中国重庆原发性闭角型青光眼表型特征分析、遗传流行病学调查及相关易感基因的初步筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性闭角型青光眼(Primary angle closure glaucoma, PACG)简称闭青(Angle closure glaucoma, ACG),是由于房水在前房角引流不畅而致眼内压升高,压迫视神经、视网膜而致失明。PACG具有种族特异性,是由遗传因素与共同作用造成的,因而PACG遗传研究是其发病机制的重要组成部分。
     通过对中国人PACG的流行病学调查,爱斯基摩人双生子方法分析,认为PACG属于多基因遗传的复杂性疾病,其易感因素主要为浅前房、窄房角、短眼轴,并提出中国人PACG的遗传度为65%,爱斯基摩人的浅前房遗传度为70%。随着分子生物学和分子遗传学技术的进步,使PACG易感基因的染色体定位成为可能。由于种族特异性以及其他种种原因,国内外尚未对PACG的遗传学以及易感基因进行过进一步的研究。
     本研究主要包括以下几个方面1.通过遗传流行病调查,更深入的探索和分析PACG的表型特征。2.收集PACG家系,对PACG的易感因素进行遗传分析。3.利用PACG家系,初步对11号染色体,以及其他染色体上与PACG可能相关的候选基因,进行微卫星位点进行连锁分析,为进一步研究PACG的易感基因及分子遗传学打下基础。
     主要结果如下:
     检查鉴定116个家系428名家庭成员856只眼,发现PACG患者与正常未受累者比较,年龄较大(p<0.001),女性发病较多(4.1 vs 1.5),远视(p<0.001),中央前房浅(p<0.001),周边前房浅(p<0.001),房角窄( p<0.001),晶状体厚(p<0.001),眼轴短(p<0.001).眼压高(p<0.001)。
     PACG患者及家系成员表型特征(前房深度,房角宽窄程度)为连续数量性状变化。可疑者成员数量性状的变化位于正常和患者之间,属于中间数量表型,但可疑者与受累者的眼轴长度无明显的差别(P>0.05),均为短眼轴。
     PACG先证者一级亲属浅前房相对风险率(λs值)为7.91,一级亲属加权平均遗传度为92.6%±5.87,女性先证者一级亲属浅前房遗传为115.24%±7.94。
     浅前房遗传方式为:男性同胞浅前房符合常染色体隐性遗传(P>0.05),女性同胞浅前房常染色体显性遗传(P>0.05);婚配型U×A分离分析接受常染色体显性遗传假设(P>0.05),婚配型U×U既不接受常染色体隐性遗传的假设,也不接受常染色体显性遗传的假设。
     从第二部分114个家系中选择5个慢性PACG家系,共计75例成员,并提取DNA样本。选取13个候选基因,利用其基因内或附近的微卫星DNA标记,进行多点非参数连锁分析,结果LOD值在-0.17—0.96之间,p值在0.02-0.8之间,不支持连锁。11号染色体基因组扫描及连锁分析结果显示,16个微卫星11号染色体16个标记,平均距离9.18cM。采用多点非参数连锁分析,结果发现D11S4146的LOD值为1.16,p=0.01,D11S902的LOD值为1.02,p=0.02,支持连锁。其他位点LOD值在0-0.96之间,p值在0.5-0.02之间,不支持连锁。
     结论:
     PACG患者及家系成员表型特征(前房深度,房角宽窄程度)为连续数量性状变化。可疑者成员数量性状的变化位于正常和患者之间,属于中间数量表型。短眼轴及浅前房可能是PACG形成的主要遗传易感因素。
     PACG一级亲属有较高的浅前房发生风险,有较高的遗传度,女性浅前房遗传可能存在一个显性主基因,浅前房的遗传方式随不同的性别及婚配类型而表现出不同的遗传方式即遗传异质性。
     PACG易感基因可能与下列候选基因无关:NNO1、MRCS、PAX6、VMD2、MFRP、NNO2、ROM1、CHX10、MCOP1、MCOPCB2、PITX2、FOXC1、MAF。
     PACG易感基因可能与11号染色体微卫星位标记D11S4146及D11S902有关。
Primary angle closure glaucoma(PACG) or angle closure glaucoma(ACG) is retina and optic nerve damage due to a closed anterior angle and increased IOP. The race difference in rate of PACG between white race and yellow race reveals that inherited facts and certain environmental facts are the reason for PACG. Therefore genetics research of PACG is one of important parts in pathogenesis of this disorder.
     Epidemiological survey in Chinese and Eskimo shows that PACG is called complex genetic diseases, and the heritability value of PACG is 65% in China, 70% of shallow anterior chamber(AC) in Eskimo. Its susceptible facts are shallow AC, narrowing AC angle and short axial length. We known little abaut PACG genetics and its susceptible gene due to the race difference and other reason worldwide, nevertheless, with the development of biology and molecular genetics,it become possible to localizate PACG genes.
     The purpose of this study include as follows: 1. to furthermore explore phenotypic features of PACG by epidemiological survey. 2.to analyse inherited patterns of PACG susceptibility by collect PACG families. 3. to primarily study chromosome 11 and some of candidate genes on other chromosomes to identify whether or not PACG is related to those chromosome 11 and candidate genes by way of short tandem repeats (STR) linkage analysis.
     Result
     428 individu als from 116 families were examined. The affected individuals were older (p<0.01) than the unaffected ones, moreover, the female/male ratio was higher in the affected group than the unaffected group (4.1 vs 1.5). Compared to the unaffected individuals, the affected ones were hyperopic (p<0.01), had shallow peripheral (p<0.01) and central anterior chamber depths, narrow angles (p<0.01), high intraocular pressure (p<0.01), thick lens (p<0.01), and short axial length (p<0.01).
     Phenotypic features of PACG patients and their family membership such as the depth of anterior chamber and the degree of angle narrow showed consecutively quantitative trait. The quantitative trait of suspect was intermediate phenotypes between unaffected and affected, and did not show statistic difference between affected and unaffected in axial length(p>0.05).
     The relateive risk of first degree relative was 7.91, and the estimated heritability value of shallow AC was 92.6%±5.87, and the heritability value of female relatives was 115.24%±7.94%.
     The inherited patterns of shallow AC with males sibs accorded with autosomal recessive heredity, while (P>0.05), while females sibs accorded with autosomal dominant heredity (P>0.05). the genetic pattern of U×A exhibited autosomal dominant inheritance trait, and the genetic pattern of U×U showed neither autosomal recessive heredity nor dominant inheritance traits(P>0.05).
     75 individuals of 5 chronicPACG families were selected from 114 families and DNA samples were extracted. STR markers within 13 candidate genes or near locus were selected to perform multipoint nonparametric linkage analysis (NPL). LOD score were from -0.17 to 0.96 and p value ranged from 0.02 to 0.8. These results did not support linkange possibility of PACG genes with above candidate genes.
     16 STR markers, average interval 9.18 cM, on chromosome 11 were scaned and multipoint nonparametric linkage analysis (NPL) were performed. LOD score of 1.16 was obtained at D11S4146(p=0.01),. 1.02 (p=0.02) at D11S902. These results supported linkage with our PACG. pedigrees. LOD score of other STR on chromosome 11 were from -0.17 to 0.96 and p value ranged from 0.02 to 0.8. These results did not support linkange possibility of PACG genes with those locus.
     Conclusion:
     Phenotypic features of PACG patients and their family membership such as the depth of anterior chamber and the degree of angle narrow show consecutively quantitative variety. The quantitative trait of suspect was intermediate phenotypes between unaffected and affected.
     Short axial length and shallow AC may be mostly inherited susceptibile facts.
     Shallow AC exist more heritability value. First relative of PACG demonistrate may demonstrate more relateive risk to cause shallow AC and there may exist dominant major gene in female relative. The inherited patterns of Shallow AC may be different in gender and mating types.
     PACG susceptibile gene may not be associated with as below: NNO1、MRCS、PAX6、VMD2、MFRP、NNO2、ROM1、CHX10、MCOP1、MCOPCB2、PITX2、FOXC1、MAF。
     PACG susceptibile gene may be associated with D11S4146 and D11S902 on chromosome 11.
引文
1.胡铮中华眼科杂志1989, 25:115-119.
    2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006 Mar;90(3):262-7.
    3.扬新光中国实用眼科杂志2001;329(1):1-6.
    4. Budde WM. Heredity in primary open-angle glaucoma. Curr Opin Ophthalmol. 2000 Apr;11(2):101-6.
    5.王仁容,郭秉宽,嵇训传,等原发性闭角型青光眼遗传规律的探讨中华眼科杂志1985,21(2)95-101)
    6.李卫东.复杂性疾病基因定位的策略和手段.国外医学遗传学分册1997;20(4):208-212.
    7. Chen WJ, Liu PH,Ho YY. Et al.. Sibling recurrence risk ratio analysis of the metabolic syndrome and its components over time. BMC Genet. 2003 Dec 31;4 Suppl 1:S33.
    8. mon JF. Predisposing factors for chronic angle-closure glaucoma. rog-Retin-Eye-Res. 1999,18(1): 121-32. Lowe RF. Primary angle-closure glaucoma. Inheritance and environment. Br J ophthalmol 1972; 56: 13-19.
    9. Lowe RF. Primary angle-closure glaucoma. Inheritance and environment. Br J ophthalmol 1972; 56: 13-19.
    10. Salmon JF. Predisposing factors for chronic angle-closure glaucoma. rog-Retin-Eye-Res. 1999,18(1): 121-32.
    11.叶天才,于强,彭寿雄,等.原发性闭角型青光眼易患者六年随访研究.中华眼科杂志, 1998, 34: 167-169.
    12.陈竺中华医学遗传学杂志1998; 15(4): 195-197.
    13.吴国俊国外医学遗传学分册1997; 20(4): 169-172.
    14. Van Herick, Shaffer RN, Scwartz A. Estimation of width of angle of anterior chamber: Incidence and significance of the narrow angle. Am J Ophthalmol 1969; 68: 626-629.
    15. Scheie HG. Width and pigmentation of the angle of the anterior chamber. Arch Ophthalmol 1957; 58: 510-512.
    16. Yong Yeon Kim, Hai Ryun Jung. Clarifying the Nomenclature for Primary Angle-Closure Glaucoma Surv Ophthalmo1 1997;42 (2) 127-135.
    17. Mann, I. Culture, Race, Climate and Eye Disease. P 539-540. C C Thomas, Springfield. (found in Early detection of PACG– Alsbirk)
    18. Lowe RF. Primary angle-closure glaucoma. Inheritance and environment. Br J ophthalmol 1972; 56: 13-19.
    19. Oh YG, Minelli S, Spaeth G, Steinman WC. The anterior chamber angle is different in different racial groups: A gonioscopic study. Eye 1994; 8: 104-8.
    20. Seah SKL, Foster PJ, Chew PTK, Jap A, Oen F, Fam HB, Lim SM. Incidence of acute primary angle-closure glaucoma in Singapore: An Island wide survey. Arch Ophthalmol 1997; 115: 1436-40.
    21. Tornquist R. Shallow anterior chambers in acute glaucoma. Acta Ophthalmol 1953; 31: 1-74.
    22. Alsbirk PH. Anterior chamber depth and primary angle-closure glaucoma. II. A genetic study. Acta Ophthalmol (Copenh) 1975; 53: 436-49.
    23. Tomlinson A, Leighton DA. Ocular dimensions in the heredity of angle closure glaucoma. Br J Ophthalmol 1973; 57: 475-85.
    24. Alsbirk PH. Primary angle-closure glaucoma: Oculometry, epidemiology, and genetics in a high-risk population. Acta ophthalmol suppl 1976; 127: 5-31.
    25. Hu CN. An epidemiologic study of glaucoma in Shunyi county, Beijing. Chung Hua Yen Ko Tsa Chih 1989; 25: 115-119.
    26. Congdon N, Wang F, Tielsch JM. Issues in the epidemiology and population–based screening of primary angle closure glaucoma. Surv ophthalmol 1992; 36: 411-423.
    27. Freund C, Horsford DJ, McInnes RR. Transcription factor genes and the developing eye: a genetic perspective. Hum Mol Genet. 1996, 5: 1471 1488.
    28. Othman MI, Sullivan SA, Skuta GL, Cockrell DA, Stringham HM, Downs CA, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 1998; 63: 1411-1418.
    29. Olof H. Sundin, Gregory S. Leppert, Eduardo D. Silva, Jun-Ming Yang, et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Genetics. 2005;102: 9553–9558.
    30. Jill Yardley, Bart P. Leroy, Niki Hart-Holden, Bart A. Lafaut, Bart Loeys, et al. Mutations of VMD2 Splicing Regulators Cause Nanophthalmos and Autosomal Dominant Vitreoretinochoroidopathy (ADVIRC). IOVS, 2004; 45:3683-3689.
    31. Zou J, Zhang F, Zhang L, Wang L, Huang H. A clinical study on laser peripheral iridoplasty for primary angle-closure glaucoma with positive provocative tests after iridectomy Zhonghua Yan Ke Za Zhi. 2002 Dec;38(12):708-11. Chinese.
    32. Fabijanczyk B, Hagadus R. Role of ultrasound biomicroscopy in the diagnosis and management of glaucoma Klin Oczna. 2005;107(4-6):316-21. Review. Polish.
    33. Alsbirk PH. Anatomical risk factors of angle-closure glaucoma. A 10-year study of limbal and axial anterior chamber depths in a risk population. Ugeskr Laeger 1994, 156: 5117-21.
    34. Wilensky JT, Kaufman PL, Frohlichstein D, et al. Follow-up of angle-closure glaucoma suspects.Am J Ophthalmol. 1993, 115: 338-46.
    35. Alan EH Emery. Methodology in medical genetics. Churchill livingstone. Edinburgh London Melbourne and New York.1986, 57-58.
    36. Falconer DS. The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet. 1965, 29: 51-55.
    37.胡应,张思仲.人类遗传学中的分离分析原理及方法.遗传与疾病, 1991,8:93-97.
    38.于强,许京京,朱斯平,等.中老年人群前房角状态的调查.中华眼科杂志, 1998, 34: 224-226.
    39.沈福民.流行病学原理与方法.上海:复旦大学出版社,上海医科大学出版社, 2001.205-205.
    40.乔智,周芳,王红梅,等.原发性闭角型青光眼发病因素的探讨.中华流行病学杂志,1998, 19: 58-58.
    41.贺忠江,闫一鸣.原发性闭角型青光眼的病因和发病机理假说.见:袁佳琴,主编.21世纪眼科前沿.北京:人民卫生出版社,2000. 512-519.
    42.周文炳,王宁利,赖铭莹,等.我国原发性闭角型青光眼的研究进展.中华眼科杂志,2000, 36: 475-478.
    43. Krushkal J, Ferrell R, Mockrin SC,Circulation.et al. Genome-wide linkage analyses of systolic blood pressure using highly discordantsiblings. 1999 Mar 23;99(11):1407-10.
    44. Freeman H, Cox RD. Type-2 diabetes: A cocktail of genetic discovery.Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R202-9.
    45. Burgner D, Jamieson SE, Blackwell JM. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect Dis. 2 (2006Oct;6(10):653-63.
    46. Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006 Mar;51(2):253-65.
    47. Yue BY, Kurosawa A, Duvall J, Goldberg MF, Tso MO, Sugar J (1988) Nanophthalmic sclera: fibronectin studies. Ophthalmology 95:56–600.
    48. Reddy MA, Francis PJ, Berry V, et al. A clinical and molecular genetic study of a rare dominantly inherited syndrome (MRCS) comprising of microcornea, rod-cone dystrophy, cataract, and posterior staphyloma.Br J Ophthalmol. 2003 Feb;87(2):197-202.
    49. Olof H. Sundina, Gregory S. Lepperta, Eduardo D. et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9553-8. Epub 2005 Jun 23.
    50. Karen Gronskov. Population-based risk estimates of Wilms tumor in sporadic in sporadic aniridia A comprehensive mutation screening procedure of PAX6 identifies 80% of mutation in aniridia. Hum Genet(2001)109:11-18.
    51. Jill Yardley, Bart P. Leroy, Niki Hart-Holden. Mutations of VMD2 Splicing Regulators Cause Nanophthalmos and Autosomal Dominant Vitreoretinochoroidopathy (ADVIRC) IOVS, October 2004, Vol. 45, 1145-1150.
    52. Olof H. Sundina, Gregory S. Lepperta, et al.Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9553-8.
    53. Cross, H. E.; Yoder, F. : Familial nanophthalmos. Am. J. Ophthal. 81: 300-306, 1976.
    54. Bascom,R. A.; Connell, G.; Garcia-Heras, J.; et al. Molecular and ultrastructural characterization of the products of the human retinopathy candidate genes ROM1 and RDS. (Abstract) Am. J. Hum. Genet. 47 (suppl.): A101 only, 1990.
    55. De Chen, J.; Bapat, B.; Bascom, et al. Identification of a developmentally regulated human retinal homeobox gene. (Abstract) Am. J. Hum. Genet. 45: A111, 1989.
    56. Bessant, D. A. R.; Khaliq, S.; Hameed, A.; et al. A locus for autosomal recessive congenital microphthalmia maps to chromosome 14q32. Am. J. Hum. Genet. 62: 1113-1116, 1998.
    57. L.Morlé, M.Bozon, J.-C. Zech, et al. A Locus for Autosomal Dominant ColobomatousMicrophthalmia Maps to Chromosome 15q12-q15. Am. J. Hum. Genet., 67:1592-1597, 2000.
    58. Semina, E. V.; Reiter, R.; Leysens, N. J.; et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet. 14: 392-399, 1996.
    59. Nishimura, D. Y.; Swiderski, R. E.; Alward, W. L. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19: 140-147, 1998.
    60. Vanita, V.; Singh, D.; Robinson, P. N.; et al. A novel mutation in the DNA-binding domain of MAF at 16q23.1 associated with autosomal dominant "cerulean cataract" in an Indian family. Am. J. Med. Genet. 140A: 558-566, 2006.
    61. Graeme Wistow, Steven L. Bernstein, M.et al Expressed sequence tag analysis of human RPE/choroid for the NEIBank Project: Over 6000 non-redundant transcripts, novel genes and splice variants Molecular Vision 2002; 8:205-200.
    62. Xu J, Wiesch DG, Meyers DA. Genetics of complex human diseases: genome screening, association studies and fine mapping.Clin Exp Allergy 1998 Nov;28 Suppl 5:1-5; discussion 26-8.
    63. Larry Borish. Genetics of allergy and asthma. Ann Allergy Asthma Immunol 1999;82:413-426.
    64. Altmuller J, Palmer LJ, Fischer G, et al. Genomewide scans of complex human diseases: true linkage is hard to find.Am J Hum Genet. 2002 Mar;70(3):818-9.
    65. Bleecker ER, Postma DS, Meyers DA.Genetic susceptibility to asthma in a changing environment.Ciba Found Symp 1997;206:90-9.
    66. Palmer LJ. Linkages and associations to intermediate phenotypes underlying asthma and allergic disease.Curr Opin Allergy Clin Immunol 2001 Oct;1(5):393-8.
    67. Rannala B. Finding genes influencing susceptibility to complex diseases in the post-genome era.Am J Pharmacogenomics 2001;1(3):203-21.
    68. Dudbridge F.A survey of current software for linkage analysis. Hum Genomics. 2003 Nov;1(1):63-5.
    69. Chen WJ, Liu PH,Ho YY. Et al.. Sibling recurrence risk ratio analysis of the metabolic syndrome and its components over time. BMC Genet. 2003 Dec 31;4 Suppl 1:S33.
    70. Farrall M. Affected sibpair linkage tests for multiple linked susceptibility genes.GenetEpidemiol 1997;14(2):103-15
    71. Gulcher JR, Kong A, Stefansson K.Curr Opin Genet Dev 2001 Jun;11(3):264-7 The role of linkage studies for common diseases.
    72. Fisher SE, Stein JF, Monaco AP.A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia).Eur Child Adolesc Psychiatry 1999;8 Suppl 3:47-51.
    73. Erickson DL, Fenster CB, Stenoien HK. Et al. Mol Ecol. 2004 Sep;13(9):2505-22. Quantitative trait locus analyses and the study of evolutionary process
    1. Yue BY, Kurosawa A, Duvall J, et al. Nanophthalmic sclera: fibronectin studies. Ophthalmology. 1988,95:56–600
    2. Burmeister M, Novak J, Liang MY, et al. Ocular retardationmouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 1996 12: 376–384.
    3. Tomlinson A, Leighton DA. Ocular dimensions in the heredity of angle closure glaucoma. Br J Ophthalmol 1973; 57: 475-85.
    4. Freund C, Horsford DJ, McInnes RR. Transcription factor genes and the developing eye: a genetic perspective. Hum Mol Genet. 1996, 5: 1471 1488.
    5. Olof H. Sundina, Gregory S. Lepperta, et al.Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9553-8.
    6. Othman, M. I.; Sullivan, S. A.; Skuta, G. L.; et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am. J. Hum. Genet. 1998, 63: 1411-1418.
    7. Reddy MA, Francis PJ, Berry V, et al. A clinical and molecular genetic study of a rare dominantly inherited syndrome (MRCS) comprising of microcornea, rod-cone dystrophy, cataract, and posterior staphyloma.Br J Ophthalmol. 2003 Feb;87(2):197-202.
    8. Karen Gronskov. Population-based risk estimates of Wilms tumor in sporadic in sporadic aniridia A comprehensive mutation screening procedure of PAX6 identifies 80% of mutation in aniridia. Hum Genet(2001)109:11-18.
    9. Jill Yardley, Bart P. Leroy, Niki Hart-Holden. Mutations of VMD2 Splicing Regulators Cause Nanophthalmos and Autosomal Dominant Vitreoretinochoroidopathy (ADVIRC) IOVS, October 2004, Vol. 45, 1145-1150.
    10. Cross, H. E.; Yoder, F. : Familial nanophthalmos. Am. J. Ophthal. 81: 300-306, 1976.
    11. Bascom,R. A.; Connell, G.; Garcia-Heras, J.; et al. Molecular and ultrastructural characterization of the products of the human retinopathy candidate genes ROM1 and RDS. (Abstract) Am. J. Hum. Genet. 47 (suppl.): A101 only, 1990.
    12. De Chen, J.; Bapat, B.; Bascom, et al. Identification of a developmentally regulated human retinal homeobox gene. (Abstract) Am. J. Hum. Genet. 45: A111, 1989.
    13. Percin, E. F.; Ploder, L. A.; Yu, J. J.; et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nature Genet. 25: 397-401, 2000.
    14. Bar-Yosef, U.; Abuelaish, I.; Harel, T.; et al. CHX10 mutations cause non-syndromic microphthalmia/anophthalmia in Arab and Jewish kindreds. Hum. Genet. 115: 302-309, 2004.
    15. McInnes, R. R.; Basu, S.; Novak, J.; et al.The ocular retardation (orJ) mouse has an ochre mutation in the homeobox gene Chx10: direct evidence for Chx10 as a major determinant of retinal development. (Abstract) Am. J. Hum. Genet. 55 (suppl.): A3, 1994.
    16. Bessant, D. A. R.; Khaliq, S.; Hameed, A.; et al. A locus for autosomal recessive congenital microphthalmia maps to chromosome 14q32. Am. J. Hum. Genet. 62: 1113-1116, 1998.
    17. Breitman, M. L.; Clapoff, S.; Rossant, J.; et al. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238: 1563-1565, 1987.
    18. Palmiter, R. D.; Behringer, R. R.; Quaife, C. J.; et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50: 435-443, 1987.
    19. L.Morlé, M.Bozon, J.-C. Zech, et al. A Locus for Autosomal Dominant Colobomatous Microphthalmia Maps to Chromosome 15q12-q15. Am. J. Hum. Genet., 67:1592-1597, 2000.
    20. Blank, V.; Andrews, N. C. The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22: 437-441, 1997.
    21. Yoshida, M. C.; Nishizawa, M.; Kataoka, K.; et al. Localization of the human MAF protooncogene on chromosome 16 to bands q22-q23. (Abstract) Cytogenet. Cell Genet. 58: 2003 only, 1991.
    22. Jamieson, R. V.; Perveen, R.; Kerr, B.; Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum. Molec. Genet. 11: 33-42, 2002.
    23. Vanita, V.; Singh, D.; Robinson, P. N.; et al. A novel mutation in the DNA-binding domain of MAF at 16q23.1 associated with autosomal dominant "cerulean cataract" inan Indian family. Am. J. Med. Genet. 140A: 558-566, 2006.
    24. Berg, F. Erbliches jugendliches glaukom. Acta Ophthalmologica,10, 568–587,1932.
    25. Reese, A. Ellsworth, R. The anterior chamber cleavage syndrome. Arch. Ophthalmol., 75, 307–318,1966.
    26. Feingold, M., Shiere, F., Fogels, H.R. et al. Rieger’s syndrome. Pediatrics, 44, 564–569, 1969.
    27. Fitch, N. Kaback, M. The Axenfeld syndrome and the Rieger syndrome. J. Med. Genet., 15, 30–34,1978.
    28. Matthew A. Lines1, Kathy Kozlowski1 et al. Molecular genetics of Axenfeld–Rieger malformations Human Molecular Genetics, 2002, Vol. 11, No. 10 1177–1184.
    29. Nishimura, D. Y.; Swiderski, R. E.; Alward, W. L. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19: 140-147, 1998.
    30. Larsson, C.; Hellqvist, M.; Pierrou, S.; et al. Chromosomal localization of six human forkhead genes, freac-1 (FKHL5), -3 (FKHL7), -4 (FKHL8), -5 (FKHL9), -6 (FKHL10), and -8 (FKHL12). Genomics 30: 464-469, 1995.
    31. Pierrou, S.; Hellqvist, M.; Samuelsson, L.; et al. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 13: 5002-5012, 1994.
    32. Nishimura, D. Y.; Searby, C. C.; Alward, W. L.; et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am. J. Hum. Genet. 68: 364-372, 2001.
    33. Mears, A. J.; Jordan, T.; Mirzayans, F.; et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 63: 1316-1328, 1998.
    34. Semina, E. V.; Reiter, R.; Leysens, N. J.; et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet. 14: 392-399, 1996.
    35. Gage, P. J.; Camper, S. A. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum. Molec. Genet. 6: 457-464, 1997.
    36. Kulak, S. C.; Kozlowski, K.; Semina, E. V.; et al. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum. Molec. Genet. 7: 1113-1117, 1998.
    37. Xia, K.; Wu, L.; Liu, X.; et al. Mutation in PITX2 is associated with ring dermoid of the cornea. J. Med. Genet. 41: e129, 2004.
    38. Flomen, R. H.; Vatcheva, R.; Gorman, P. A.; et al. Construction and analysis of a sequence-ready map in 4q25: Rieger syndrome can be caused by haploinsufficiency of RIEG, but also by chromosome breaks approximately 90 kb upstream of this gene. Genomics 47: 409-413, 1998.
    39. Sheffield, V. C.; Stone, E. M.; Alward, W. L. et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nature Genet. 4: 47-50, 1993. Tin Aung, Victor H. K. Yong, Paul T. K. Chew, et al. Molecular Analysis of the Myocilin Gene in Chinese Subjects with Chronic Primary-Angle Closure Glaucoma IOVS, April 2005, Vol. 46, No. 4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700