跳水运动表象与时空知觉的信息加工特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳水运动的特征是在时间知觉和空间知觉的协调统合中完成高难度的技术动作。从走台(板)到起跳的方向,从空中翻腾到控制入水均需要运动员对自己的动作有清晰的感知,对时间有准确的把握,对空间有精确的定位。运动表象能力和时空知觉能力是跳水运动员重要的专项心理能力。
     本研究以运动专家的认知优势理论、表象的眼动机制和时间知觉的双加工机制等为理论基础,以一般运动物体和跳水运动视频为刺激条件,采用“专家——新手”研究范式,综合使用眼动分析技术和事件相关电位分析技术,从行为层面、认知层面和神经层面揭示跳水运动表象和时空知觉的信息加工特征及其神经机制,探究高水平运动员运动表象和时空知觉的优势特征及其原因,同时探究运动表象和时空知觉的影响因素及其原因。研究旨在丰富运动专家的认知优势理论及表象和时空知觉的理论,为跳水运动员的选材及训练和比赛监控提供理论依据和方法指导,为运动表象和时空知觉能力的训练和评估提供新的可操作的方法和可测量的指标。
     主要结果:
     (1)高水平运动员的表象时间显著低于普通人,表象效果显著优于普通人。高水平运动员和普通人对一般运动物体的时距估计和空间位置判断的准确性无显著差异,对跳水运动时距估计和空间位置判断的准确性显著高于普通人。
     (2)跳水运动表象中,高水平运动员比普通人的注视次数少,注视点持续长,眼跳距离大,瞳孔直径小。高水平运动员知觉和表象阶段的注视次数、眼跳距离和瞳孔直径均无显著差异,知觉和表象阶段的注视点持续时间存在显著的线性关系。跳水运动时间知觉中,高水平运动员比普通人的注视次数少,注视点持续时间短,眼跳距离大,瞳孔直径小。高水平运动员对1s以内时距和1s以上时距估计的注视点持续时间和瞳孔直径无显著差异。
     (3)跳水运动表象中,Fz点,高水平运动员比普通人的P1和P3峰波幅大,潜伏期长;P2峰波幅小,潜伏期长。Cz点,高水平运动员比普通人的P1、P2和P3峰波幅大,潜伏期长。Pz点,高水平运动员比普通人的P1、P2和P3峰波幅小,潜伏期长;Oz点,高水平运动员和普通人的P1峰波幅和潜伏期无显著差异;P2峰波幅小,潜伏期无显著差异;高水平运动员和普通人的P3峰波幅无显著差异,潜伏期长。高水平运动员比普通人额叶区、颞叶区和中央区的激活程度高,枕叶区的激活程度低。跳水运动时间知觉中,Fz、Cz和Pz点,高水平运动员比普通人的CNV峰波幅小,潜伏期无显著差异;Oz点,高水平运动员比普通人的CNV潜伏期长,峰波幅无显著差异。高水平运动员比普通人大脑整体上的激活程度低。跳水运动空间知觉中,高水平运动员比普通人额叶区和颞叶区的激活程度高,顶叶区和枕叶区的激活程度低,大脑整体上的激活程度低。
     (4)高水平运动员闭眼表象的时间接近动作执行的时间,自由眼动表象的时间比动作执行的时间短,限制眼动表象的时间比动作执行的时间长;眼动方式不影响表象效果。普通人自由眼动表象的时间接近动作执行的时间,限制眼动和闭眼的表象时间均比动作执行的时间长;自由眼动的表象效果最好,闭眼和限制眼动均降低了表象效果。
     (5)高水平运动员的表象时间随动作难度的增大而增加,动作难度不影响表象正确率和反应时;普通人随动作难度的增大,表象时间增加,表象正确率降低,反应时增加。高水平运动员和普通人对跳水运动时距的估计时间均随跳水动作难度的增大而增加。
     (6)高水平运动员和普通人对一般运动物体的时距估计策略不存在显著差异,对跳水运动的时距估计策略存在显著差异,高水平运动员更多使用直接判断和计数策略,普通人更多使用表象策略。
     主要结论:
     (1)跳水运动表象的影响因素:运动水平(认知特征)、眼动方式和动作难度。跳水运动时间知觉的影响因素:运动水平(认知特征)、时距、动作难度和估计策略。跳水运动空间知觉的影响因素:运动水平(认知特征)和空间位置。
     (2)高水平运动员时空知觉能力的优势与其从事的运动项目有关,支持了经验说。
     (3)跳水运动表象中,高水平运动员比普通人的信息加工效率高;信息加工程度深,加工更精细;对跳水动作的理解程度高,信息加工更容易;注意的水平高,记忆信息的加工程度高;更多使用动觉表象,较少使用视觉表象。高水平运动员总的认知资源投入少,且认知资源更多地投入于注意和记忆信息的加工,而普通人的认知资源更多地投入于视觉信息的加工。跳水运动时间知觉中,高水平运动员比普通人的信息加工效率高,信息加工深度浅,投入的总认知资源少,心理努力程度小,信息加工的自动化程度高。跳水运动空间知觉中,高水平运动员注意的水平高,记忆信息的加工程度高;总的认知资源投入少,且认知资源更多地投入于注意和记忆信息的加工,而普通人的认知资源更多地投入于视觉信息的加工。
     (4)一般运动物体的时间知觉中,1s以内和1s以上时距的信息加工机制可能存在差异,1s以内使用的是自动加工,1s以上使用的是受控加工,支持了时间知觉双加工机制理论。跳水运动的时间知觉中(1s以上),高水平运动员与普通人的信息加工机制可能存在差异,高水平运动员使用的是自动加工,普通人使用的是受控加工。
The feature of diving is showing complex movement in the space-time integration.From walking board to jumping direction, from rotation to water entry, it is necessarythat perceiving own rotation clearly, holding the time accurately and fixing theposition exactly for athletes. Therefore, motor imagery capacity and temporal andspatial perception ability are special mental ability for divers.
     Based on the theories of experts' cognitive advantages, motor imagery construction,twiformed temporal processing mechanism and so on, a falling ball and diving videoused as stimulation and eye movement analysis technics combined with ERP,adopting the “expert-novice” paradigm, this research explored the informationprocession and neural mechanism of diving motor imagery and temporal and spatialperception and tried to find impact factors of motor imagery and temporal and spatialperception, and then discovered the experts' cognitive advantages in order to makingthe theories of motor imagery and temporal and spatial perception richer andproviding theoretical basis and methods for divers' selection and monitoring oftraining and game, and then offered the operable methods and measurable indexes forthe training and assessment of motor imagery and temporal and spatial perception.
     Main results:
     (1) Experts' imagery time was significantly shorter than novices', and their imageryeffect was significantly better than novices'. In temporal and spatial perception, therewas no significant difference between experts and novices for a falling ball, but fordiving, experts were significantly better than novices.
     (2) During motor imagery, experts' fixation times were significantly fewer thannovices', and their fixation duration were significantly longer than novices', and theirsaccade distances were significantly larger than novices', and their pupil sizes weresignificantly smaller than novices'. For experts, there was no significant differenceamong fixation times, saccade distances and pupil sizes, and there was significantlinear relation between the fixation duration of perception and imagery. During divingtemporal perception, experts' fixation times were significantly fewer than novices',and their fixation duration were significantly shorter than novices', and their saccadedistances were significantly larger than novices', and their pupil sizes weresignificantly smaller than novices'. For experts, there was no significant differencebetween the fixation duration and pupil sizes of0.5s interval and1.5s interval.
     (3) During motor imagery, on Fz, peak amplitude and latency of P1and P3ofexperts were significantly larger than novices', and peak amplitude of P2of expertswere significantly smaller than novices', and latency of of experts were significantlylarger than novices'. On Cz, peak amplitude and latency of P1, P2and P3of expertswere significantly larger than novices'. On Pz, peak amplitude of P1, P2and P3ofexperts were significantly smaller than novices', while latency of P1, P2and P3ofexperts were significantly larger than novices'. On Oz, there was no significantdifference between peak amplitude and latency of P1of experts and novices, andthere was no significant difference between latency of P2of experts and novices,while peak amplitude of P2of experts were significantly smaller than novices', and there was no significant difference between peak amplitude of P3of experts andnovices, while latency of P3of experts were significantly larger than novices'. Duringdiving temporal perception, on Fz, Cz and Pz, there was no significant differencebetween latency of CNV of experts and novices, while peak amplitude of CNV ofexperts were significantly smaller than novices'. On Oz, there was no significantdifference between peak amplitude of CNV of experts and novices, while latency ofCNV of experts were significantly larger than novices'.
     (4) Experts' imagery times of closing eyes were most close to the movement time,and imagery times of free eye movement were significantly shorter than movementtime, and imagery times of restricted eye movement were significantly longer thanmovement time. The way of eye movement was no impact on the effect of imageryfor expert. Novices' imagery times of free eye movement were most close to themovement time, and imagery times of closing eyes and restricted eye movement weresignificantly longer than movement time. The imagery effect of free eye movementwas best among the three ways, and closing eyes and restricted eye movementreduced the effect.
     (5) The more complex of the motion, the longer of the experts' imagery time, whilemotion complexity was no impact on their imagery effect. The more complex of themotion, the longer of the novices' imagery time and the worse of their imagery effect.The more complex of the motion, the longer of estimated time.
     (6) There was no significant difference of time estimation strategy between expertsand novices for a falling ball, but there were significant differences for diving: expertsmore adopted direct judge and count, while novices more adopted imagery.
     Main conclusion:
     (1) The influence factors of motor imagery were sports level, eye movement waysand motion complexity. The influence factors of temporal perception were sports level,time interval, motion complexity and estimation strategy. The influence factors ofspatial perception were sports level and position.
     (2) The advantage of experts' temporal and spatial perceptive ability was relative tothe sport experted in, supporting the experience theory.
     (3) During motor imagery, experts' attentive levels were higher than novices', andtheir information processing efficiencies were higher than novices', and theirinformation processing degree were deeper than novices', and their attentive level andlong-term memory processing degree were higher than novices', and their visualimagery were participated in fewer and kinesthetic imagery were participated in morethan novices'. Experts' cognitive resources were fewer than novices', and cognitiveresources were more devoted to attention and extracting and processing informationof long-term memory, while novices' cognitive resources were more devoted to visualinformation processing. During temporal perception, experts' information processingefficiencies were higher than novices', and their information processing degree werelower than novices', and their cognitive resources were fewer than novices'. Duringspacial perception, experts' attentive level and long-term memory processing degreewere higher than novices', cognitive resources were fewer than novices', and cognitiveresources were more devoted to attention and extracting and processing information of long-term memory, while novices' cognitive resources were more devoted to visualinformation processing.
     (4) During temporal perception of a falling ball, there may be differences ofinformation processing mechanism between within1s (automatic) and above1s(cognitive), supporting the twiformed temporal processing mechanism theory. Duringdiving temporal perception (above1s), there may be differences of informationprocessing mechanism between experts (automatic) and novices (cognitive).
引文
[1]陈耕春.高水平运动员运动表象的ERPs特征研究[J].西安体育学院学报,2012,29(2):208-211.
    [2]董浩然.长春市中学生足球运动员运动知觉特点的研究[D].吉林:东北师范大学,2009.
    [3]董伦红.认知决策与篮球运动训练[J].广州体育学院学报,2006,20(3):11-14.
    [4]陈耕春.运动心理学概论[M].西安:西安体育学院,2007.
    [5]程勇民.关于运动领域中专家与新手的认知差异研究[J].南京体育学院学报,2006,20(3):11-14.
    [6]曹建云.运动员的关联性负变化初探[J].上海体育学院学报,1987(4):22-25.
    [7]曹建云.不同专项运动员的关联负变化[J].上海体育学院学报,1991,15(1):1-7.
    [8]冯琰.高水平花剑运动员时间感优势的脑神经机制研究[J].体育科学,2009,29(1):35-44.
    [9]冯琰.高水平花剑运动员认知优势特征及神经机制研究[D].上海:上海体育学院,2008.
    [10]周成林.高水平男子击剑运动员空间知觉特性的事件相关电位研究[J].中国运动医学杂志,2011,30(2):121-127.
    [11]高春刚.终点预期对运动过程中心率、能量消耗、主观用力感和情感的影响[D].北京:北京体育大学.
    [12]黄希庭.时间知觉的脑机制研究[J].西南师范大学学报(人文社会科学版),2006,4:1-4.
    [13]孔德杰.跳水运动员能力浅析与发展[J].华章,2007(11):268.
    [14]李今亮.乒乓球运动员接发球判断的思维活动特征[D].北京:北京体育大学,2005.
    [15]李胜光.预期调节痛觉的脑机制[J].中国疼痛医学杂志,2009,15(4):243-247.
    [16]李旭强.论跳水运动中的时间知觉和空间知觉[J].沈阳体育学院学报,2006,25(1):106-108.
    [17]李瑛.视觉表象建构与表象扫描的眼动特征[D].西安:山西师范大学,2008.
    [18]梁祎明,张忠秋.眼动行为模式训练影响运动表象效果的眼动研究[J].天津体育学院学报,2012,27(4):338-342.
    [19]刘练红.心理旋转的事件相关电位研究[D].第四军医大学,2004.
    [20]祁乐瑛.表象表征——心理旋转的实证探索[D].上海:华东师范大学,2009.
    [21]漆昌柱.羽毛球专家——新手在模拟比赛情境中的问题表征与运动思维特征[D].北京:北京体育大学,2001.
    [22]马启伟.体育运动心理学[M].杭州:浙江教育出版社,2002.
    [23]毛大伟.分尺度复杂性及希尔伯特—黄变换在脑电分析中的应用[D].杭州:浙江大学,2005.
    [24]潘昱.13-18岁青少年表象能力的发展和脑电α波的关系[J].心理发展与教育,2001,17(4):6-11.
    [24]彭腆龄.普通心理学[M].北京:北京师范大学出版社,2001.
    [25]孙延林.不同水平体操运动员的预期与视觉搜索特征的研究[D].天津:天津师范大学,2009.
    [26]宋其争.时间认知的理论模型探析[J].西南师范大学学报(人文社会科版),2004,30(1):25-28.
    [27]宋薇.用事件相关电位检验表象能力差异的实验研究[D].北京:首都体育学院,2008.
    [28]宋为群.年老化视空问注意脑机制的研究[J].自然科学进展,2006,16(4):427-432.
    [29]汤长发.跳跃类运动技能表象训练的实效性及其机制研究[D].长沙:湖南师范大学,2011.
    [30]王甦.认知心理学[M].北京:北京大学出版社,1992.
    [31]王穗苹.语言理解眼动研究的争论与趋势[J].华东师范大学学报,2006(2).
    [32]王小春,周成林.基于视觉线索遮蔽条件下的网球专家空间知觉预判:来自眼动与ERP的证据[J].体育科学,2013,33(2):38-46.
    [33]闫国利.眼动分析法在心理学研究中的应用[M].天津:天津教育出版社,2004.
    [34]闫国利.移动窗口条件下不同工作记忆者阅读差异的眼动研究[J].心理与行为研究,2007(4).
    [35]游旭群,杨治良.表象旋转加工子系统特性的初步研究[J].心理学报,1999,31(4):376-381.
    [36]张玉萍.少儿跳水运动员若干心理因素对技术动作影响的研究[J].南京体育学院学报,2002,16(3):46-66.
    [37]赵文进.高水平跳水运动员表象能力及其特征探析[J].游泳,2010,3.
    [38]张君梅.运动表象训练对肌肉力量的作用[D].北京:北京体育大学,2012.
    [39]张为为.运动心理学:追求卓越与保持健康[J].中国科学院院刊,2012.
    [40]张振民.心理调节下放慢呼吸脑电图功率谱能量变化[J].体育科学,1991,1.
    [41]张志杰.时间知觉的注意调节:一项ERP研究[J].心理学报,2007,39(6):1002-1011.
    [42]赵仑. ERPs实验教程[M].福建:东南大学,2010.
    [43]周成林.竞技比赛过程中认知优势现象的诠释与思考[J].体育科学,2010,30(10):13-22.
    [44]周未艾.中国优秀跳水运动员大脑机能监控研究[J].中国运动医学杂志,2004,23(6):649-653.
    [1] Abbiss, C. R. Describing and Understanding Pacing Strategies during AthleticCompetition. Sports Medicine,2008,38(3):239-252.
    [2]Abernethy B. The effects of age and experience upon perceptual skill developmentin sport[J]. Experience sport,1988,59(3):210-221.
    [3]Adrian,E,D. The Berger rhythm: Potential changes from the occipital lobes in man[J]. Brain,1934,57:335-385.
    [4] Ahsen A. The triple code model for imagery and psychophysiology[J]. Journal ofmental imagery,1984(8):15-42.
    [5] Alain C. Study of decision-making in competition[J]. Sport Science,1990,15(3):193-200.
    [6] Bennett. Psychological characteristics of successful and non-successful eliteWrestlers: An exploratory study[J]. Journal of sport Psychology,1979,1:123-137.
    [7] Brandt S.A.&Stark, L.W. Spontaneous eye movements during visual imageryreflect the content of the visual scene[J]. Journal of Cognitive Neuroscience,1997,9:27-38.
    [8] Brandt S.A.&Stark, L.W. Spontaneous eye movements during visual imageryreflect the content of the visual scene [J]. Journal of Cognitive Neuroscience,1997,9:27-38.
    [9] Buhusi, C. V.,&Meck, W. H. What makes us tick? Functional and neuralmechanisms of interval timing[J]. Nature Reviews Neuroscience,2005(6):755-765.
    [10] Calmels C, Holmes P, Lopez E, et al. Chronometric comparison and actual andimaged complex movement patterns [J]. Motor Behavior,2006,38(5):339-348.
    [11] Casini.Call the level of prefrontal activity provide an index of performance inhumans[J]. Neuroscience Letters,1996,219:71-74.
    [12] Chase W. Perception in chess[J]. Cognitive Psychology,1973,4:55-81.
    [13] Chase W.Askill and working memory[M]. Bower,1982.
    [14] Church, R.M. Properties of the internal clock[J]. Annals of the New YorkAcademy of Sciences,1984,423:566-582.
    [15] Chimt H. Knowledge structures and memory development[M]. Children' sthinking,1978.
    [16] Claire Calmels. Chronometric Comparison of Actual and Imaged ComplexMovement Patterns[J]. Journal of Motor Behavior,2006,38(5):339-348.
    [17] Crammond, D. J. Motor imagery: Never in your wildest dream. Trends inNeuroscience,1997,20:54-57.
    [18] Coull J T. Functional anatomy of the attentional modulation of timeestimation[J]. Science,2004,303(5663):1506-1508.
    [18] Decety, J. Mapping motor representations with positron emission tomography[J].Nature,1994,371:600-602.
    [19] Donchin E. Is the P300component a manifestation of context updating[J].Behavioral Brain Science,1988(11):357-374.
    [20] Elke Heremans. The eyes as a mirror of our thoughts: Quantification of motorimagery of goal-directed movements through eye movement registration[J].Behavioural Brain Research,2008,187:351-360.
    [21] Ericsson KA. Long-term working memory[J]. Psychology Review,1995,102(2):211-245.
    [22] Farah M J. Event-related potentials in the study of mental imagery[J]. Journal ofPsychophysiology,1998,3:99-109.
    [23] Gaoxia Wei. Sport expert's motor imagery: Functional imaging of professionalmotor skills and simple skills[J]. Brain Research,2010,1341:52-62.
    [24] Gazzaniga M. S.著,沈政等译.认知神经科学[M].上海:上海教育出版社,1998.646-731.
    [25] Gibson, A. S. C. The role of information processing between the brain andperipheral physiological systems in pacing and perception of effort[J]. SportsMedicine,2006,36(8):705-722.
    [26] Hebb, D.O. Concerning imagery. Psychological Review[J].1968,75:466-477.
    [27] Herman, J. H. et al. Evidence for a directional correspondence between eyemovements and dream imagery in REM sleep [J]. Sleep,1984,7:52-63.
    [28]Hicks, R. E., Miller, G. W.,&Kinsbourne, M. Prospective and retrospectivejudgments of time as a function of amount of information processed[J]. AmericanJournal of Psychology,1976,89(4):719-730.
    [29] Jeannerod, M. The25th Bartlett lecture. To act or not to act: Perspectives on therepresentation of actions[J]. The Quarterly Journal of Experimental Psychology,1999,52:1-29.
    [30] Kail R. Developmental change in speed of processing during childhood andadolescence[J]. Childe Psychology,1986(11):382-389.
    [31] Kosslyn S M. Visual mental imagery activates topographically organized visualcortex: PET investigations[J]. Journal of Cognition Neuroscience,1993,5:263-187.
    [32] Kosslyn S. M. et al. The role of area17in visual imagery: convergent evidencefrom PET and rTMS [J]. Science,1999(284):167-170.
    [33] Kosslyn S. M., Thompson W., When is early visual cortex activated during visualmental imagery [J]. Psychological Bulletin,2003,129(5):723-746.
    [34] Laeng, B. Eye scanpaths during visual imagery reenact those of perception of thesame visual scene J]. Cognition Science.2002,26:207-231.
    [35] Land. The knowledge base of the oculomotor system [J]. PhilosophicalTransactions of the Royal Society B: Biological Sciences. Trans. R. Soc. Lond. B.1997,8(352):1231-1239.
    [36] Lew Hardy. Efficacy of external and internal visual imagery perspective for theenhancement of performance on tasks in which form is important[J]. Journal ofSport&Exercise Psychology,1999.
    [37] Logan G D. Toward an instance theory of automatization[J]. PsychologicalReview,1988,95:492-527.
    [38] Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensorytiming: Evidence from slow brain potential changes[J]. Experimental BrainResearch,1999,128:271-280.
    [39] Mann, D. T. Y. Perceptual-cognitive expertise in sport: a meta-analysis[J].Journal of Sport&Exercise Psychology,2007,29(4):457-478.
    [40] Marten, S.&Vickers, J. Gaze characteristics of elite and near-elite athletes in icehockey defensive tactics [J]. Human Science,2004,22(6):689-701.
    [41] Mcleud P. Timing accuracy and decision time in high-speed ball game[J]. SportPsychology,1991,22:279-295.
    [42] M F Land. The knowledge base of the oculomotor system[J]. Philosophicaltransactions of the Royal Society of London,1997,352:1231-1239.
    [43] Mulligan R M. Temporal experience as a function of organization in memory[J].psychological Study,1979,14:417-420.
    [44] Neisser, U. Cognitive psychology [M]. New York: Appleton Century Crofts,1967.
    [45] Potts G F.Frontal evaluation and posterior representation in target detection[J]. Cognitive Brain Research,2001,11:147-156.
    [46] Pouthas V. ERPs and PET analysis of time perception: Spatial and temporal brainmapping during visual discrimination tasks[J]. Human Brain Mapping,2000,10:49-60.
    [47] Regan D. Human Brain Electrophysiology[M]. New York: Elsevier,1989.
    [48] Reed, C. L. Chronometric comparisons of imagery to action: Visualizingversus physically performing springboard dives[J].Memory and Cognition,2002,30:1169-1178.
    [49] Rosier F. What the brain reveals when it thinks.Event-related potentials duringmental rotation and mental arithmetic[J]. The German Journal of Psychology,1990,14:185-203.
    [50] Sedgwick H. A handbook of perception and human performance[M]. New York:Wiley Interscience,1986.
    [51] Starkes. Perception in Volleyball: The effects of competitive stress[J]. SportPsychology,1983,5:189-196.
    [52] Tao Wang. Classifying EEG-based motor imagery tasks by means oftime-frequency synthesized spatial patterns[J]. Clinical Neurophysiology,2004,115:2744-2753.
    [53] Thompson W. L., Kosslyn S. Mental Imagery of High-and Low-ResolutionGratings Activates Area17[J]. Neuro Image,2001(14):454-464.
    [54] Turvey, M.T. Coordination[J]. American Psychologist,1990,45(8):938-953.
    [55] Williams. Declarative knowledge in sport: A by-product of experience or acharacteristic of experience[J]. Sport Psychology,1995,17(3):259-275.
    [56] Wijers A. Brain potentials during selective attention, memory search, and mentalrotation[J]. Psychophysiology,1989,26(4):452-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700