不规则型电磁带隙结构在超宽带噪声抑制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集计算、通讯、娱乐及其它诸多功能于一体的现代便携式集成系统的新兴崛起,系统级封装技术成为其一种行之有效的解决途径。但系统级封装技术所要求的这种高密度的异类集成将导致更高层级的电磁噪声。与此同时,由国际半导体技术蓝图(ITRS)公布的数据可预测出,将来的电子系统将朝更快速、更高频和更低功耗的方向发展,这意味着高频时的快速瞬态电流将急剧增大。因此,由若干输出同时开关而引起的同步开关噪声问题成为现代高速系统设计中最具挑战意义的一个研究课题。同步开关噪声能激励起电源/地平面组成的谐振腔中的谐振模式,引发严重的电源完整性、信号完整性以及不容忽视的电磁辐射或电磁干扰问题,甚至导致系统失灵。
     在过去的几十年里,同步开关噪声(也称为地弹噪声或I噪声)被广泛研究并出现了许多能抑制其传播的方法,其中大多数方法仅在有限的频率范围内有效。近来,能在禁带内阻止任意表面波传播的电磁带隙结构被用来抑制同步开关噪声。本论文的工作致力于在高速电路或混合信号系统的电源分配网络中的电源/地平面对的至少一个平面上刻蚀电磁带隙结构以达到超宽带频率范围内噪声抑制的技术研究,着重在于探寻新颖的具有不规则拓扑的平面电磁带隙结构和先进的局域设计理念。本论文所有提出的设计方案皆简单有效,无论在噪声抑制的幅度和带宽方面都取得了显著突破,所得结果都从仿真和实测两方面进行了验证。本论文共九章,是一个完整的系统。各章节间紧密相连,层层深入;但各章所述内容又可独立成文。
     整体而言,本论文的核心原创工作可概括为按以下三大层面在六章的内容中逐步展开论述。
     1.首先,对具有不规则拓扑的平面电磁带隙结构在高速电路中同步开关噪声抑制方面的超宽带应用进行初步探索。本论文提出了几种新型的具有不规则拓扑的电磁带隙结构,包括两个叶状电磁带隙结构、两个波纹状电磁带隙结构以及几个由不同迭代次数形成的分形高阻拓扑构成的电磁带隙结构,并将这些电磁带隙结构应用于抑制高速电路中的同步开关噪声,具体通过在电源/地平面对的整个电源平面刻蚀所提出的电磁带隙结构实现。这些设计方案在高速电路中同步开关噪声的抑制方面展现了较好的性能,其有效抑制带宽范围能从几百兆赫兹(MHz)到20GHz左右。上述结果表明具有不规则拓扑的电磁带隙结构在高速电路中的同步开关噪声的超宽带抑制方面具有潜能,这也促使我们在接下来的层面里对谢尔宾斯基空间填充曲线这种不为工程师所熟知的分形构造在超宽带噪声抑制方面的应用进行研究。为完善这一部分的知识架构,介绍了分形的基础数学知识及其不同应用。
     2.其次,详细的介绍和引入了不为大多数工程师所知的一种分形构造—谢尔宾斯基空间填充曲线,并在国际上率先将其应用于高速电路中的同步开关噪声抑制且取得较好结果。基于谢尔宾斯基曲线在射频/微波领域应用的潜力及查找到的一本由坎迪等所著的参考文献上对其基本特性公式的有误描述,本论文从几何的角度推导并修正了这些公式。针对工程领域与谢尔宾斯基曲线相关的公开出版物较少的现状,本论文详尽地介绍了谢尔宾斯基曲线的数学背景。上述内容对感兴趣的研究者来说,是很有益的补充。随后,不同迭代次数形成的谢尔宾斯基曲线被用来构造新颖的电磁带隙结构。这些电磁带隙结构仍被刻蚀在电源/地平面对的整个电源平面,以达到抑制高速电路中的同步开关噪声的目的。仿真和实测的结果都证明了这些设计方案的有效性,同时也表明谢尔宾斯基曲线在噪声抑制方面具有一定的潜能。尤其是经过一次迭代的谢尔宾斯基曲线,在和有效的弯曲线型的电桥结合后,展现出显著的噪声抑制能力,其-50dB抑制带宽可覆盖从263MHz到19GHz的频率范围。值得一提的是,所提出的由谢尔宾斯基曲线构成的电磁带隙结构及其改进形式或由不同迭代次数形成的谢尔宾斯基曲线及其改良可用于其它领域。
     3.最后,基于实际工程的考虑,对局域设计理念在高速混合信号系统中噪声抑制方面的效用进行了调查。为进一步研究谢尔宾斯基曲线在噪声抑制方面的潜能,经过一次迭代形成的谢尔宾斯基曲线仍被应用于这部分的设计中。先考查了一种谓之“阵”的局域设计思想,提出了两种“阵”设计方案,即在电源/地平面对的电源平面和地平面上置有噪声源器件和噪声敏感器件的这些局部区域分别刻蚀具有不同拓扑的电磁带隙结构。数值仿真和实验测试结果都表明这两种设计方案在混合信号系统的噪声抑制方面展现了较好的性能。随后,在“阵”设计思想的基础上,提出了一种更为先进和简单的局域设计理念。新提出的局域设计思想仅需在电源/地平面对的电源平面上置有噪声器件的局部区域刻蚀少量的电磁带隙结构便可实现混合信号系统中的噪声抑制。为验证这种新的局域设计理念的有效性,提出了两种设计方案:六单元局域设计方案和四单元局域设计方案。由仿真和实测结果可看出所提的两种设计方案皆能实现超宽带范围内的噪声抑制,有效频率范围可从不到200MHz到20GHz左右,几乎覆盖了整个超宽带应用中的噪声存在范围。众所周知,运用电磁带隙结构抑制噪声的方法会引入过多的不连续性而引发信号完整性问题或电磁辐射问题,故而在实际工程中受到限制。因此,为更深入的研究所提的局域设计理念在实际工程中的可行性,对提出的两种设计方案的信号完整性进行了实测。由实测的数据可知,提出的局域设计方案不仅能满足超宽带噪声抑制的要求又能保持一定的信号传输质量。特别是对于四单元局域设计方案,由测试所得的眼图可知,当单根信号线通过刻蚀有四单元局域设计方案的电源/地平面对时,高速信号的传播质量下降甚微。当然,如果所提出的局域设计方案结合其它有效的方法,将能得到更好的效果。值得强调的是,在大多数公开的文献中给出的都是仿真的眼图结果而非实测的眼图结果。对于同一设计,实测的眼图结果往往比仿真的眼图结果糟糕。但本部分所有的测试结果(包括眼图)都是在真实的印制电路板上所得。因此,提出的新的局域设计理念对工程应用具有一定的现实指导意义。
With the emerging trend of modern convergent systems that integrate with thecomputer, communications, entertainment and other functions in one portable product,the new concept of system-on-package (SOP) has become a promising solution.However, such high-density and heterogeneous integration for SOP can lead to higherlevels of electromagnetic noise. In the meanwhile, the predicted trends of faster speed,higher frequencies and lower power consumption from the open released documentsby the International Technology Roadmap of Semiconductors (ITRS) for the futureelectronic systems mean the dramatic increase of fast transient current at highfrequencies. Hence, the simultaneous switching noise (SSN) which results from a largenumber of drivers switching between “ON” and “OFF” states simultaneously isrecognized as one of the most challenging and significant issues in modern high-speedsystems. SSN can excite cavity resonance modes within the power/ground plane pairs,causing severe power or signal integrity issues as well as electromagnetic interferenceproblems or radiated emissions. These issues cannot be ignored, and can even causemalfunction of a system.
     The simultaneous switching noise (SSN), also referred to as the ground bouncenoise (GBN) or delta-I (△I) noise, has been studied intensively during past decades.Many strategies have been presented to suppress SSN, but most of them are efficientonly in a limited frequency range. Recently, various electromagnetic band-gap (EBG)structures that can prevent the propagation of any surface waves in their forbiddenband-gaps have been utilized in the SSN suppression. The research work carried out inthis dissertation focuses on the technique that etches EBG structures at least in oneplane of the power/ground plane pair in the power distribution network for high-speedcircuits and mixed-signal systems to suppress noise in an ultrawideband (UWB)frequency range, with emphasis on exploring novel uniplanar EBG structures withirregular topologies and developed localization design concept. The proposed designsin this dissertation are simple, effective and have shown remarkable capabilities toeither enhance the magnitude or broaden the bandwidth in SSN suppression, and theyhave been verified by both simulation and measurement. This dissertation consists ofnine chapters forming an integrated system. The presented chapters in this dissertationare independent, but they are closely linked to each other providing a systematic approach to SSN suppression.
     As a whole, the core original research work presented in this dissertation can besummarized as the following three major aspects.
     1. Firstly, some explorations on the topic of EBG structures with irregulartopologies for UWB noise suppression in high-speed circuits have been done. Severalnovel EBG structures with irregular topologies have been proposed in this dissertation,including two leafy EBG structures, two wavy EBG structures and a few EBGstructures using fractal high impedance topologies with different iterations. Then, theseEBG structures have been applied to suppress SSN in high-speed circuits. They aredone by etching EBG structures on the whole power plane of the power/ground planepair. These designs have exhibited good performance in UWB SSN suppression, andtheir effective suppression bandwidth can be ranged from several megahertzs (MHz) to20GHz. All these results have shown the potential of EBG structures with irregulartopologies in UWB SSN suppression for high-speed circuits; they provide the impetusfor us to do further research on the effectiveness of the less-known Sierpinskispace-filling curves and special fractal constructions to suppress noise in the followingaspects. For completeness, the mathematical fundamentals and applications of fractalshave been summarized.
     2. Secondly, the Sierpinski space-filling curves, a special type of fractalconstructions and less known to engineers, have been introduced in detail and havebeen applied to suppress SSN for high-speed circuits for the first time in the world.Good performance has been obtained. Motivated by the potential RF/microwaveapplications of Sierpinski curves and the less accuracy of formulas in the book byCundy et al., a clear derivation for the formulas showing the basic properties ofSierpinski curves is presented from a geometrical point of view. As at present there arefew publications on the Sierpinski curves, the mathematical background of Sierpinskicurves is introduced in detail. These contents play a useful supplementary role for theinterested researchers. After that, Sierpinski curves with different iterations areemployed to construct novel EBG structures. These EBG structures are also etched onthe whole power plane of the power/ground plane pair to suppress SSN in high-speedcircuits. Both simulated and measured results verify the efficiency of these designs.They also show the potential of Sierpinski curves in noise suppression. Especially forthe Sierpinski curve with one iteration, after integrating with effective bridges usingmeander lines, it exhibits remarkable capabilities in noise suppression; the-50dBnoise suppression bandwidth can be broadened from263MHz to19GHz. It is worth mentioning that the proposed EBG structures using Sierpinski curves and theirmodifications or the Sierpinski curves with different iterations and their improvementsmay be applicable to other subject areas.
     3. Finally, in view of practical engineering considerations, the effectiveness ofemploying localization concepts in noise suppression for high-speed mixed-signalsystems has been discussed. For the further investigation of Sierpinski curve’spotentiality in SSN suppression, the Sierpinski curve with one iteration is also utilizedin the designs of this aspect. At the beginning, the named “array” localization concepthas been investigated and two novel array designs etching EBG structures withdifferent topologies in the region of noise source and noise-sensitive devices areproposed. Both results of numerical simulation and experimental measurement haveshown the good performance of these two novel designs in SSN suppression for themixed-signal systems. After that, a more concise localization concept that etches EBGstructures only in the region of noise source on the power plane of the power/groundplane pair is proposed. To verify the efficiency of this novel concept, two localizeddesigns including the6-cell EBG localized design and4-cell EBG localized design areput forward. From the results of simulation and measurement, the two proposeddesigns can suppress noise in the UWB frequency ranges from less than200MHz to20GHz which nearly cover the whole noise band in the UWB application. It is knownthat the excessive discontinuities introduced by the method employing EBG structuresfor noise suppression usually can cause signal integrity issues, resulting in limitationsin practical engineering. Hence, to further study the feasibilities of the proposedlocalization concept in practical engineering, the signal integrity on the two proposeddesigns are measured. From the measured data, the designs cannot only satisfy thedemands of UWB noise suppression but also keep the quality of signal propagation.Especially for the proposed4-cell EBG design, from the measured eye diagrams, littledegradation on the propagation quality of high-speed signals can be observed when thesingle-ended traces pass over the power/ground plane pair with the4-cell EBGlocalized design. It is worth emphasizing that there are fewer measured eye diagramspresented in the publications while most are simulated eye diagrams. For the samedesign, the measured eye diagrams are usually worse than the simulated eye diagrams.But the measured results including the eye-diagrams in this aspect are based on theactual PCB board. Therefore, the proposed new localization concept has some practicaland instructional significance for practical engineering applications.
引文
[1] G.E.Moore,“Gramming more components onto integrated circuits,” Electronics,vol.38, no.8, pp.114-117, Apr.1965; reproduced in Proc.IEEE, vol.86, no.1,pp.82-85, Jan.1998.
    [2] International Technology Roadmap for Semiconductors (ITRS).[Online].Available: http://www.itrs.net/
    [3] R.R.Tummala,“SOP: What is it and why? A new microsystem-integrationtechnology Paradigm-Moore’s law for system integration of miniaturizedconvergent systems of the next decade,” IEEE Trans. Adv., Packag., vol.27, no.2,pp.241-249, May2004.
    [4] R.R.Tummala and M.Swaminathan, Introduction to System-on-Package (SOP):Miniaturization of the Entire System. New York: McGraw-Hill,2008.
    [5] M. Swaminathan, J.Kim, I. Novak, and J. Libous,“Power distribution networksfor system-on-package: Status and challenges,” IEEE Trans. Adv., Packag.,vol.27, no.2, pp.286-300, May2004.
    [6] S.H.Hall, G.W.Hall, and J.A.McCall, High-Speed Digital System Design: AHandbook of Interconnect Theory and Design Practices,1st ed., New York:Wiley,2000.
    [7] Y.-J.Kim, H.-S.Yoon, S.Lee, G.Moon, J.Kim, and J.-K.Wee,“An efficientpath-based equivalent circuit model for design, synthesis, and optimization ofpower distribution networks in multilayer printed circuit boards,” IEEE Trans.Adv., Packag., vol.27, no.1, pp.97-106, Feb.2004.
    [8] O.P.Mandhana,“Modeling, analysis and design of resonant free powerdistribution network for modern microprocessor systems,” IEEE Trans. Adv.,Packag., vol.27, no.1, pp.107-120, Feb.2004.
    [9] H.Lee, Y.-S.Hong, D.G.Kam, and J.Kim,“Analysis of power delivery networkconstructed by irregular-shaped power/ground plane including denselypopulated via-hole,” IEEE Trans. Adv., Packag., vol.28, no.2, pp.168-173, May2005.
    [10] M. Swaminathan and A. Ege Engin, Power Integrity Modeling and Design forSemiconductors and Systems. Englewood Cliffs, NJ: Prentice Hall,2007.
    [11] J.Kim, Y.Jeong, J.Kim, J.Lee, C.Ryu, J.Shim, M.Shin, and J.Kim,“Modelingand measurement of interlevel electromagnetic coupling and fringing effect in ahierarchical power distribution network using segmentation method withresonant cavity model,” IEEE Trans. Adv., Packag., vol.31, no.3, pp.544-557,Aug.2008.
    [12] S.Caniggia and F.Maradei, Signal Integrity and Radiated Emission ofHigh-Speed Digital Systems,1st ed., United Kingdom: John Wiley&Sons Ltd,2008.
    [13] M.S.Zhang Y.S.Li, and L.P.Li et al.,“An efficient power-delivery method for thedesign of the power distribution networks for high-speed digital systems,” IEEETrans. Microwave Theory Tech., vol.57, no.3, pp.693-707. Mar.2009.
    [14] M. Swaminathan, D.Chung, S.Grivet-Talocia, K.Bharath, V.Laddha, and J.Xie,“Designing and modeling for power integrity,” IEEE Trans. Electromagn.Compat., vol.52, no.2, pp.288-310, May.2010.
    [15] T.L.Wu, H.H.Chuang, and T.K.Wang,“Overview of power integrity solutions onpackage and PCB: Decoupling and EBG isolation,” IEEE Trans. Electromagn.Compat., vol.52, no.2, pp.346-356, May.2010.
    [16] J.Kim, L.Ren, and J.Fan,“Physics-based inductance extraction for via arrays inparallel planes for power distribution network design,” IEEE Trans. MicrowaveTheory Tech., vol.58, no.9, pp.2434-2447. Sept.2010.
    [17] Q.Yang, J.A.Barria, and T.C.Green,“Communication infrastructures fordistributed control of power distribution networks,” IEEE Trans. Ind. Informat.,vol.7, no.2, pp.316-327. May2011.
    [18] Z.Feng, Z.Zeng, and P.Li,“Parallel on-chip power distribution network analysison Multi-Core-Multi-GPU platforms,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol.19, no.10, pp.1823-1836. Oct.2011.
    [19] G.A.Katopis,“Delta-I noise specification for high-performance computingmachine,” Proc. IEEE, vol.73, no.9, pp.1405-1415, Sept.1985.
    [20] R.Senthinathan and J.L.Prince,“Simultaneous switching ground noisecalculation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol.26,no.11, pp.1724-1728, Nov.1991.
    [21] A.R.Djordjevic and T.K.Sarkar,“An investigation of Delta-I noise on integratedcircuits,” IEEE Trans. Electromagn. Compat., vol.35, no.2, pp.134-147, May1993.
    [22] A.Vaidyanath, B.Thoroddsen, J.L.Prince and A.C.Cangellark,“Simultaneousswitching noise: Influence of plane-plane and plane-signal trace coupling,” IEEETrans.Compon., packag., Manuf. Technol.B, vol.18, no.3, pp.496-502, Aug.1995.
    [23] B.D.McCredie and W.D.Becker,“Modeling, measurement and simulation ofsimultaneous switching noise,” IEEE Trans.Compon., packag., Manufact.Technol.B, vol.19, no.3, pp.461-472, Aug.1996.
    [24] S.Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, andW.Temmerman,“Study of the ground bounce caused by power planeresonance,” IEEE Trans. Electromagn. Compat., vol.40, no.2, pp.111-119, May1998.
    [25] A.Kabbani and A.J.Al-Khalili,“Estimation of ground bounce effects on CMOScircuits,” IEEE Trans. Compon. Packag. Technol.,vol.22, no.2, pp.316-325, June1999.
    [26] Y.Eo, W.R.Eisenstadt, J.Y.Jeong, and O.-K.Kwon,“New simultaneous switchingnoise analysis and modeling for high-speed and high-density CMOS IC packagedesign,” IEEE Trans. Adv., Packag., vol.23, no.2, pp.303-312, May2000.
    [27] S.Chun, M.Swaminathan, L.D.Smith, J.Srinivasan, J.Zhang, and M.K.Iyer,“Modeling of simultaneous switching noise in high-speed systems,” IEEE Trans.Adv., Packag., vol.24, no.2, pp.132-142. May2001.
    [28] O.M.Ramahi, V.Subramanian, and B. Archambeault,“A simple finite-differencefrequency-domain (FDTD) algorithm for analysis of switching noise in printedcircuit boards and packages,” IEEE Trans. Adv., Packag., vol.26, no.2, pp.191-198, May2003.
    [29] S.Shahparnia, and O.M.Ramahi,“Electromagnetic interference (EMI) reductionfrom printed circuit boards (PCB) using electromagnetic bandgap structures,”IEEE Trans. Electromagn. Compat., vol.46, no.4, pp.580-587, Nov.2004.
    [30] J.Park, H.Kim, Y.Jeong, J.Kim, J.S.Pak, D.G.Kam, and J.Kim,“Modeling andmeasurement of simultaneous switching noise coupling through signal viatransition,” IEEE Trans. Adv. Packag., vol.29, no.3, pp.548-559, Aug.2006.
    [31] C.Ryu, J.Park, J.S.Pak, K.Lee, T.Oh, and J.Kim,“Suppression of power/groundinductive impedance and simultaneous switching noise using silicon through-viain a3-D stacked chip package,” IEEE Microw. Wireless Compon. Lett., vol.17,no.12, pp.855-857, Dec.2007.
    [32] M.M.Bait-Suwailam and O.M.Ramahi,“Simultaneous switching noisemitigation in high-speed circuits using complementary split-ring resonators,”Electron. Lett., vol.46, no.8, pp.563-564. Apr.2010.
    [33] G.P.Zou, X.C.Wei, E.P.Li, X.Cui, and W.D.Zhang,“Modeling of thesimultaneous switching noise in high speed electronic circuit with the integralequation method and vector fitting method,” IEEE.Trans.Magn., vol.47, no.5, pp.1490-1493, May.2011.
    [34] W.Kim,“Estimation of simultaneous switching noise from frequency-domainimpedance response of resonant power distribution networks,” IEEETrans.Compon., Packag., Manuf. Technol., vol.1, no.9, pp.1359-1367, Sept.2011.
    [35] Y.-H.Lin,“Modeling and solutions for ground bounce noise and electromagneticradiation in high-speed digital circuits,” Ph. D. dissertation, Dept. Elect. Eng.,National Sun Yat-Sen University, Kaohsiung, Taiwan,2005.
    [36] J.Choi,“Noise suppression and isolation in mixed-signal systems usingalternating impedance electromagnetic bandgap (AI-EBG) structure,” Ph. D.dissertation, Dept. Elect. Comput. Eng., Georgia Inst. of Technol., Atlanta, GA,2006.
    [37] B.Mohajer-Iravani,“Electromagnetic interference reduction using electromag-netic bandgap structures in packages, enclosures, cavities, and antennas,” Ph. D.dissertation, Dept. Elect. Comput. Eng., Univ. Maryland, College Park,2007.
    [38] R.Downing, P.Gebler, and George Katopis,“Decoupling capacitor effects onswitching noise,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol.16,no.5, pp.484-489, Aug.1993.
    [39] S.Van den Berghe, F.Olyslager, and D.De Zutter et al.,“Power plane resonancesas a source of Delta-I noise and the influence of decoupling capacitors,” in IEEEProc.Int.Symp. Electromagn. Compat., Aug.1997, pp.145-148.
    [40] T.Chou,“Effect of on-package decoupling capacitors on the simultaneousswitching noise,” in Proc.6th Topical Meeting on Elect.Perform. Electron.Packag., Oct.1995, pp.55-58.
    [41] I.Hattori, A.Kamo, T.Watanabe, and H.Asai,“A searching method for optimallocations of decoupling capacitors based on electromagnetic field analysis byFDTD method,” in IEEE11th Topical Meeting Electr. Perform. Electron.Packag.,2002, pp.159-162.
    [42] B.Beker and D.Wallace,“A methodology for optimizing the selection ofdecoupling components for power delivery systems of high-performanceASICs,” in IEEE11th Topical. Meeting Electr. Perform. Electron. Packag.,2002,pp.195-198.
    [43] T.Kamgaing and O.M.Ramahi,“Design and modeling of high-impedanceelectromagnetic surfaces for switching noise suppression in power planes,”IEEE Trans. Electromagn. Compat., vol.47, no.3, pp.479-489, Aug.2005.
    [44] J.L.Drewniak, R.E.DuBroff, T.H.Hubing, J.Chen, M.Xu, and T.P.Van Doren,“Mitigating power bus noise with embedded capacitance in PCB designs,” in2001IEEE Int.Symp.Electromagn.Compat., vol.1, pp.496-500.
    [45] M.Xu, T.H.Hubing, J.Chen, T.P.Van Doren, J.L.Drewniak, and R.E.DuBroff,“Power-bus decoupling with embedded capacitance in printed circuit boarddesign,” IEEE Trans.Electromagn.Compat., vol.45, no.1, pp.22-30, Feb.2003.
    [46] H.Kim, B.K.Sun, and J.Kim,“Suppression of GHz range power/groundinductive impedance and simultaneous switching noise using embedded filmcapacitors in multilayer packages and PCBs,” IEEE Microw. Wireless Compon.Lett., vol.14, no.2, pp.71-73. Feb2004.
    [47] P.Muthana, A.E.Engin, and M.Swaminathan et al.,“Design, modeling, andcharacterization of embedded capacitor networks for core decoupling in thepackage,” IEEE Trans. Adv.Packag., vol.30, no.4, pp.809-822, Nov.2007.
    [48] P.Muthana, K.Srinivasan, A.E.Engin, and M.Swaminathan et al.,“Improvementsin noise suppression for I/O circuits using embedded planar capacitors,” IEEETrans. Adv.Packag., vol.31, no.2, pp.234-245, May2008.
    [49] H.-J.Liaw and H.Merkelo,“Signal integrity issues at split ground and powerplanes,” in IEEE Electron.Components Technol.Conf., Orlando, FL, May1996,pp.752-755.
    [50] T.E.Moran, K.L.Virga, G.Aguirre, and J.L.Prince,“Methods to reduce radiationfrom split ground planes in RF and mixed signal packaging structures,” IEEETrans. Adv., Packag., vol.25, no.3, pp.409-416, Aug.2002.
    [51] T.H.Kim, J.Lee, H.Kim, and J.Kim,“3GHz wide frequency model of ferritebead for power/ground noise simulation of high-speed PCB,” in Proc. IEEEElectr. Perform. Electron. Packag., Oct.2002, pp.217-220.
    [52] J.Lee, M.D.Rotaru, M.K.Iyer, H.Kim, and J.Kim,“Analysis and suppression ofSSN noise coupling between power/ground plane cavities through cutouts inmultilayer packages and PCBs,” IEEE Trans. Adv., Packag., vol.28, no.2, pp.298-309, May.2005.
    [53] T.Yuden, Leaded Ferrite Bead Inductors, Ferrite Product Manual,2005.
    [54] J.Fan, Y.Ren, and J.Chen et al.,“RF isolation using power islands in DC powerbus design,” in Proc.IEEE Int.Symp. Electromagnetic Compatibility,1999, vol.2,pp.838-843.
    [55] J. Chen, T.H.Hubing, T.P.Van Doren, and R.E.DuBroff,“Power bus isolationusing power islands in printed circuit boards,” IEEE Trans. Electromagn.Compat., vol.44, no.2, pp.373-380, May2002.
    [56] W.Cui, J.Fan, Y.Ren, H.Shi, J.L.Drewniak, and R.E.DuBroff,“DC power-busnoise isolation with power-plane segmentation,” IEEE Trans. Electromagn.Compat., vol.45, no.2, pp.436-443, May2003.
    [57] I.Novak,“Reducing simultaneous switching noise and EMI on ground/powerplanes by dissipative edge termination,” IEEE Trans. Adv., Packag., vol.22, no.3,pp.274-283, Aug.1999.
    [58] H.Kroger,“Reduction of switching noise in high-speed circuit boards,”U.S.Patent5981869, Nov.21,1999.
    [59] V.Adsure, H.Kroger, and W. Shi,“Improving signal integrity in circuit boards byincorporating embedded edge terminations,” IEEE Trans. Adv., Packag., vol.25,no.1, pp.12-17, Feb.2002.
    [60] T.M.Zeeff, and T.H.Hubing,“Reducing power bus impedance at resonance withlossy components,” IEEE Trans. Adv., Packag., vol.25, pp.307-310, May2002.
    [61] X.Ye, D.M.Hockanson, M.Li, Y.Ren, W.Cui, J.L.Drewniak, and R.E.DuBroff,“EMI mitigation with multilayer power bus stacks and via stitching of referenceplanes,” IEEE Trans. Electromagn. Compat., vol.43, no.4, pp.538-548, Nov.2001.
    [62] X.Wu, M.H.Kermani, and O.M.Ramahi,“Mitigating multi-layer PCB power busradiation through novel mesh fencing techniques,” in Proc. Topical MeetingElectrical Performance Electronic Packaging, Princeton, NJ, Oct.2003,pp.207-210.
    [63] G.-T.Lei, R.W.Techentin, and B.K.Gilbert,“High-frequency characterization ofpower/ground-plane structures,” IEEE Trans.Microw.Theory Tech., vol.47, no.5,pp.562-569, May1999.
    [64] R.Abhari, G.V.Eleftheriades, and T.E.Van Deventer-Perkins,“Analysis ofdifferential vias in multilayer parallel plate environment using a physics-basedCAD model,” in IEEE MTT-S Int. Microw Symp. Dig., May2001, pp.2031-2034.
    [65] R.Abhari and G.V.Eleftheriades,“Suppression of the parallel-plate noise inhigh-speed circuits using a metallic electromagnetic band-gap structure,” inIEEE MTT-S Int.Microwave Symp.Dig., June2002, pp.493-496.
    [66] T.Kamgaing, and O.M.Ramahi,“High-impedance electromagnetic surfaces forparallel-plate mode suppression in high-speed digital systems,” in Proc. IEEE11thTopical Meeting on Electrical Performance of Electronic Packaging (EPEP),Monterey, CA, Oct.2002, pp.279-282.
    [67] T.Kamgaing, and O.M.Ramahi,“A novel power plane with integratedsimultaneous switching noise mitigation capability using high impedancesurface,” IEEE Microw. Wireless Compon. Lett., vol.13, no.1, pp.21-23, Jan.2003.
    [68] R.Abhari and G.V.Eleftheriades,“Metallo-dielectric electromagnetic bandgapstructures for suppression and isolation of the parallel-plate noise in high-speedcircuits,” IEEE Trans. Microw. Theory Tech., vol.51, no.6, pp.1629-1639, June2003.
    [69] S.Shahparnia and O.M.Ramahi,“Simultaneous switching noise mitigation inPCB using cascaded high-impedance surfaces,” Electron. Lett., vol.40, no.2, pp.98-100. Jan.2004.
    [70] T. L. Wu, Y. H. Lin, and S. T. Chen,“A novel power planes with low radiationand broadband suppression of ground bounce noise using photonic bandgapstructures,” IEEE Microw.Wireless Compon. Lett., vol.14, no.7,pp.337-339,Jul.2004.
    [71] J.Choi, V.Govind, and M.Swaminathan,“A novel electromagnetic bandgap(EBG) structure for mixed-signal system applications,” in Proc.IEEE RadioWireless. Conf., Atlanta, GA, Sept.2004, pp.243-246.
    [72] T. L.Wu, C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang,“A novel powerplane with super-wideband elimination of ground bounce noise on high speedcircuits,” IEEE Microw. Wireless Compon. Lett., vol.15, no.3, pp.174-176, Mar.2005.
    [73] T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang and S. T. Chen,“Electromagneticbandgap power/ground planes for wideband suppression of ground bounce noiseand radiated emission in high-speed circuits,” IEEE Trans. Microw. Theory Tech.,vol.53, no.9, pp.2935-2942, Sept.2005.
    [74] J. Park, A. C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim,“Double-stacked EBG structure for wideband suppression of simultaneousswitching noise in LTCC-based SiP applications,” IEEE Microw. WirelessCompon. Lett., vol.16, no.9, pp.481-483, Sept.2006.
    [75] J.S.Pak, H.Kim, J.Lee, and J.Kim,“Modeling and measurement of radiated fieldemission from a power/ground plane cavity edge excited by a through-holesignal via based on a balanced TLM and via coupling model,” IEEE Trans. Adv.,Packag., vol.30, no.1, pp.73-85. Feb.2007.
    [76] J. Qin, O. M. Ramahi, and V. Granatstein,“Novel planar electromagneticbandgap structures for mitigation of switching noise and EMI reduction inhigh-speed circuits”, IEEE Trans. Electromagn. Compat., vol.49, no.3, pp.661-669, Aug.2007.
    [77] S. H. Joo, D. Y. Kim, and H. Y. Lee,“A S-bridged inductive electromagneticbandgap power plane for suppression of ground bounce noise,” IEEE Microw.Wireless Compon. Lett., vol.17, no.10, pp.709-711, Oct.2007.
    [78] M.S.Zhang, Y.S.Li, C.Jia, and L.P.Li,“Simultaneous switching noisesuppression in printed circuit boards using a compact3-D cascadedelectromagnetic-bandgap structure,” IEEE Trans. Microw. Theory Tech., vol.55,no.10, pp.2200-2207, Oct.2007.
    [79] T.K.Wang, C.Y.Hsieh, H.H.Chuang, and T.L.Wu,“Design and modeling of astopband-enhanced EBG structure using ground surface perturbation lattice forpower/ground noise suppression,” IEEE Trans. Microw. Theory Tech., vol.57,no.8, pp.2047-2054, Aug.2009.
    [80] Y.W.Huang, T.K.Wang, and T.L.Wu,“Design and modeling of miniaturizedbandgap structure foe wideband GHz-noise suppression based on LTCCtechnology,” IEEE Trans. Adv., Packag., vol.33, no.3, pp.630-638. Aug.2010.
    [81] C.Hwang, Y.Shim, K.Koo, M.Kim, J.S.Pak, and J.Kim,“An on-chipelectromagnetic bandgap structure using an on-chip inductor and a MOScapacitor,” IEEE Microw.Wireless Compon.Lett., vol.21, no.8, pp.439-441,Aug.2011.
    [82] D.Sievenpiper, L.Zhang, R.F.J. Broas, N.G.Alexopolus, and E.Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band”,IEEE. Trans.Microw.Theory Tech., vol.47, no.11, pp.2059-2074, Nov1999.
    [83] F.R.Yang, K.P.Ma, Y.X.Qian, and T.Itoh,“A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEETrans.Microw.Theory Tech., vol.47, no.8, pp.1509-1514, Aug.1999.
    [84] Y.Ko, K.Ito, J.Kudo, and T.Sudo,“Electromagnetic radiation properties of aprinted circuit board with a slot in the ground plane,” in Proc. IEEE Int.Symp.Electromagn. Compat., Tokyo, May1999, pp.576-579.
    [85] E.Yablonovitch,“Inhibited spontaneous emission in solid state physics andelectronics,” Phy. Rev. Lett., vol.58, pp.2059-2062,1987.
    [86] Y.-J.Park, A.Herschlein, and W.Wiesbeck,“A photonic bandgap (PBG) structurefor guiding and suppressing surface waves in millimeter-wave antennas,” IEEE.Trans.Microwave Theory Tech., vol.49, no.10, pp.1854-1859, Oct.2001.
    [87] F.Yang, and Y.Rahmat-Samii,“Microstrip antennas integrated with electromag-netic bandgap (EBG) structures: A low mutual coupling design for arrayapplications,” IEEE Trans.Antennas propag., vol.51, no.10, pp.2936-2946,Oct.2003.
    [88] G.H.Zhang and N.C.Yuan,“Radiation characteristics improvement inwaveguide-fed slot antenna with a high-impedance ground plane (HIGP),”Microw.Opt. Technol. Lett., vol.45, no.2, pp.176-179, Apr.2005.
    [89] H.Boutayeb and T.A.Denidni,“Gain enhancement of a microstrip patch antennausing a cylindrical electromagnetic crystal substrate,” IEEE Trans.Antennaspropag., vol.55, no.11, pp.3140-3145, Nov.2007.
    [90] M.N.Md.Tan, T.A.Rahman, S.K.A.Rahim, M.T.Ali, and M.F.Jamlos,“Antennaarray enhancement using mushroom-like electromagnetic band gap (EBG),” inProc.4th EuCAP, Barcelona, Spain, Apr.2010, pp.1-5.
    [91] F.Yang and Y.Rahmat-Samii,“Reflection phase characterizations of the EBGground plane for low profile wire antenna applications,” IEEE Trans.Antennaspropag., vol.51, no.10, pp.2691-2703, Oct.2003.
    [92] S.Zhan, R.J.Weber, and J.M.Song,“A new approach to design a low profiledipole antenna backed by a mushroom-like electromagnetic bandgap (EBG)surface,” in IEEE AP-S Int.Ant.Prop.Symp.Dig., Honolulu, Hawaii, USA, June2007, pp.4060-4063.
    [93] F.Martin, F.Falcone, J.Bonache, T.Lopetegi, M.A.G.Laso, and M.Sorolla,“Dualelectromagnetic bandgap CPW structures for filter applications,” IEEEMicrow.Wireless Compon.Lett., vol.13, no.9, pp.393-395, Sept.2003.
    [94] X.J.Zhang, A.Q.Liu, M.F.Karim, A.B.Yu, and Z.X.Shen,“MEMS-Basedphotonic bandgap (PBG) band-stop filter,” in IEEE MTT-S Int.Microw.Symp.Dig.,2004, pp.1463-1466.
    [95] J.J.Simpson, A.Taflove, J.A.Mix, and H.Heck,“Computational and experimentalstudy of a microwave electromagnetic bandgap structure with waveguidingdefect for potential use as a bandpass wireless interconnect,” IEEE Microw.Wireless Compon. Lett., vol.14, no.7, pp.343-345. July2004.
    [96] A.Suntives and R.Abhari,“Design and characterization of the EBGwaveguide-based interconnects,” IEEE Trans. Adv., Packag., vol.30, no.2, pp.163-170. May2007.
    [97] H.Chreim, E.Pointereau, B.Jecko, and P.Dufrane,“Omnidirectional electromag-netic band gap antenna for base station applications,” IEEE Antennas WirelessPropag. Lett., vol.6, pp.499-502,2007.
    [98] Y.-Q.Li, H.Zhang, Y.-Q.Fu, and N.-C.Yuan,“RCS reduction of ridgedwaveguide slot antenna array using EBG radar absorbing material,” IEEEAntennas Wireless Propag. Lett., vol.7, pp.473-476,2008.
    [99] D.Serhal, M.Hajj, R.Chantalat, J.Drouet, and B.Jecko,“Multifed sectoral EBGantenna for WiMAX applications,” IEEE Antennas Wireless Propag. Lett., vol.8,pp.620-623,2009.
    [100] G.Ruvio, M.J.Amman, and X.Bao,“Radial EBG cell layout for GPS patchantennas,” Electron. Lett., vol.45, no.13, pp.663-664. June2009.
    [101] A.Kanso, R.Chantalat, M.Thevenot, E.Arnaud, and T.Monediere,“Offsetparabolic reflector antenna fed by EBG dual-band focal feed for spaceapplication,” IEEE Antennas Wireless Propag. Lett., vol.9, pp.854-858,2010.
    [102] S.I.Kwak, D.U.Sim, and J.H.Kwon,“Design of optimized multilayer PIFA withthe EBG structure for SAR reduction in mobile applications,” IEEE Trans.Electromagn. Compat., vol.53, no.2, pp.325-331, May2011.
    [103] B.Gao and M.M.F.Yuen,“Passive UHF RFID packaging with electromagneticband gap (EBG) material for metallic objects tracking,” IEEE Trans.Compon.,Packag. Manuf. Technol., vol.1, no.8, pp.1140-1146, Aug.2011.
    [104] B.Mohajer-Iravani and O.M.Ramahi,“Wideband circuit model for planar EBGstructures,” IEEE Trans. Adv., Packag., vol.33, no.1, pp.169-179. Feb.2010.
    [105] J.-M. Jin, The Finite Element Method in Electromagnetics,2nd ed., New York:Wiley,2002.
    [106] High Frequency Structure Simulator (HFSS), Ansoft Co., Pittsburgh. PA.
    [107] User’s manual of Wavenology EM2011, Wave Computation Technologies, Inc,Durham, NC.
    [108] A.E.Engin, Y.Toyota, T.H.Kim, and M.Swaminathan,“Analysis and design ofelectromagnetic bandgap (EBG) structures for power plane isolation using2Ddispersion diagrams and scalability,” in Proc.IEEE EMC Symp.,2006, pp.79-82.
    [109] Y.Toyota, A.E.Engin, T.H.Kim, and M.Swaminathan,“Stopband analysis usingdispersion diagram for two-dimensional electromagnetic bandgap structures inprinted circuit boards,” IEEE Microw. Wireless Compon. Lett., vol.16, no.12, pp.645-647. Dec.2006.
    [110] S.Shahparnia and O.M.Ramahi,“Simple and accurate circuit models forhigh-impedance surfaces embedded in printed circuit boards,” in Proc. IEEEInt.Symp.Antennas Propag., Monterey, CA, June2004, vol.4, pp.3565-3568.
    [111] K.H.Kim, and J.E.Schutt-Aine,“Analysis and modeling of hybrid planar-typeelectromagnetic-bandgap structures and feasibility study on power distributionnetwork applications,” IEEE Trans. Microw. Theory Tech., vol.56, no.1, pp.178-186, Jan.2008.
    [112] S.Shahparnia and O.M.Ramahi,“A simple and effective model forelectromagnetic bandgap structures embedded in printed circuit boards,” IEEEMicrow. Wireless Compon. Lett., vol.15, no.10, pp.621-623, Oct.2005.
    [113] J. Qin and O. M. Ramahi,“Ultra-wideband mitigation of simultaneous switchingnoise using novel planar electromagnetic bandgap structures,” IEEE Microw.Wireless Compon. Lett., vol.16, no.9, pp.487–489, Sept.2006.
    [114] M.S. Zhang, Y.S. Li, C. Jia, and L.P, Li,“A power plane with wideband SSNsuppression using a multi-via electromagnetic bandgap structure,” IEEE Microw.Wireless Compon. Lett., vol.17, no.4, pp.307–309, Apr.2007.
    [115] M.S.Zhang, Y.S.Li, L.P.Li, and C.Jia,“Super-wideband SSN suppression inhigh-speed digital communication systems by using multi-via electromagneticbandgap structure,” in ICC2007-IEEE International Conference onCommunications, Glasgow, Scotland, June2007, pp.2648-2653.
    [116] J.Choi,“Alternating impedance electromagnetic bandgap structure for noiseisolation in ultra-wideband,” Electron. Lett., vol.42, no.8, pp.467-468. Apr.2006.
    [117] J.Choi, V.Govind, M.Swaminathan, and K.Bharath,“Noise isolation in mixed-signal systems using alternating impedance electromagnetic bandgap (AI-EBG)structure-based power distribution network (PDN),” IEEE Trans. Adv., Packag.,vol.33, no.1, pp.2-12. Feb2010.
    [118] C.C.Wang, S.M.Wu, C.H.Chou, C.W.Tsai, T.K.Wang, Y.H.Lin, S.T.Chen, andT.L.Wu,“A novel embedded power plane with10GHz stopband forsimultaneous switching noise,” in Proc55th Electronic Components andTechnology Conf., Lake Buena Vista, FL, May2005, vol.1, pp.769-771.
    [119] X.H.Wang, B.Z.Wang, Y.H.Bi, and W.Shao,“A novel uniplanar compactphotonic bandgap power plane with ultra-broadband suppression of groundbounce noise,” IEEE Microw. Wireless Compon. Lett., vol.16, no.5, pp.267-268,May.2006.
    [120] W.McKinzie,“A low frequency hybrid EBG structure for power plane noisesuppression,” in Proc.15th IEEE Elect.Perform.Electron.Packag., Scottsdale,AZ., Oct.2006, pp.51-54.
    [121] K.H.Kim, and J.E.Schutt-Aine,“Design of EBG power distribution networkswith VHF-band cutoff frequency and small unit cell size for mixed-signalsystems,” IEEE Microw. Wireless Compon. Lett., vol.17, no.7, pp.489-491, Jul.2007.
    [122] J.Lee, H.Kim, and J.Kim,“High dielectric constant thin film EBG power/groundnetwork for broad-band suppression of SSN and radiated emissions,” IEEEMicrow. Wireless Compon. Lett., vol.15, no.8, pp.505-507, Aug.2005.
    [123] T.L.Wu, and S.T.Chen,“A photonic crystal power/ground layer for eliminatingsimultaneously switching noise in high-speed circuit,” IEEE Trans. Microw.Theory Tech., vol.54, no.8, pp.3398-3406, Aug.2006.
    [124] B.Mohajer-Iravani and O.M.Ramahi,“Suppression of EMI and electromagneticnoise in packages using embedded capacitance and miniaturized electromagneticbandgap structures with high-K dielectrics,” IEEE Trans. Adv., Packag., vol.30,no.4, pp.776-788. Nov.2007.
    [125] T.K.Wang, T.W.Han, and T.L.Wu,“A novel power/ground layer using artificialsubstrate EBG for simultaneously switching noise suppression,” IEEE Trans.Microw. Theory Tech., vol.56, no.5, pp.1164-1171, May2008.
    [126] M.S.Zhang, Y.S.Li, C.Jia, L.P.Li, and J.Pan,“A double-surface electromagneticbandgap structure with one surface embedded in power plane for ultra-widebandSSN suppression,” IEEE Microw. Wireless Compon. Lett., vol.17, no.10, pp.706-708, Oct.2007.
    [127] C.Y.Hsieh, C.D. Wang, and T.L.Wu,“A power bus with multiple via groundsurface perturbation lattices for broadband noise isolation: Modeling andapplication in RF-SiP,” IEEE Trans. Adv., Packag., vol.33, no.3, pp.582-591,Aug.2010.
    [128] L.Li, Q.Chen, Q.W.Yuan, and K.Sawaya,“Ultrawideband suppression of groundbounce noise in multilayer PCB using locally embedded planar electromagneticband-gap structures,” IEEE Antennas. Wireless Propag. Lett., vol.8, pp.740-743,2009.
    [129] Y.He, L.Li, C.H.Liang, Q.H.Liu, L.Li and H.B.Wen,“Leafy EBG structures forultra-wideband SSN suppression in power/ground plane pairs,” Electron. Lett.,vol.46, no.11, pp.768-769, May2010.
    [130] X.F. Xu, J.M. Zhao, and Y.J. Feng,“A novel electromagnetic band-gap structurefor ultra-wide band suppression of ground bounce noise,” in Proc.Asia-PacificMicrow.Conf., Dec.2007, pp.1-4.
    [131] K.-C. Hung, D.-B. Lin, C.-S. Chang, C.-T. Wu, and I.-T. Tang,“Novel fractalelectromagnetic bandgap structures to suppress simultaneous switching noise inhigh speed circuits,” in PIERS Proceedings, Cambridge, USA,2008, pp.104-107.
    [132] F.Frezza, L.Pajewski, and G.Schettini,“Fractal two-dimensional electromagneticbandgap structures,” IEEE Trans. Microw. Theory Tech., vol.52, no.1, pp.220-227, Jan.2004.
    [133] D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M.J. Wilhelm,“Thedesign synthesis of multiband artificial magnetic conductors using highimpedance frequency selective surfaces,” IEEE Trans.Antennas Propag., vol.53,no.1, pp.8-17, Jan.2005.
    [134] X. L. Bao, M. J. Ammann, G. Ruvio, and M. John,“High performance circularlypolarized antenna based on fractal EBG structures,” in Int. Conf. IEEE IWAT,New York, USA,2006, pp.257-260.
    [135] U.R.Freiberg,“Analysis on fractal objects,” Meccanica, vol.40, pp.419-436,2005.
    [136] B. B. Mandelbort, The Fractal Geometry of Nature. New York: Freeman,1983.
    [137] J.Feder, Fractals. New York: Plenum,1988.
    [138] K.Falconer, Fractal Geometry: Mathematical Foundations and Applications.Chichester, U.K.: Wiley,2003.
    [139] K.Trivedi,“Hindu temples: models of a fractal universe,” Visual Computers,vol.5, no.4, pp.243-258,1989.
    [140] X.T.Long, W.Li, and W.Y.Luo,” Design and application of fractal pattern art inthe fashion design,” in IEEE2009International Workshop on Chaos-FractalTheories and Applications, Shenyang, China, Nov.2009, pp.391-394.
    [141] S.L.Xu, J.R.Yang, Y.Q.Wang, H.H.Liu, and J.M.Gao,“Application of fractal artfor the package decoration design,” in IEEE10thInt. Conf. Computer-AidedIndustrial Design&Conceptual Design, Nov.2009, pp.705-709.
    [142] W.Deering, and B.J.West,“Fractal physiology,” IEEE Eng.Med.Biol.Mag.,vol.11, no.2, pp.40-46,1992.
    [143] A.L.Goldberger,“Fractal mechanisms in the electrophysiology of the heart,”IEEE Eng. Med. Biol. Mag., vol.11, no.2, pp.47-52, June1992.
    [144] J.-H.Jeng, C.-C.Tseng, and J.-G.Hsieh,“Study on huber fractal imagecompression,” IEEE Trans. on image processing, vol.18, no.5, pp.995-1003,May2009.
    [145] D.H.Werner, R.L.Haupt, and P.L.Werner,“Fractal antenna engineering: thetheory and design of fractal antenna arrays,” IEEE Antennas Propag.Mag.,vol.41, no.5, pp.37-59, Oct.1999.
    [146] M.Naghshvarian-Jahromi,“Novel wideband planar fractal monopole antenna,”IEEE Trans. Antennas Propag., vol.56, no.12, pp.3844-3849, Dec.2008.
    [147] D.Oloumi, A.Kordzadeh, and A.A.Lotfi Neyestanak,“Size reduction andbandwidth enhancement of a waveguide bandpass filter using fractal-shapedirises,” IEEE Antennas Wireless Propag. Lett., vol.8, pp.1214-1217,2009.
    [148] M.Rahman and M.A.Stuchly,“Transmission line-periodic circuit representationof planar microwave photonic bandgap structures,” Microw.Opt. Technol. Lett.,vol.30, no.1, pp.15-19, Jul.2001.
    [149] S.Shahparnia,“Electromagnetic bandgap structures for broadband switchingnoise mitigation in high-speed packages,” Ph.D. dissertation, Univ.Maryland,College Park,2005.
    [150] Advanced design system (ADS), Agilent Technologies, Palo Alto, CA.
    [151] H.M.Cundy and A.R.Rollett, Mathematical Models.2nd ed., Oxford, U.K.:Clarendon,1961.
    [152] G.Peano,“Sur une courbe, qui remplit toute une aire plane,” Math. Annln.,vol.36, pp.157-160,1890.
    [153] D.Hilbert,“über die stetige Abbildung einer Linie auf ein Fl chenstück,” Math.Annln., vol.38, pp.459-460,1891.
    [154] E.H.Moore,“On certain crinkly curves,” Trans.Amer.Math.Soc., vol.1, pp.72-90,1900.
    [155] H.Lebesgue, Le ons sur l’Intégration et la Recherche des Fonctions Primitives,Gauthier-Villars, Paris, pp.44-45,1904.
    [156] W.Sierpiński,“Sur une nouvelle courbe continue qui remplit toute une aireplane,” Bull.Acad.Sci.de Cracovie (Sci.math.et nat., Série A), pp.462-478,1912.
    [157] H.Sagan, Space-Filling Curves. Springer-Verlag, New York,1994.
    [158] M.J.Ogorzalek,“Fundamentals of fractal sets, space-filling curves and theirapplications in electronics and communications,” Intelligent Computing Basedon Chaos, pp.53-72,2009.
    [159] D.H.Werner and S.Ganguly,“An overview of fractal antenna engineeringresearch,” IEEE Antennas Propag.Mag., vol.45, no.1, pp.38-57, Feb.2003.
    [160] H.A.Ghali, and T.A.Moselhy,“Broad-band and circularly polarized space-filling-based slot antennas,” IEEE Trans. Microw. Theory Tech., vol.53, no.6,pp.1946-1950, June2005.
    [161] Y.Zarai and S.Rakib,“Hilbert space-filling by piecewise-linear indextransformation,” IEEE Signal Process. Lett., vol.15, pp.717-720,2008.
    [162] J.McVay, N.Engheta, and A.Hoorfar,“High impedance metamaterial surfacesusing Hilbert-curve inclusions,” IEEE Microw. Wireless Compon. Lett., vol.14,no.3, pp.130-132, Mar.2004.
    [163] J.McVay, A.Hoorfar, and N.Engheta,“Peano high impedance surfaces,” RadioSci., vol.40, no.6, RS6S03(9pages), Dec.2005.
    [164] T.G.Spence, D.H.Werner, and J.N.Carvajal,“Modular broadband phased-arraysbased on a nonuniform distribution of elements along the Peano-Gosperspace-filling curve,” IEEE Trans. Antennas Propag., vol.58, no.2, pp.600-604,Feb.2010.
    [165] H.Ghali and T.A.Moselhy,“Miniaturized fractal rat-race, branch-line, andcoupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol.52, no.11, pp.2513-2520, Nov.2004.
    [166] R.Hu, J.Li, and S.Fan,“A novel fractal folded-slot antenna using Sierpinskicurves,”in Proc.IEEE Int.Conf.Communication Systems, Nov.2008, pp.371-373.
    [167] D.H.Kim, J.H.Yeo, and J.Choi,“Broadband spatial band-stop filter usingSierpinski space-filling geometry at PCS band,” Microw.Opt.Technol. Lett., vol.50, no.10, pp.2716-2718, Oct.2008.
    [168] V.Crnojevic-Bengin, V. Radonic, and B. Jokanovic,“Fractal geometries ofcomplementary split-ring resonators,” IEEE Trans. Microw.Theory Tech., vol.56,no.10, pp.2312-2321, Oct.2008.
    [169] W.L.Chen, G.M.Wang, and C.X.Zhang,“Small-size microstrip patch antennascombining Koch and Sierpinski fractal-shapes,” IEEE Antennas Propag. Lett.,vol.7, pp.738-741,2008.
    [170] Y.He, L.Li, H.Q.Zhai, X.J.Dang, C-H.Liang, and Q.H.Liu,“Sierpinski space-filling curves and their application in high-speed circuits for ultra-widebandSSN suppression,” IEEE Antennas Propag. Lett., vol.9, pp.568-571,2010.
    [171] Y.He, C-H.Liang, and Q.H.Liu,“Novel array EBG structures for ultrawidebandsimultaneous switching noise suppression,” IEEE Antennas Propag. Lett., vol.10, pp.588-591,2011.
    [172] G. Pólya, über eine Peanosche Kurve, Bull. Acad. Sci. Cracovie (Sci. math.etnat.Série A), pp.1-9,1913.
    [173] K.Knopp,“Einheitliche Erzeugung und Darstellung der Kurven Von Peano,Osgood und Von Koch,” Arch. Math. Phys., vol.26, pp.103-115,1917.
    [174] G.F.Tsachtsiris, C.F.Soras, M.P.Karaboikis, and V.T.Makios,“Analysis of amodified Sierpinski gasket monopole antenna printed on dual band wirelessdevices,” IEEE Trans.Antennas Propag., vol.52, no.10, pp.2571-2579, Oct.2004.
    [175] W.J.Krzysztofik,“Modified Sierpinski fractal monopole for ISM-Bands handsetapplications,” IEEE Trans. Antennas Propag., vol.57, no.3, pp.606-615, Mar.2009.
    [176] B.-L.Ooi,“A modified contour integral analysis for Sierpinski fractal carpetantennas with and without electromagnetic band gap ground plane,” IEEETrans.Antennas Propag., vol.52, no.5, pp.1286-1293, May2004.
    [177] F.A.Ghaffar, M.U.Khalid, K.N.Salama, and A.Shamim,“24-GHz LTCC fractalantenna array SOP with integrated fresnel lens,” IEEE Antennas Propag. Lett.,vol.10, pp.705-708,2011.
    [178] W.Sierpiński,“O krzywych, wypolniajacych kwadrat,” Prace matematyczno-fizyczne, XXIII, pp.193-219,1912.
    [179] M.Gardner, Penrose Tiles to Trapdoor Ciphers: And the Return of Dr Matrix.New York: Freeman,1989.
    [180] F.W.Grover, Inductance Calculations. Princeton, NJ: Van Nostrand,1946.
    [181] D.M.Pozar, Microwave Engineering. MA: Addison-Wesley,1990.
    [182] B.C.Wadell, Transmission Line Design Handbook. Norwood, MA: Artech House,1991.
    [183] K.C.Gupta, R.Garge, I.Bahl, and P.Bhartis, Microstrip Lines and Slotlines.Norwood, MA: Artech House,1996.
    [184] J.-S.Hong, and M.J.Lancaster, Microstrip Filters for RF/Microwave Applications.New York: Wiley,2001.
    [185] I.J.Bahl, Lumped Elements for RF and Microwave Circuits. Norwood, MA:Artech House,2003.
    [186] C.Balanis, Antenna Theory, Analysis and Design.2nd ed., New York: Wiley,1997.
    [187] http://www.tgmdev.be/curvesierpinski.htm
    [188] V.Bruni, D.De Canditiis, and D.Vitulano,“Phase information and space fillingcurves in noisy motion estimation,” IEEE Trans.Image Process., vol.18, no.7,pp.1660-1664, Jul.2009.
    [189] R.Ghatak, R. K. Mishra, and D.R.Poddar,“Perturbed Sierpinski carpet antennawith CPW feed for IEEE802.11a/b WLAN application,” IEEE AntennasWireless Propag. Lett., vol.7, pp.742-744,2008.
    [190] S.-S. Oh, J.-M. Kim, J.-H. Kwon, and J.-G. Yook,“Enhanced power planewith photonic band gap structures for wide band suppression of parallel plateresonances”, in IEEE AP-S/URSI Symp. Dig., July2005, vol.2B, pp.655-658.
    [191] Y. Ishikawa, K. Iio, T. Kato, and K. Sakamoto,“High-frequency circuit deviceand communication apparatus”, U.S.Patent6,323,740B1, Nov.27,2001.
    [192] H.-D.Kang, H.Kim, S.-G.Kim, and J.-G.Yook,“A localized enhanced powerplane topology for wideband suppression of simultaneous switching noise,”IEEE Trans. Electromagn. Compat., vol.52, no.2, pp.373-380, May.2010.
    [193] J.H.Kown, D.U.Sim, S.I.Kwak, and J.G.Yook,“Novel electromagnetic bandgaparray structure on power distribution network for suppression simultaneousswitching noise and minimizing effects on high-speed signals,” IEEE Trans.Electromagn. Compat., vol.52, no.2, pp.365-372, May.2010.
    [194] J.Lee, Y.Kim, E.Song, and J. Kim,“Partial EBG power distribution networkusing remants of signal layers in multi-layer PCB,” in Proc.2006IEEE Int.Symp.Electromag. Compat., Portland, Oregon, Aug.14-18,2006, pp.43-46.
    [195] B. Kim and D.-W. Kim,“Improvement of simultaneous switching noisesuppression of power plane using localized spiral-shaped EBG structure andλ/4open stubs,” in IEEE Asia-Pacific Microwave Conf., Bangkok, Thailand,Dec.2007, pp.1-4.
    [196] B. Kim and D.-W. Kim,“Localized and periodic spiral-shaped EBG structuresfor the simultaneous switching noise mitigation,” in Proc.38th EuropeanMicrowave Conf., Amsterdam, Netherlands, Oct.27-31,2008, pp.183-186.
    [197] B. Kim and D.-W. Kim,“Spiral-shaped electromagnetic bandgap structure forsimultaneous switching noise suppression,” Electron. Lett., vol.45, no.5, pp.255-256, Feb.2009.
    [198] H.-D. Kang, H. Kim, H.-J. Lee and J.-G. Yook,“An enhanced power planetopology using localized spiral resonator for wideband suppression ofsimultaneous switching noise,” in Proc. IEEE Int. Symp. Antennas Propag., June2009, pp.1-4.
    [199] B.Kim, and D.-W.Kim,“Bandwidth enhancement of SSN suppression using aspiral-shaped power island and a modified EBG structure for λ/4open stub,”ETRI J., vol.31, no.2, pp.201-208, Apr.2009.
    [200] J. H. Kwon, D. U. Shim, S. I. Kwak and J. G. Yook,“Partial placement ofelectromagnetic bandgap unit cells to effectively mitigate simultaneousswitching noise,” Electron. Lett., vol.44, no.22, pp.1302-1303, Oct.2008.
    [201] J.H. Kown, and J.G. Yook,“Partial placement of EBG on both power and groundplanes for broadband suppression of simultaneous switching noise,” IEICETrans. Commun., vol.E92-B, no.7, pp.2550-2553, Jul.2009.
    [202] J. H. Kwon, D. U. Sim, S. I. Kwak, J. H. Yun, and J. G. Yook,“Partial EBGplacement on PDN to effectively suppress simultaneous switching noise,” inProc. IEEE2008advanced packaging and system Symp., Seoul, Korea, Dec.10-12,2008, pp.89-92.
    [203] D.B. Lin, K. C. Hung, C. T. Wu and C. S. Chang,“Partial uniplanar compactelectromagnetic bandgap combined with high-impedance surface to suppresssimultaneous switching noise,” Electron. Lett., vol.45, no.16, pp.829-830, Jul.2009.
    [204] J. H. Kown, S. I. Kwak, D. U. Sim, and J. G. Yook,“Partial EBG structure withdecap for ultra-wideband suppression of simultaneous switching noise in ahigh-speed system,” ETRI journal, vol.32, no.2, pp.265-272, April.2010.
    [205] Y.H.Lin, and T.L.Wu,“Investigation of signal quality and radiated emission ofmicrostrip line on imperfect ground plane: FDTD analysis and measurement,” inProc. IEEE Int. Symp. Electromagn. Compat., Montreal, QC, Canada, Aug.2001,pp.319-324.
    [206] Agilent Technologies,[Online].Available:http://www.home.agilent.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700