子发芽及幼苗生长和生理生化指标变化。结果表明:多效唑(PP333)浸种对干旱胁迫下红花大金元和MS K326种子发芽和幼苗生长有一定抑制作用,但是能提高干旱胁迫下幼苗APX、CAT、POD和SOD活性。氯化钙、脯氨酸和水杨酸3种药剂浸种能显著促进红花大金元和MS K326种子发芽,提高干旱胁迫下幼苗根长、全苗长、幼苗干鲜重以及APX、CAT、POD和SOD活性。其中80mg/L水杨酸浸种效果最好,可以作为提高烟草种子及幼苗抗旱性的处理方法。
     6.利用在种衣剂中添加温敏材料N-异丙基丙烯酰胺与甲基丙烯酸丁酯共聚物(PNIPAm-co-BMA),制备了一种智能型烟草丸化种子以提高其抗寒性。将水杨酸作为测试样品装载进PNIPAm-co-BMA,装载水杨酸的PNIPAm-co-BMA置于清水中,测定了变温条件下水杨酸从PNIPAm-co-BMA中释放速率的变化。结果显示,水杨酸从PNIPAm-co-BMA中释放速率随清水温度的变化而相应变化。最后,将装载水杨酸的PNIPAm-co-BMA粉末添加到种衣剂中用于低温敏感品种MS K326和耐寒品种红花大金元种子丸化,测定了11℃低温胁迫下丸化种子的发芽及幼苗生长和生理生化指标变化。结果表明,温敏材料丸化型种子能够显著提高两个品种种子发芽率、发芽指数、幼苗根长、幼苗干重以及POD活性,并且显著降低MDA含量。采用温敏材料控制水杨酸进行释放的智能丸化种子可以提高烟草种子和幼苗的抗寒性。
     7.研究以2-丙烯酰胺-2-甲基丙磺酸(AMPS)为单体,过硫酸钾(KPS)为引发剂,N,N’-亚甲基双丙烯酰胺(Bis)为交联剂,采用溶液聚合法制备了聚(2-丙烯酰胺-2-甲基丙磺酸)高吸水树脂(PAMPS树脂),并对配方进行了优化。然后,对PAMPS树脂的红外光谱、吸水速率、保水性能以及在土壤和污泥中的降解率等特性进行了测定。最后,将干燥PAMPS粉末在水杨酸(SA)溶液中充分溶胀,干燥、粉碎后得到装载SA的PAMPS粉末,并在模拟干旱条件下,观察了装载SA的PAMPS粉末作为种衣剂抗旱成份用于干旱敏感品种MS K326和耐旱品种红花大金元种子丸化,对干旱胁迫下烟草丸化种子出苗以及幼苗生长的影响。结果表明,中和度为60%,反应条件为55℃(7h)时AMPS同KPS和Bis最佳配比为1g:0.0004g:0.001g,在此条件下合成的PAMPS高吸水树脂室温下在去离子水和0.9%NaCl溶液中吸液倍率分别为4306g/g及373g/g,吸液率远高于其他吸水树脂。在此条件下聚合的PAMPS高吸水树脂的吸液速率、保水能力以及在土壤和污泥中的降解率等特性优良。将装载SA的PAMPS粉末用于烟草种子丸化,显著提高了干旱胁迫下2个烤烟品种种子的出苗率、发芽指数、活力指数、幼苗根长和全苗长以及幼苗干重、鲜重,是一种可行的提高烟草种子及幼苗抗旱能力的种子处理方法。
Tobacco (Nicotiana tabacum L.) originated from tropical areas and very sensitive to drought stress. Tobacco seeds and seedlings often suffered from drought stress in China especially in southwestern mountain area. Meanwhile, chilling injury in tobacco is also a common problem in China, it affects seed germination and seedling growth of tobacco, finally causes the loss of tobacco quality and yield. It is important to improve drought and chilling tolerance of tobacco seeds and seedlings.
     The drought and chilling tolerance of20tobacco varieties at germination and seedling stages were investigated by determining traits of germination, seedling quality and some physiological characteristics. The physiological and ultrastructural changes of tobacco varieties with different tolerances under drought and chilling stress were investigated. Then, the treatment of seed soaking was used to improve the drought and chilling tolerance of tobacco seeds and seedlings. Finally, the functional materials of PNIPAm (poly (N-isopropylacrylamide)) and PAMPS (poly (2-(acrylamido)-2-methylpropanesulfonic acid)) were used to develop new intelligent tobacco seed pellets to improve their drought and chilling tolerance. The main results were as follows:
     1. The chilling tolerance of20tobacco varieties at germination and seedling growth stages was investigated by determining germination characteristics and seedling quality at normal temperature (20~30℃) and low temperature (11℃) stress. The ratios of trait values at low temperature to those at normal temperature were used to assess chilling tolerance. After the cluster analysis, tobacco varieties were clustered into three groups:chilling tolerance (MS Yunyan85, NC102, Yunyan97, TN86-8and Honghuadajinyuan), intermediate chilling tolerance (NC55, RGH51, Bashima11, V2, NC297, Yunyan201and Yunyan202) and chilling sensitivity (MD-609, MS Yunyan87, MS K326, Yunyan203, Yunyan100, G-28, K346and TN90). The correlation analyses showed that the relative values of germination percentage, germination index, vigor index and malonaldehyde content were significantly correlated with each other; they were suitable parameters for evaluating chilling tolerance. The results will provide basis for material selection during research of cold resistance mechanism and breeding in tobacco.
     2. The drought tolerance of20tobacco varieties at germination and seedling growth stages was investigated by determining germination characteristics and seedling quality at normal conditions and simulated drought stress by15%polyethylene glycol (PEG-6000) solution. The ratios of trait values at low temperature to those at normal temperature were used to assess drought tolerance. Tobacco varieties were clustered into three groups:drought tolerance(MS Yunyan85, NC102, Yunyan97, TN86-8and Honghuadajinyuan), intermediate drought tolerance (NC55, NC297, V2, Yunyan202, RGH51、Bashima11, Yunyan201, TN90and K346) and drought sensitivity (MD-609, MS Yunyan87, MS K326, Yunyan203, Yunyan100and G-28). The correlation analyses showed that the relative values of germination index, vigor index, seedling fresh and dry weight were significantly correlated with each other; they were suitable parameters for evaluating drought tolerance.
     3. The physiological and ultrastructural changes of tobacco varieties with different chilling/drought tolerances under chilling/drought stress were investigated. The results indicated that the concentrations of H2O2, O2-, total soluble sugar and soluble protein were increased under chilling/drought stress, while the values of chlorophyll a and chlorophyll b were decreased in all varieties. The concentrations of total soluble sugar and protein in chilling/drought tolerant variety were higher than chilling/drought sensitive variety; the concentrations of H2O2, O2-, chlorophyll a and b in chilling/drought tolerant variety were lower than those in chilling/drought sensitive variety. The separations of cell membranes and chloroplasts from cell wall along with an increase in the number of lipid droplets as well as the depletion of starch granules were observed in all tobacco varieties under the chilling/drought stress, and these ultrastructural changes in chilling/drought sensitive variety were more visible than chilling/drought tolerant and intermediate chilling/drought tolerant varieties.
     4. The effects of tobacco seeds soaked in different agents on seed germination and growth characteristics were researched. Seeds of chilling sensitivity variety MS K326and chilling tolerance variety Honghuadajinyuan were soaked in different concentration solutions of exogenous proline, salicylic acid, calcium chloride, glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol, propylene glycol, paclobutrazol and abscisic acid. Then germination, seedling growth and physiological and biochemical changes under cold temperature stress were measured. The results showed that the germination parameters, root length, seedling length, seedling fresh and dry weight were improved, superoxide dismutase, peroxidase, catalase and ascorbate peroxidase activities of tobacco seedlings were enhanced after the treatments with proline, salicylic acid, calcium chloride, dimethyl sulfoxide and polyethylene glycol. The treatments of10g/L proline,120mg/L salicylic acid,15mg/L calcium chloride,30ml/L dimethyl sulfoxide and100ml/L polyethylene glycol had better effects, it suggests that these treatments can be used to improve chilling tolerance of tobacco seeds and seedlings.
     5. The effects of tobacco seeds soaked in different agents on seed germination and growth characteristics were researched. Seeds of drought sensitivity variety MS K326and drought tolerance variety Honghuadajinyuan were soaked in different concentration solutions of paclobutrazol, calcium chloride, proline and salicylic acid. Then, the germination, seedling growth and physiological changes under drought stress (simulating with15%polyethylene glycol6000) were measured. The results showed that the germination and seeding growth were inhibited; however, the activities of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) in seedlings were enhanced after treating with paclobutrazol (PP333). The germination characteristics, root length, seedling length, seedling fresh and dry weight were improved; the activities of APX, CAT, POD and SOD were enhanced in two tobacco varieties after treating with calcium chloride, proline and salicylic acid. Among all treatments, the treatment of80mg/L salicylic acid had the best effects, suggesting that this treatment could be used to improve drought tolerance of tobacco seeds and seedlings.
     6. A kind of "intelligent" tobacco seed pellets was developed to improve their chilling tolerance by adding thermo-sensitive PNIPAm-co-BMA (poly (N-isopropylacrylamide-co-butyl methacrylate)) hydrogel. SA (salicylic acid) was used as a testing drug and was loaded into PNIPAm-co-BMA, its release rate from PNIPAAm-co-BMA undergoing temperature changes in water were measured. The results showed that the SA release rate was changed from PNIPAAm-co-BMA hydrogel in water when the temperature of the water changed. Finally, tobacco seeds of chilling sensitivity variety MS K326and chilling tolerance variety Honghuadajinyuan were pelleted by the SA-loaded PNIPAm-co-BMA, and then the germination characteristics, seedling quality and some physiological parameters of the seed pellets and seedlings were measured after a chilling stress at11℃. The results showed that the germination percentage (GP), germination index (GI), root length, seedling dry weight and the activities of POD (peroxidase) were significantly increased and the concentrations of MDA (malondialdehyde) were significantly decreased in the treatments using "intelligent" seed pellets comparing with the seeds without SA or PNIPAm-co-BMA in two tobacco varieties. It indicated that the "intelligent" seed pellets pelleted with SA-loaded PNIPAm-co-BMA could be used to improve their chilling tolerance.
     7. A kind of superabsorbent polymer poly (2-(acrylamido)-2-methylpropanesulfonic acid)(PAMPS) was prepared by method of solution polymerization using2-acrylamido-2-methyl-propanesulfonic acid (AMPS) as monomer, potassium peroxydisulfate (KPS) as initiator, N,N'-methylene-bis-acrylamide (Bis) as cross-linker. The absorbency, water-keeping capacity and biodegradability of the PAMPS polymer were studied. Then the PAMPS polymer, which was loaded with SA (salicylic acid), was used for pelleting tobacco seeds of drought sensitivity variety MS K326and drought tolerance variety Honghuadajinyuan. The germination and growth experiments of these pelleting seeds were studied with two tobacco varieties. The germination characteristics and seedling quality were measured after a drought stress for16d. The optimized polymerization conditions were obtained as follows:mass concentrations of initiator and cross-linker compared to the amount of monomer are0.04%and0.1%respectively under neutralization degree was60%, and reaction temperature (time) was55℃(7hours). The absorbencies of PAMPS in deionized water and0.9NaCl aqueous solutions were4306g/g and373g/g under these conditions. The PAMPS polymer had good performance of absorbency, water-keeping capacity and biodegradability. The results of germinaton and seedling growth experiments showed that these kinds of pelleting seeds could significantly improve the drought tolerance of the tobacco seeds and seedlings.
引文
1.白志英,李存东,冯丽肖,孙红春.干旱胁迫对小麦叶片细胞膜透性效应的染色体定位研究.华北农学报,2007,22(1):1-4.
    2.鲍巨松.玉米在水分胁迫条件下脯氨酸变化与抗旱性的关系.陕西农业科学,1990(增):37-39.
    3.蔡传杰,陈善娜,尹梅,周恒苍,王乔.水杨酸对香荚兰抗逆相关酶的活性和丙二醛含量的影响.云南植物研究,2003,25(6):700-704.
    4.陈学平,郭家明,解彩君.低温对烟草种子发芽的影响.烟草科技,1994,1:31-34.
    5.曹翠玲,杨力,胡景江.多效唑提高玉米幼苗抗旱性的生理机制研究.干旱地区农业研究,2009,27(2):153-158.
    6.曹锡清.脂质过氧化对细胞与机体的作用.生物化学与生物物理学进展,1986,(2):17-14.
    7.陈国菊,杨暹,吴筱颖.干旱胁迫对花椰菜叶片细胞保护酶及超微结构的影响.中国蔬菜,2002,2:8-11.
    8.陈坚,焦雪萍.四个水稻品种幼苗期耐冷力比较.贵州科学,2003,21(4):78-80.
    9.陈卫国,周冀衡,杨虹琦.烟草抗寒性生理生化研究进展.作物研究,2007,1:81-83.
    10.陈雪萍,翁志学.高吸水性树脂的研究进展和应用.化工生产与技术,2000,7(1):17-19.
    11.褚建云.互穿网络结构高吸水树脂的合成与性能.2003,四川大学硕士学位论文.
    12.崔英德,郭建维,刘姗,易国斌,阎文峰.静态溶液聚合法合成SA-IP-SPS型高吸水性树脂.化工学报,2003,54(5):665-669.
    13.党秀丽,张玉龙,黄毅.保水剂对土壤持水性能影响的模拟研究.农业工程学报,2005,21(4):191-192.
    14.刁操铨.作物栽培学各论(南方本).北京:中国农业出版社,1994.
    15.杜永吉,于磊,孙吉雄,鲁为华.结缕草3个品种抗寒性的综合评价.草业学报,2008,17(3):6-16.
    16.冯丽云SAS for Windows医学统计分析操作指南.河南:河南医科大学出版社,2002.
    17.盖颜欣,杨青林,王奇,张勤,季志强,丁贵江.低温冷冻条件对玉米种子发芽率 的影响.河北农业科学,2009,13(12):1-3.
    18.高灿红,胡晋,郑昀晔,张胜.玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系.应用生态学报,2006,17(06):1045-1050.
    19.高山,许端祥,林碧英,傅睿清.低温弱光胁迫下11份瓠瓜种质幼苗的耐寒性.福建农业学报,2009,24(1):60-63.
    20.高文远,李志亮,肖培根,杨世杰.浙贝母鳞片细胞休眠解除前后超微结构的变化.广西植物,1997,17(1):85-88.
    21.谷登斌,李怀记.种子包衣技术及发展应用.种子,2000,(1):26-28.
    22.官长荣,李艳梅,杨立均.水分胁迫下离体烟叶中脂氧合酶活性、水杨酸与茉莉酸积累的关系.中国农业科学,2003,36(3):269-272.
    23.郭芳AA/AMPS-LDH插层聚合及有机/无机复合高吸水树脂的制备与性能研究.2009,北京化工大学硕士学位论文.
    24.郭丽红,陈善娜,龚明.氯化钙浸种对玉米幼苗抗逆性的影响及其与谷胱甘肽还原酶的关系.云南植物研究,2004,26(1):111-117.
    25.韩锦峰.烟草栽培生理学.北京:农业出版社,2003.
    26.韩善华.油菜叶绿体的干旱处理过程中的超微结构变化.作物学报,1991,17(4)311-313.
    27.贺长征,胡晋,朱志玉,阮松林,宋文坚.混合盐引发对水稻种子在逆境条件下发芽及幼苗生理特性的影响.浙江大学学报(农业与生命科学版),2002,28(2)175-178.
    28.和红云,薛琳,田丽萍,陈远良.低温胁迫对甜瓜种子发芽及幼苗生长发育的影响.安徽农业科学,2008,36(8):3103-3105.
    29.洪楠,侯军SAS for Windows统计分析系统教程.北京:电子工业出版社,2001.
    30.侯燕平,牛吉山.珍珠梅项芽抗寒机理的超微结构研究.山西农业大学学报,1998,18(1):63-64.
    31.胡建平,毛罕平.磁粉包衣种子和磁粉包衣剂及磁化处理方法.中国专利:200510094814,2005.
    32.胡晋.种子生物学.北京:高等教育出版社,2006.
    33.胡晋,蔡素琴.超甜玉米种子低温吸胀的生理生化变化.作物学报、2001,27(3) 371-376.
    34.胡永红,张启祥.低温对切花菊叶片细胞器超微结构的影响.莱阳农学院学报,2000,17(1):38-43.
    35.胡玉新.大豆种子包衣剂的示范与应用.种子世界,1994,(10):18.
    36.黄美玉,蒋利人,吴如.超高吸水性聚丙烯酸钠的制备.化学世界,1984,(2)129-130.
    37.黄月文,罗宣干,卓仁禧.包埋在温度及pH值敏感水凝胶中的阿司匹林的控制释放研究.高分子材料科学与工程,1998,14(6):141-147.
    38.季鸿渐,张万喜,潘振远.高分子吸水树脂的合成和性能研究.高分子通报,1992,(2):111-115.
    39.简令成,李积宏.杨树顶芽细胞内质网与其他膜系统的结构联系及其在休眠过程中的变化.植物学报,2000,42(8):803-810.
    40.简令成,孙龙华.冬小麦抗寒锻炼中质膜脂质和糖蛋白分布变化的电镜观察.植物学报,1993,55(5):337-341.
    41.姜中珠,陈祥伟.多效唑对银中杨、白榆和白桦抗旱性的影响.林业科学,2006,42(8):130-134.
    42.金益芬,麻立春.高吸水聚合物的应用与发展.化工新型材料,2001,29(5).6-8.
    43.开渭清,张国屏,崔业富.棉花包衣技术应用研究.种子科技,1995,(2):31-37.
    44.赖运平,李俊,张泽全,董雪芳,刘新春,魏会廷,胡晓蓉,彭正松,杨武云.小麦苗期抗旱相关形态指标的灰色关联度分析.麦类作物学报,2009,6:1055-1059.
    45.兰文智,余龙江,吴元喜.水杨酸真菌诱导子诱导红豆杉悬浮细胞膜脂过氧化和紫杉醇生物合成的影响.西北植物学报,2002,22(1):78-83.
    46.李德红,潘瑞炽.水杨酸在植物体内的作用.植物生理学通迅,1995,31(2):144-149.
    47.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    48.李建设,耿广东,程智慧.低温胁迫对茄子幼苗生理生化指标的影响.西北农林科技大学学报(自然科学版),2003,2(1):90-92.
    49.李明彦,董亮荣,徐彬杰.种衣剂防治高粱丝黑穗病的试验.种子世界,1991,(4):21-28.
    50.李雄伟,严昌虹,廖奇.接枝聚合物PAA-b-PIPA微球的制备及其温控释药研究.高 分子学报,1994,2:156-161.
    51.李永亮,周冀衡,李永平,杨虹琦,卢秀萍,马文广.烤烟品种抗旱性的早期鉴定技术研究.亚热带植物科学,2008,37(1):41-44.
    52.李永平,徐盛春,马文广,郑昀晔,胡晋.不同烟草品种发芽和苗期耐寒性的鉴定.科技通报,2009,25:807-811.
    53.林杰,柯金炼,刘鸿洲,胡维冀.高吸水树脂对侵蚀性土壤物理性状的影响.福建农林大学学报,2002,31(2):259-265.
    54.刘德兵,魏军亚,崔百明,李绍鹏,彭明.脱落酸对香蕉幼苗抗寒性的影响.热带作物学报,2007,28(2):1-4.
    55.刘红丽.水稻种子包衣剂实验.种子科技,1998,(1):33-39.
    56.刘慧英,王桢丽,王玉华.不同品种辣椒种子发芽和苗期耐冷性差异的研究.石河子大学学报(自然科学版),2002,6(1):23-26.
    57.刘荣梅,胡国富,魏琪,王文重,李凤兰,胡宝忠.低温对转CBF3基因烟草叶绿体超微结构和生理特性的影响.安徽农业科学,2010,38:9501-9503.
    58.刘伟,王文杰.伊贝母鳞茎层积过程中核酸及超微结构的变化.华南农业大学学报,1996,17(1):91-95.
    59.刘琳.模拟干旱对冷地型草坪草种子发芽的影响.北方园艺,2008,10:117-118.
    60.卢元芳.脯氨酸浸种对NaCl胁迫下玉米种子萌发和幼苗生长的效应.华南农业大学学报,2001,22(4):62-65.
    61.路建美,朱秀林,胡逢吉.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂.石油化工,1999,28(1):36-39.
    62.马文广,崔华威,李永平,郑昀晔,韩瑞,胡晋.20个烟草品种低温逆境下发芽和苗期生理生化特性的变化及耐寒性评价.浙江农业学报,2011,23(1):1-6.
    63.马文广,郑昀晔,李永平,牛永志,陈云松.水引发时间和丸化种干燥方法对烟草丸化种发芽和幼苗生长的影响.江西农业学报,2009,21(7):29-31.
    64.马克奇,陈年来,王鸣,甜瓜优质栽培理论与实践.北京:中国农业出版社,2001.
    65.牟筱铃,张子学.水杨酸浸种对棉花幼苗抗旱性的影响.种子,2008,27(11):50-54.
    66.宁淑香,姜敏.多效唑处理对玉米植株抗旱能力的影响.辽宁农业科学,1999,2:12-14.
    67.曲泽洲.植物栽培学总论(第二版).北京:农业出版社,1985.
    68.尚湘莲.蔬菜低温胁迫与抗冷性研究进展.长江蔬菜,2002,(增刊):18-20.
    69.邵美红,孙加焱,胡晋.甜高梁发芽期耐旱性评价初报.种子,2001,30:87-90.
    70.史记.双重缓释种子包衣技术.中国专利:01129431.0,2001.
    71.宋广运,陈惠民.钙对棉花胚根抗冷性的影响.中国农业科学,1986,2:23-25.
    72.宋文坚,周伟军,胡晋.作物种子包衣技术的研究与应用.跨世纪农业发展研究,程家安,周伟军土编,中国环境科学出版社,1998,171-175.
    73.苏文强,杨磊,杨冬梅.高吸水树脂在土壤改良中的效应.东北林业大学学报,2004,32(5):35-41.
    74.孙铁军,苏日古嘎,马万里,武菊英.十种禾草耐寒性的比较研究.中国草地学报,2008,30(1):56-61.
    75.万里强,石永红,李向林,何峰,贾亚雄.高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化.草业学报,2009,18:25-31.
    76.汪耀富,韩锦峰,林学梧.烤烟生长前期对干旱胁迫的生理生化响应研究.作物学报,1996,22(1):117-121.
    77.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57.
    78.王树会,黄成江.低温对烟草种子萌发的影响.中国种子,2008,5:48-52.
    79.王凤菇,商振清,张红主,李广敏.水分胁迫下不同抗旱性小麦幼苗细胞质膜超微结构的变化.河北农业大学学报,2000,3:5-8.
    80.王国全.化学建材的功能化.化学建材,1997,13(1).31-31.
    81.王洪春.生物膜结构功能和渗透调节.上海:上海科学技术出版社,1987:50-57.
    82.王书子,吴少辉,高海涛.旱地小麦品种筛选鉴定及其形态特征探讨.干旱地区农业研究,2001,19(2):76-80.
    83.王湘琼,于淑娟,黄祥斌.高吸水性树脂最新进展.广西轻工业,2001,(3):8-11.
    84.王毅,杨宏福,李树德.园艺植物冷害与抗冷性的研究.园艺学报,1994,21(30):239-244.
    85.韦娇媚,唐玉贵,黄志娟.任豆种子发芽对干旱胁迫的响应.广西林业科学,2010,2:73-77.
    86.吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报,2000,15(1):92-96.
    87.仵小南,沈曾佑,张志良.水分胁迫对植物线粒体结构和脯氨酸氧化酶活性的影响.植物生理学报,1986,12(4):388-395.
    88.武维华.植物生理学.科学出版社,2003.
    89.伍贤进.土壤水分对烤烟某些生理特性影响的研究.吉林农业大学学报,1998,20(2):22-25.
    90.西山雄悟.凝胶包衣种子.中国专利:02141581,2002.
    91.谢建军,刘赛,李晟,何新建.溶液聚合法制备PAMPS高吸水树脂及其性能研究.中南林业科技大学学报,2008,28(2):100-103.
    92.徐彬杰,宋春英,常畴伟.种衣剂在西瓜生产上的应用效果.种子世界,1991,(1):16-17.
    93.徐卯林,张洪熙,黄年生.高吸水种衣剂在水稻旱育秧上的应用.中国稻米,1998,12(2):92-98.
    94.徐盛春.烟草种子和幼苗多胺代谢的调控及其耐寒性关系的研究.2009,浙江大学博士学位论文,60-68.
    95.徐世昌,沈秀瑛,顾慰莲,戴俊英,王莲芝.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化.作物学报,1994,20(5):564-569.
    96.许宁.模糊综合评判在茶树种质资源抗寒性鉴定中的应用研究.福建茶叶,1993,3:16-19.
    97.许振柱.水分胁迫对冬小麦旗叶细胞质膜及叶肉细胞超微结构的影响.作物学报,1997,27(3):370-375.
    98.颜启传.种子学.北京:中国农业出版社,2001,283-292.
    99.杨根平,高向阳,荆家海.干旱胁迫下钙对大豆叶片光合作用的改善效应.作物学报,1995,21:711-716.
    100.杨根平,荆家海,王韶唐.钙在干旱胁迫植株内作用的初步研究.西北植物学报,1992,12(5):13-16.
    101.杨凯,昌小平,胡荣海,贾继增.干旱胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27(3):363-366.
    102.易建华,孙在军.烟草光合作用对低温响应.作物学报,2004,30(6):582-588.
    103.殷全玉,张利军,柯油松,张丹,杨铁钊.水杨酸浸种对低温下烟草种子萌发率和几个与幼苗抗寒性有关的生理生化指标影响.植物生理学通讯,2007,43(1)189-190.
    104.于海秋,徐克章,武志海,沈秀瑛.土壤干旱对玉米叶片膜透性及叶绿体超微结构的影响.吉林农业大学学报,2002,24(3):17-23.
    105.张红,张汉贤.水稻秧苗抗寒剂研制的初步探讨.广西工学院学报,1995,6(1):76-79.
    106.张丽,英柴敏,姜立纲.番茄苗期抗旱性鉴定及其评价方法的研究.中国蔬菜,2008,2:15-20.
    107.张烈,沈秀瑛.脯氨酸对玉米抗旱性影响的研究.华北农学报,1999,14(1):38-41.
    108.张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对小麦盐害的缓解作用.植物生理学报,1999,25(2):159-164.
    109.张文娥,王飞,潘学军.应用隶属函数法综合评价葡萄种间抗寒性.果树学报,2007,24(6):849-853.
    110.张文英,柳斌辉,杨国航,彭海城,栗雨勤.玉米不同时期抗旱性鉴定指标的灰色关联度与聚类分析.华北农学报,2008,23(增刊):96-98.
    111.张小红.高吸水性树脂的结构设计与性能研究.2006,西北工业大学博士学位论文.
    112.张燕,方力,李天飞,吴业池,冯永新.聚乙二醇对烟草种子活力及幼苗保护酶活性的影响.云南农业大学学报,2004,19(1):36-40.
    113.张燕,方力,姚照兵.PEG对烟草幼苗耐低温胁迫能力的生理效应.西北农业学报,2003,12(1):63-67.
    114.张晓飞,周礼,朱莉,张熙,代华.基于NIPAM和HEMA的温敏性共聚物水溶液性能研究.高分子材料科学与工程,2007,23(3):85-87.
    115.赵德刚,孟繁静.冬小麦低温春化过程中茎尖细胞超微结构的变化与玉米赤霉烯酮的关系.植物学报,1997,39(6):570-573.
    116.赵建勋.杂交水稻种子包衣的应用研究.安徽农业科学,1996,24(2):108-110.
    117.赵妍嫣,姜绍通.淀粉基多孔高吸水树脂致孔剂对吸液速率影响.农业机械学报,2009,40(10):126-128.
    118.郑昀晔,胡晋,张胜,高灿红,宋文坚.玉米自交系发芽期和苗期耐寒性的鉴定.浙江大学学报(农业与生命科学版),2006,32(1):41-45.
    119.郑志强.种子包衣新工艺.中国专利:200610076374,2006.
    120.周国顺,刘自华,李建东.水分胁迫对小麦叶绿体膜脂过氧化的影响.北京农学院学报,2003,18(2):86-88.
    121.周冀衡.烟草的抗旱生理研究.中国烟草,1998,3:37-41.
    122.周克功.低温胁迫下甘肃黄花烟草愈伤组织的抗氧化呼吸.植物学报,2000,42(7):675-683.
    123.周晓辉,廖列文,史爱华.丙烯酸/甲基丙烯酸羟乙酯共聚物耐盐性高吸水性树脂研究.广东轻工职业技术学院学报,2005,4(1):16-19.
    124.周效全.高分子吸水树脂在油田化学中的应用.钻采工艺,1998,21(5):66-67.
    125.朱秀林,路建美.内交联型高吸水性树脂的合成及性能研究.高分子材料科学与工程,1993,9(4):19-22.
    126.朱雪燕,陈明清,刘晓亚,倪忠斌,杨成.温敏性凝胶的合成与药物缓释模拟.江南大学学报(自然科学版),2002,1(2):160-163.
    127.Alibert G, Carrasco A and Boudet AM. Changes in biochenucal composition of vacuoles isolated from Acer pseudoplatanus L. during cell culture. Biochim Biophys Acta,1982, 721:22-29.
    128.Arnon DI. Copper enzymes in isolated chloroplasts polyphendoxidase in Bera vulgaris. Plant Physiology,1949,24:1-15.
    129.Atkin OK and Tjoelker MG. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science,2003,8:343-351.
    130.Bae YH, Okano T and Kim SW. "On-off" therrnocontrol of solute transport. Ⅰ Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharmaceutics Research.1991 a,8:531-537.
    131.Bae YH, Okano T and Kim SW. "On-off" thermo control of solute transport. Ⅱ. Solute release from thermositive hydrogels. Pharmaceutics Research.1991 b,8:624-628.
    132.Baxter L and Luther WJ. Effect of a hydrophilic polymer seed coating on the field performance of sweet corn and cowpea. HortScience,1986,1:31-34.
    133.Baid VW. Low temperature and drought regulated gene expression in Bermuda grass. Turfgrass and Environmental Research,1994,8:32-33.
    134.Berlin J, Quisenberry JE and Bailey F. Effect of water stress on cotton leaves in an electron microscopic stereological study of the palisade cells. Plant Physiology,1982, 70:238-243.
    135.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye bin ding. Analytical Biochemistry,1976, 72:248-254.
    136.Brennan T and Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology,1977,59:411-416.
    137.Breusegem FV, Slooten L and Stassart JM. Effects of over production of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. Journal of Experimental Biology,1999,50:71-78.
    138.Cakmak I and Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology,1992,98:1222-1227.
    139.Chellenbaum L, Sprenger N and Schuepp H. Effects of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Physiologist,1999,1:67-77.
    140.Chung JE, Yokoyama M and Yamato M. Thermo-responsive drug delivery from polymeric micelles constructured using block copolymers of poly (N-isopropyl acryl-amide) and poly (butylmethacrylate). Journal of Controlled Release,1999, 62:115-123.
    141.Dong LC and Hoffman AS. Thermally reversible hydrogels:Ⅲ. Immobilization of enzymes for feedback reaction control. Journal of Controlled Release,1986,4:223-227.
    142.Durmaz S and Okay O. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels:synthesis and characterization. Polymer,2000,41:3693-3704.
    143.Elster EF. Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology, 1982,33:73-96.
    144.Esposito F and Nobile MD. Water sorption in cellulose based hydrogels. Polymer Master Science,1996,74:368-369.
    145.Fanta GF. Copolymerization of wheat starch with acrylonitrile. Influence of chain copolymer composition. Journal of Application Polymer Science,1966,2:457-460.
    146.Farooq M, Basra SMA and Wahid A. Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science,2009,4:237-246.
    147.Fatima R, Bordado J and Casquiho M. Kinetics of water absorbency in AA/AMPS copolymers:applications of a diffusion-relaxation model. Polymer,2002,43:63-70.
    148.Feil H, Bae YH, Feijen J and Kim SW. Molecular separation by thermosensitive hydrogel membranes. Journal Membrane Science,1991,64:283-294.
    149.Foolad MR, Zhang L and Subbiah P. Relationships among cold, salt and drought tolerance during seed germination in tomato:Inheritance and QTL Mapping. Acta Horticulturae (ISHS),2003,618:47-57.
    150.Fundueanu G, Constantin M and Ascenzi P. Poly (N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater,2009,5:363-373.
    151.Gehrke SH, Andrews GP and Cussler EL. Chemical aspects of gel extraction. Chemical Engineering Science,1986,41:2153-2160.
    152.Gemel J, Golinowski W and Kaniuga Z. Low-temperature induced changes in chloroplast ultrastructure in relation to changes of Hill reaction activity, manganese and free fatty-acid levels in chloroplasts of chilling-sensitive and chilling-resistant plants. Acta Physiologiae Plantarum,1986,8:135-143.
    153.Gholami M, Rahemi M and Kholdebarin B. Effect of drought stress induced by polyethylene glycol on seedgermination of four wild almond species. Australian Journal of Basic and Applied Sciences,2010,5:785-791.
    154. Giles KL. Cellular and uhrastructural changes in mesophyll and bune sheath cell of maize in response to water stress. Plant Physiology,1974,54:208-212.
    155.Gong M, Li YJ and Dai X. Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotoleranee in maize seedlings. Plant Physiology,1997, 150:615-621.
    156.Gunes A, Inal A and Alpaslan M. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize(Zea mays L.) grown under salinity. Journal of Plant Physiology,2007,164:728-736.
    157.Guy CL. Cold acclimation and freezing stress tolerance:role of protein metabolism. Annu. Rev. Plant Physiol. Plant Molecular Biology,1990,41:187-223.
    158.Haldimann P, Fracheboud Y and Stamp P. Photo synthetic performance and resistance to Dhotoinh-bition of Zea mays L.1 eaves grown at sub-optimal temperature. Plant Cell and Environment,1996,19:85-92.
    159.Hansen LM, Smith DJ and Reneker DH. Water absorption and mechanical properties of electrospun structured hydrogels. Journal of Application Polymer Science,2005, 95:427-434.
    160.Heikal MMD, Berry WL and Wallace A. Alleviation of nickel toxicity by calcium salinity. Soil Science,1989,147:413-415.
    161.Hepler PK and Wayne RO. Calcium and plant development. Annual Review of Plant Physiology,1985,36:397-402.
    162.Hernandez JA. Jimenez A and Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress are associated with induction of antioxidant defences. Plant Cell and Environment,2000,23:853-862.
    163.Hetherlngton SE, He J and Smillie RM. Photoinhibition chilling stress in chilling-sensitive and resistant plants. Plant Physiology,1989,90:1609-1615.
    164.Hodges DM, Andrews CJ and Johnson DA. Sensitivity of maize hybrids to chilling and their combining abilities at two development stages. Crop Science,1997,37:850-856.
    165.Hodgson RAL and Raison JK. Inhibition of photosynthesis by chilling in light. Plant Science Letters,1987,49:75-81.
    166. Hoffman AS. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. Journal of Controlled Release,1987,6:297-305.
    167.Horvath E, Pal M and Szalai G. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum,2007,3:480-487.
    168.Hu J, Zhu ZY and Song WJ. Effect of sand priming on germination and field performance in direct sowing rice (Oryza sativa L.). Seed Science and Technology,2005, 33:243-248.
    169.Ilker R. The cytological responses of tomato seedling cotyledons to chilling and the influence of membrane modifications upon these responses. Protoplasma,1976, 90:229-252.
    170.Irigoyen JJ, Emerich DW and Sanchez-Diaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants. Plant Physiology,1992,84:55-60.
    171.Janda T, Szalai G, Tari I and Paldi E. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta,1999,208:175-180.
    172.Kaneko Y, Yoshida R, Sakai K, Sakurai Y and Okano T. Temperature-responsive shrinking kinetics of poly (N-isopropylacrylamide) copolymer gels with hydrophilic and hydrophobic comonomers). Journal of Membrane Science,1995,101:13-22.
    173.Kang GZ, Wang CH, Sun GC and Wang ZX. Salicylic acid changes activities of H2O2 metabolizing enzymes and increases the chilling tolerance of banana seedlings, Environmental and Experimental Botany,2003,50:9-15.
    174.Kang HM and Saltveit ME. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum,2002, 115:571-576.
    175.Kavi KPB, Hong Z and Miao GH. Over expression of delta pynoline 5 carboxylate syrthetase increases praline production and confers osmotolerance in transgenic plants. Plant Physiology,1995,4:1387-1394.
    176.Kim D, Young HL and Doo SL. Drug releasing characteristics of thermo-and pH-sensitive interpenetrating polymer net works based on poly (N-isopropylacrylamide). Joumal of Applied Polymer Science,1997,13:2647-2655.
    177.Kim JC, Bae SK and Kim JD. Temperature-Sensitivity of Liposomal Lipid Bilayers Mixed with Poly N-isopropylacrylamide-co-acrylic Acid). The Journal of Biochemistry, 1997,1:15-19.
    178.Kimball SL and Salisbury FB. Ultrastructural changes of plants exposed to low temperaturesjstor. American Journal of Botany,1973,60:1028-1033.
    179.Kratsch HA and Wise RR. The ultrastructure of chilling stress. Plant, Cell and Environment,2000,23:337-350.
    180.Kunkel BN and Brooks DM. Cross talk between signaling pathways in pathogen defense. Current Advances in Plant Science,2002,5:325-331.
    181.Kurets VK, Drozdov SN and Popov EG.2003. Efect and after effect oftemperature on respiration of intact plant. Russian Journal of Plant Physiology,2003,50:308-312.
    182.Kurimoto K, Millar AH, Lambers H, David AD and Noguchi K. Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Plant and Cell Physiology,2004,45:1015-1022.
    183.Larsen RJ. Phonetic classification. New York:Academic press,1995.
    184.Lee JY, Lec JH and Rya S. Effct of abscisic acid application and its mechanism on the chilling injury of rice plants. Research Reports of the Rural Development Administion, Plant Environment, Mycology& Farm Products Utilization,1987,29:60-65.
    185.Lee SH, Singh AP and Chung GC. Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips. Journal of Experimental Botany,2002,53:2225-2237.
    186.Li XY, Wu WH and Liu WQ. Synthesis and properties of thermo-responsive guar gum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carbohydrate Polymer,2008,71:394-402.
    187.Liang L, Rieke PC, Liu J, Fryxel G, Young JS, Engelhard MH and Alford KL. Surfaces with reversible hydrophilic/hydrophobic characteristics on cross-linked poly (N-isopropylacrylamide) hydrogels. Langmuir,2000,16:8016-8023.
    188.Lim YH, Kim D and Lee DS. Correlation between tensile properties and network draw ratio for poly (ethylene terephthalate) fibers with wide range of molecular orientation and crystallinity. Journal of Applied Polymer Science,1997,64:2647-2655.
    189.Liu Y, Xie JJ and Zhang XY. Synthesis and some porperties of the copolymer of acrylamide with 2-acrylamido-2-methylpropane sulfonic acid. Journal of Application Polymer Science,2003,90:3481-3487.
    190.Lue S, Hsu JJ, Chen CH and Chen BC. Thermally on-off switching membranes of poly (N-isopropylacrylamide) immobilized in track-etched polycarbonate films. Journal of Membrane Science,2007,301:142-150.
    191.Luxova M and Gasparikova O. The effect of low temperature on root respiration in maize. Biologia,1999,54:453-458.
    192.Lyons JM. Chilling injury in plants. Annual Review of Plant Physiology,1973, 24:445-466.
    193.Ma SF, Lin CY and Chen Y. Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling-sensitive (mungbean) and insensitive (pea) seedlings. Plant Cell Physiology,1990,31:263-272.
    194.Marinos NG. Studies on submicroscopic aspects of mineral deficiendes. I. Calcium deficiency in the shoot apex of barley. American Journal of Botony,1962,48:834-839.
    195.Marangoni AG, Palma T and Stanley DW. Membrane effects in postharvest physiology. Postharvest Biology and Technology,1996,7:193-217.
    196.Miyagawa Y,Tamoi M and Shigeoka S. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiology,2000,3:311-320.
    197.Morgan JM. A gene controlling diferences in osmoregnlation in wheat. Australia Journal of Plant Physiology,1992,18:249-257.
    198.Munne-Bosch S. Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant, Cell and Environment,2001,24:1319-1327.
    199.Munne-Bosch S and Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarlnus officinalis plants. Planta,2000,210:925-931.
    200.Munro KD, Hodges DM, Delong JM, Forney CF and Kristie DN. Low temperature effects on ubiquinone content, respiration rates and lipid peroxidation levels of etiolated seedlings of two diferentially chilling-sensitive species. Physiologia Plantarum,2004, 121:488-497.
    201.Murelli CF, Rizza G and Marinone FL. Metabolic changes associated with cold acclimation in contrasting cultivars of barley. Physiologia Plantarum,1995,94:87-93.
    202.Nadim E, Ziaee F and Bouhendi H. Stereocontrol study in radical polymerization of 2-acrylamido-2-methylpropane sulfonic acid in the presence of lewis acids. J. Macromol. Sci., Part A:Pure and Applied Chemistry,2011,48:526-530.
    203.Nakano Y and Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant and Cell Physiology,1981,22:867-880.
    204.Nessler CL and Wernsman EA. Ultrastructural observations of extranuclear temperature-sensitive lethality in Nicotiana tabacum L. Botanical Gazette,1980, 141:9-14.
    205.Pilon SE, Ebskamp MJM and Paul MJ. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology,1995,1:125-130.
    206.Piyasiri AJ. Change of some membrane associated enzyme activities and degradation of membrane phospholipids in cucumber roots due to calcium starvation. Plant Cell Physiology,1986,27:223-228.
    207.Pustovoitova TN, Bavrina TV and Zhdanova NE. Drought tolerance of transgenic tobacco plants carrying the iaaM and iaaH genes of auxin biosynthesis. Russian Journal of Plant Physiology,2000,3:380-385.
    208.Rao KVM and Sresty TVS. Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan L.) in response to Zn and Ni stresses. Plant Science,2000,157:113-128.
    209.Rengel Z. The role of calcium in salt toxicity. Plant Cell and Environment,1992, 43:375-414.
    210.Rensburg L and Kruger GHJ. Differential inhibition of photosynthesis (in vivo and in vitro), and changes in chlorophyll a fluorescence induction kinetics of four tobacco cultivars under drought stress. Journal of Plant Physiology,1993,3:357-365.
    211.Ribas CM, Rieardo A, Miquel A, Irigoyen JJ and Manuel SD. The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiology,2000, 122:199-204.
    212.Rosa N. Low temperatures damage germination tobacco seed. Lighter,1970,40:22-23.
    213.Prasad TK. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiology,1997,114:1369-1376.
    214.Purvis AC and Shewfeh RL. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiologia Plantarm,1993,88:712-718.
    215.Sabehat A, Lurie S and Weiss D. Expression of small heat-shock proteins chilling stresss. A possible role in protecting against chilling injuries. Plant Physiology,1998, 117:651-658.
    216.Sanju F, Manmohan K and Lalit V. Radiation synthesis of superabsorbent poly (acrylic acid) carrageenan hydrogels. Radiation Physics and Chemistry,2004,69:481-486.
    217.Schellenbaum L, Sprenger N, Schiepp H, Wiemken A and Botter T. Effects of drought, transgenic expression of a fructan synthesizing enzyme on growth and soluble carbohydrate pools in tobacco plants. New Physiologist,1999,1:67-77.
    218.Schlosser I, Kranz J and Bonman JM. Morphological classification of traditional Philippine upland rice cultivars in upland nurseries using cluster analysis methods for recommendation, breeding and selection purposes. Journal of Agronomy and Crop Science,2000,184:165-171.
    219. Sharples GC. Lettuce seed coatings for enhanced seedling emergence. HortScience,1981, 5:661-662.
    220.Siller-Jackson AJ, Van Dyke ME and Timmons SF. Keratin-based powders and hydrogel for pharmaceutical applications. US Patent,6544548,2003.
    221. Simon EW, Minchin A and McMenamin MM. The low temperature limit for seed germination. New phytologist,1976,77:301-311.
    222.Souza RP, Machado EC and Silva JAB. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany,2004, 51:45-56.
    223.Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology,1984,35:543-584.
    224.Sylvie FM, Valadier MH and Christine HF. Over expression of nitrate reeducates in tobacco drought-induced decreases in nitrate reeducates activity and mRNA. Plant Physiology,1998,117:293-302.
    225.Tagdelen B. Investigation of drug release from thermo-and pH-sensitive poly (N-isoporpylacrylam idelitaconic acid) copolymeric hydrogels. Polymers for Advanced Technologies,2004,9:528-532.
    226.Talts P, Pgrnik T, Gardestrim P and Keerberg O. Respiratory acclimation in Arabidopsis thaliana leaves at low temperature. Journal of Plant Physiology,2004,161:573-579.
    227.Tasgin E, Attici O and Nalbantoglu B. Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves. Journal of Plant Growth Regulation,2003,41:231-236.
    228.Tognetti VB, Palatnik JF and Fillat MF. Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. The Plant Cell, 2006,18:2035-2050.
    229.Uemura M and Steponkus PL. Cold acclimation in plants:relationship between the lipid composition and the cryostability of the plasma membrane. Journal of Plant Reserach, 1999,112:245-254.
    230. Van Camp, Willekens W and Bowler H. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio-Technology,1994,2:165-168.
    231.Van Rensburg L and Kruger HJ. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana. Journal of Plant Physiology,2004,6:730-737.
    232.Viswanathan C, Karen S and Jian KZ. Molecular geneticperspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany,2004, 395:225-236.
    233.Von Kampen J, Nielander U and Wettem M. Expression of ubiquitin genes in chlamydomonas reinhardtii:involvement in stress response and cell cycle. Planta,1995, 197:528-534.
    234.Waren GJ. Cold stress:manipulating freezing tolerance in plants. Current Biology,1998, 15:514-516.
    235.West SH. Polymers as moisture barriers to maintain seed quality. Crop Science,1985, 25:941-943.
    236.Wise RR and Naylor AW. Chilling-enhanced photooxidation:the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology,1987,83:272-277.
    237.Xu SC, Li YP, Hu J, Guan YJ, Ma WG, Zheng YY and Zhu SJ. Responses of antioxidant enzymes to chilling stress in tobacco seedlings. Agricultural Sciences in China,2010, 11:1594-1601.
    238.Yamada S and Hans JB. Expression of the PIP aquaporin promoter 2MipA from the common ice plant in tobacco. Plant Cell Physiology,2000,6:719-725.
    239.Yamauchi M and Winn T. Rice seed vigor and seedling establishment in anaerobic soil. Crop Science,1996,36:680-686.
    240. Yan MJ, Huang WZ and Hu JT. Classification of rice materials for drought resistance by cluster analysis. Agricultural Science & Technology,2010,4:94-97.
    241.Yoshida R, Sakai K, Okano T and Sakurai Y. Drug release profiles in the shrinking process of thermorsponsive poly (N-isopropylacrylamide-co-alkyl methacrylate) gels. Industrial and Engineering Chemistry Research,1992,31:2339-2345.
    242.Zahra K and Mohammad M. Evaluation of drought and salinity stress effects on germination and early growth of two cultivars of maize(Zea mays L.). African Journal of Biotechnology,2011,66:14868-14872.
    243.Zhang S, Hu J, Zhang Y, Xie XJ and Knapp A. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 2007,58:811-815.
    244.Zhou JS, Xiong HY and Yang CJ. Chemical compositions of volatile oil from fruiting body of Armillaria luteo-virens. Agricultural Science and Technology,2008,2:90-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700