天基AMTI雷达信号处理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用天基预警雷达实现空中运动目标指示在军事上有重要的应用价值,相关信号处理方法已成为当今雷达界研究的热点。由于天基雷达(SBR)更大的波束照射区域带来严重的杂波和干扰;雷达平台绕轨高速运行带来严重的杂波谱扩展;受地球自转的影响产生时变的偏航角;雷达与目标间高速运动带来积累时间内大的距离走动,这些都使得传统基于机载预警雷达AMTI信号处理方法无法直接应用于天基雷达,使天基雷达空中运动目标指示信号处理面临许多挑战。因此开展天基AMTI雷达信号处理研究具有十分重要的意义。
     本文瞄准天基雷达AMTI这一前沿课题,对天基雷达信号模型和杂波仿真、空时自适应处理(STAP)杂波抑制、抑制杂波距离重叠的正交波形设计、高速弱目标能量积累检测等四个关键技术问题进行了研究。主要内容为:
     1.建立了天基雷达杂波和动目标信号模型,深入分析了天基雷达杂波的特性以及地球自转对天基雷达杂波的影响,建立了天基雷达地面杂波的空时二维模型。为评估空-时自适应处理算法应用于天基雷达的效果提供了杂波仿真数据,并且仿真了用于评估目标能量积累检测算法性的目标回波数据。这些为论文后续的研究奠定了基础。
     2.研究了STAP对SBR杂波的抑制性能及降维STAP算法,研究了地球自转和杂波模糊对STAP性能的影响和抑制方法。在降维STAP算法研究方面,重点研究了局域联合处理(JDL)技术在天基雷达杂波抑制上的应用,提出基于测量数据构成变换阵的改进JDL算法,并与基于DFT的经典JDL算法在天基雷达应用环境中进行了对比研究,得出改进的JDL算法杂波抑制性能优于经典的JDL算法的结论。
     3.研究了天基AMTI雷达波形的要求,确定了天基AMTI的波形需要具有解距离模糊和多普勒模糊的能力;为适应低速目标检测的需要,要具备抑制由于主瓣杂波距离向长度大于杂波距离模糊引起的杂波距离重叠的能力;为适应高速目标检测的需要,要具备较高的多普勒容忍性。提出了适合上述要求的正交波形作为发射波形解决方法,并对正交波形的形式作了分析。研究了基于模拟退火算法生成正交二相码和线性调频复合的正交信号组设计方法,仿真验证了复合正交信号组能抑制杂波距离重叠,且具有较大的多普勒容忍性。
     4.研究了天基AMTI雷达高速弱目标检测的能量积累条件,天基雷达位置高、波束照射面积大,能满足高速运动目标能量积累对波束照射时间的要求,但在功率孔径积受限的天基雷达应用环境下,积累时间内目标回波有较大的距离走动,积累增益低。提出基于Keystone和动态规划的混合积累检测方法。把积累时间分成若干相干积累时间,应用Keystone算法校正线性距离走动进行相干积累,得到初步检测结果;应用动态规划算法,确定目标的航迹,对同一目标航迹上各检测点做非相干积累,获得空中动目标指示虚警率要求的最终检测结果。通过混合积累检测方法,可以实现对低信噪比目标的检测。
Air Moving Target Indication (AMTI) using space-based early warning radar hasimportant significance in military applications. The related signal processing methodshave become a hot research area in the world. For space-based radar (SBR), seriousclutter and interference is induced because of large illumination region. High speedmoving of the radar platform along the orbit brings serious spectrum expansion. Anddue to the Earth's rotation, the crab angle is time variant. High radial velocity betweenradar and target gives rise to large range migration. All these make traditional AMTImethods which have been widely used for airborne early warning radar can not bedirectly applied to space-based radar (SBR). Many challenges have been encountered insignal processing for SBR’s AMTI. The research on the signal processing for SBR’sAMTI is therefore has great significance.
     Aiming at the frontier of this research topic on AMTI for SBR, this dissertationfocuses on four key techniques: the space-based radar signal modeling and cluttersimulation, clutter suppression using space-time adaptive processing (STAP),orthogonal waveform design for mitigation range folded clutter and integrationdetection of high-speed weak target. The main contents of the dissertation are asfollows.
     1. The models for the space-based radar clutter and the moving target signal areestablished. The characteristics of the clutter for SBR and the influence of earth'srotation are studied. Space-time clutter modeling of SBR is studied. The space-timeclutter simulation data are provided to evaluate the performance of the STAP algorithm.Target echo data are obtained to evaluate the performance of the integration detectionalgorithm. These establish the fundamental base for the following research.
     2. The STAP clutter suppression and reduced-dimension STAP algorithms for SBRare researched. The performance of the STAP algorithms in the influence of Earth'srotation and ambiguity is investigated. The reduced-dimension STAP based on JointDomain Localized (JDL) algorithm is researched for clutter suppression. A modifiedJDL algorithm based on transform matrix which is composed of measured data is proposed. It is comparably researched with DFT-JDL in SBR environment. Aconclusion that the JDL algorithm based on the transform matrix is better than theDFT-JDL algorithm in space-based radar environment is drawn.
     3. The requirements of the space-based AMTI radar waveform are researched. Ithas been confirmed that the waveform should has the abilities to mitigate the rangeambiguities and the Doppler ambiguities. In order to meet the requirements forlow-speed target detection, the waveform needs to mitigate the clutter range foldovercaused by the clutter range ambiguities and the greater radar observation’s region.Whereas for high-speed target detection, the waveform should be designed to have highDoppler tolerance for large Doppler. The mitigation mechanism of range folded clutterusing orthogonal waveform is studied. The form of the orthogonal waveform isanalyzed. The orthogonal waveform groups by combining chirp waveform withorthogonal binary code by simulated annealing are approached. Simulation results showthat the method has good clutter range folded mitigation performance and high Dopplertolerance.
     4. The conditions for power accumulation on high-speed weak target detection byspace-based AMTI radar are studied. The high location and the large beam irradiationarea of SBR can meet the condition of illumination time. But target’s echo will gothrough several range cells in the accumulation time, which makes SBR more difficultto obtain target’s power accumulated for high-speed weak target detection. A hybridintegration algorithm based on Keystone transform and dynamic programmingalgorithm is proposed. The detection time duration is divided into multiple coherentintervals (CPI). Coherent integration is processed based on Keystone transform withineach CPI. Some initial detection results are obtained. Dynamic programming algorithmis applied to determine the target trace. Non-coherent integration is processed along thesame target trace. Final detection results show the low false alarm ratio of the algorithm.Through the hybrid integration algorithm, the detection on low SNR targets can berealized.
引文
[1]J. C. Leopold.南京电子技术研究所译.星载雷达手册.北京:电子工业出版社,2005.
    [2]丛力田.世界天基雷达技术发展概况.北京:国防工业出版社,2007
    [3]P. A. Rosen, M. E. Davis. A joint space-borne radar technology demonstration mission for NASAand the Air Force.2003IEEE Aerospace Conference,2003:437-444
    [4]M. E. Davis, B. Himed, D. Zasada. Design of large space based radar for multimode surveillance.2003IEEE International Radar Conference, Huntsville, AL,2003:1-6
    [5]M. E. Davis. L-band SBR moving target detection in SAR-GMTI modes.2004IEEE AerospaceConference Proceedings,2004:2211-2219
    [6]M. E. Davis. Space based radar moving target detection challenges.2002IEE ConferencePublication,2002:2921-2924
    [7]M. E. Davis. Space based radar technology challenges.2005IEEE Aerospace Conference,2005:1-8
    [8]M. E. Davis. Future space based radar technology needs for surveillance.2003AIAA/ICASInternational Air and Space Symposium and Exposition,2003:1-9
    [9]D. A. Whelan. Discoverer II program summary.2000IEEE International Radar Conference,2000:7-8
    [10]贲德,林幼权.天基监视雷达.现代雷达,2005,27(4):1-4
    [11]王文生,王小谟.天基雷达的几个基本问题.现代雷达,2007,29(4):1-4
    [12]谢恺,林两魁,安玮,等.天基雷达系统概念分析.现代雷达,2006,28(9):1-4
    [13]于泽,周荫清,陈杰,等.天基雷达预警系统星座设计方法.宇航学报,2006,27(1):103-107
    [14]Hua Li, Jun Tang, Yingning Peng. A new method to improve MDV in bistatic SBR.2006CIE International Conference on Radar, Shanghai,2006:1-4
    [15]陆必应,梁甸农.角度模糊对天基稀疏孔径GMTI雷达的影响与抑制方法.电子学报,2007,35(3):501-505
    [16]P. D. Beaaulne, C. H. Gierull, C. E. Livinstone. Preliminary design of a SAR-GMTI proeessingsystem for RADARSAT-2MODEX data.2003IEEE International Radar Conference,Huntsville, AL,2003:1019-1021
    [17]J. W. Garnham, M. T. Tuley. Space based radar technology trade analysis.1997IEEEInternational Radar Conference, Huntsville, AL,1997:127-144
    [18]S. A. Hovanessian, L. B. Jocic, J. M. Lopez. Spaceborne radar design equations and concepts.IEEE Transactions on Aerospace and Electronic Systems,1997,18(3):286-296
    [19]R. Croci, A. Delfino, F. Marchetti. Space based radar technology evolution.2009EuropeanRadar Conference,2009:601-604
    [20]E. Peter. Recent progress in space-borne radar technology and inversion techniques for radarmeasurements.2008IEEE Radar Conference,2008:121-122
    [21]J. Maher, M. E. Davis, R. J. Hancock, et al. High fidelity modeling of space-based radar. IEEE2003Radar Conference,2003:185-191
    [22]S. U. Pillai, B. Himed, K. Y. Li. Modeling of Earth's rotation for space based radar.2004IEEEInternational Radar Conference,2004:1682-1686
    [23]S. U. Pillai, B. Himed, K. Y. Li. Modeling Earth's rotation for space based radar.2004AsilomarConference on Signals, Systems, and Computer,2004:1682–1686
    [24]K. Y. Li, S. Mangiat, P. Zulch. Clutter impacts on space based radar GMTI: A Global Perspective.2007IEEE Aerospace Conference,2007:1-15
    [25]J. Maher, M. Callahan, D. Lynch. Effects of clutter modeling in evaluating STAP processing forspace-based radars.2000IEEE International Radar Conference,2000:565-570
    [26]S. U. Pillai, B. Himed, K. Y. Li. Effect of earth’s rotation and range foldover on space-basedradar performance. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):917-932
    [27]Yong Wu, Jun Tang, Yingning Peng. Effects of Earth rotion on clutter spectrum for space-basedradar.2005IEEE Antennas and Propaqation Society International Symposium,2005:233-236
    [28]P. Zulch, M. Davis, L. Adzima, et al. The Earth rotation effect on a LEO L-band GMTI SBR andmitigation strategies.2004IEEE International Radar Conference, Philadelphia, PA, Apr.2004:27-32
    [29]王志刚,施志佳.远程火箭与卫星轨道力学基础.西安:西北工业大学出版社
    [30]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2001
    [31]林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984
    [32]L. E. Brennan, J. D. Mallett, I. S. Reed. Theory of adaptive radar. IEEE Transactions onAerospace and Electronic Systems.1973,9(2):237-251
    [33]R. K. Raney. A new and fundamental Fourier transform pair.1992International Geoscience andRemote Sensing Symposium,1992:106-107
    [34]R. Klemm. Principles of space-time adaptive processing(3rd Edition). IEE Press, London,2006
    [35]D. A. Shnidman. Comparison of low angle radar clutter models. IEEE Transactions onAerospace and Electronic Systems,2008,41(2):736-746,
    [36]H. K. Schuman, P. G. Li, W. Szczepanski, et al. Space-time adaptive processing for space basedradar.2004IEEE Aerospace Conference Proceedings,2004:1904-1910.
    [37]R. Klemm. Adaptive clutter suppression for airborne phased array radars. IEE Proc. F and H,1983,130(1):125-132.
    [38]R. Klemm. Introduction to space-time adaptive processing.Electronics&CommunicationEngineering Journal,1999:5-12
    [39]D. Madurasinghe, P. E. Berry. Pre-Doppler direct data domain approach to STAP. SignalProcessing,2005,85(10):1907-1920.
    [40]Hong Wang, Lujing Cai. On adaptive spatial-temporal processing for airborne surveillance radarsystems. IEEE Trans on Aerospace and Electronic Systems,1994,30(3):660-670.
    [41]J. R. Guerci. Space-time adaptive processing for radar, Artech House, Boston,2003
    [42]J. Ward. Space-time adaptive processing for airborne radar.1995IEEE International RadarConference,1995:2089-2812
    [43]汪学刚.机载预警雷达中的空时二维信号处理:[博士学位论文].西安:西安电子科技大学,1992
    [44]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000
    [45]王永良,保铮,彭应宁,等.空时二维自适应处理的统一理论、模型与局域处理方法.电子学报,1996,24(9):73-78
    [46]Wang Yongliang, Peng Yingning. Configurations and performance analysis of space-timeadaptive signal processor for airborne radar.1997IEEE National Radar Conference, Syracuse,New York, USA, May1997:343-347.
    [47]廖桂生,保铮.机载雷达时空二维部分自适应信号处理.电子科学学刊,1993,15(6):575-580
    [48]W. L. Melvin. A STAP overview. IEEE Aerospace and Electronic Systems Magazine,2004,19(1):19-35
    [49]T. J. Nohara. Comparison of DPCA and STAP for space-based radar.1995IEEE InternationalRadar Conference,1995:113-119
    [50]T. J. Nohara. Design of a space-based radar signal processor. IEEE Transactions on Aerospaceand Electronic Systems,1998,34(2):366-377
    [51]T. J. Nohara, P. Weber. Space-based radar signal processing baselines for air, land and seaapplications. Electronics&Communication Engineering Journal,2000,12(5):229-239.
    [52]H. S. C. Wang. Mainlobe clutter cancellation by DPCA for space-based radars.1991IEEEAerospace Applications Conference,1991:1-13
    [53]段锐.机载双基地雷达杂波仿真与抑制技术研究:[博士学位论文].成都:电子科技大学,2009
    [54]W. Wang, S. H. Li, S. Y. Mao. Modified joint domain localized reduced-rank STAP.2001CIE International Conference,2001:773-777
    [55]R. A. Delap. Recent and current air force space based radar efforts.1999IEEE AerospaceConference Proceedings,1999:185-194
    [56]S. M. Kogon, D. J. Rabideau, R. M. Barnes. Clutter mitigation techniques for space-based radar.1999IEEE Acoustics, Speech, and Signal Processing International Conference,1999:2323-2326.
    [57]P. J.Wright, M. Wells. STAP for airborne target detection using a space-based phased-array radar.Electronics&Communication Engineering Journal,1999,11(1):23-27
    [58]杨凤凤,王敏,梁甸农.长相关积累STAP处理的星载SAR-GMTI.现代雷达,2008,30(2):71-75
    [59]郁文贤,张增辉,胡卫东.基于频率非均匀采样杂波谱配准的天基雷达STAP方法.电子与信息学报,2009,31(2):258-262
    [60]唐斌.机载雷达Krylov子空间STAP算法研究:[博士学位论文].成都:电子科技大学,2008
    [61]张增辉.天基雷达空时自适应杂波抑制技术:[博士学位论文].长沙:国防科学技术大学,2008
    [62]E. Aboutanios, B. Mulgrew. A STAP algorithm for radar target detection in heterogeneousenvironments.2005IEEE/SP13th Workshop on Statistical Signal Processing,2005:966-971.
    [63]K. Gerlach, M. L. Picciolo. Airborne/spacebased radar STAP using a structured covariancematrix. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):269-281
    [64]C. D. Peckham, A. M. Haimovich, T. F. Ayoub, et al. Reduced-rank STAP performance analysis.IEEE Transaction on Aerospace and Electronic Systems,2000,36(2):664-676
    [65]B. Friedlander. A subspace method for space time adaptive processing. IEEE Transactions onSignal Processing,2005,53(1):74-82
    [66]Z. H. Yang, G. Liao, C. Zeng. Reduced-dimensional processing for ground moving targetdetection in distributed space-Based radar. IEEE Geoscience and Remote Sensing Letters,2007,4(2):256-259
    [67]W. Melvin, M. Wicks, P. Antonik, et al Knowledge-based space-time adaptive processing forairborne early warning radar. IEEE Aerospace and Electronic Systems Magazine,1998,13(4):37-42
    [68]D. A. Page, B. Himed, M. E. Davis. Higher order clutter mitigation in bistatic space-based radarsystems using a knowledge-aided STAP approach.2006IEEE International Radar Conference,2006:459-464.
    [69]C. T. Capraro, G. T. Capraro, I. Bradaric, et al. Implementing digital terrain data inknowledge-aided space-time adaptive processing. IEEE Transactions on Aerospace andElectronic Systems,2006,42:1080-1099.
    [70]R. L. Fante. Ground and airborne target detection with bistatic adaptive space-based radar.1999IEEE Radar Conference,1999:39-44
    [71]N. A. Goodman. SAR and MTI processing of sparse satellite clusters [Ph.D. dissertation].University of Kansas, Lawrence,2002
    [72]J. C. Leopold. Performance comparison of PRF schedules for medium PRF radar. IEEETransactions on Aerospace and Electronic Systems,2006,18(3):286-296
    [73]S. A. Hovanessian. Medium PRF performance analysis. IEEE Transactions on Aerospace andElectronic Systems,1982,18(3):286-296
    [74]张琳,穆贺强.一部中重测量雷达PRF的设计.系统工程与电子技术,2008,30(6):1191-1194.
    [75]E. J. Hughes, C. M. Alabaster. Medium PRF radar PRF optimisation using evolutionaryalgorithms.2003IEEE International Radar Conference, Huntsville, AL,2003:192-197
    [76]C. M. Alabaster, E. J. Hughes, J. H. Matthew. Medium PRF radar PRF selection usingevolutionary algorithms. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):990-1001
    [77]Lin Tang, Zhongxian Chen. The frequency selection consideration for the low orbit space basedradar,2007IEEE Radar Conference,2007:212-217
    [78]K. T. Wong. Adaptive pulse-diverse radar/sonar waveform design.1998IEEE InternationalRadar Conference,1998:105-110
    [79]S. U. Pillai, B. Himed, K. Y. Li.Orthogonal pulsing schemes for improved target detection inspace based radar.2005IEEE Aerospace Conference,2005:1-10
    [80]Yue Yansheng, Long Teng. An ultra-wide band orthogonal digital signal generator.2000International Conference on Signal Processing Proceedings2000,3:2086-2090
    [81]J. M. Anderson, M. A. Temple, M. E. Oxley. Nonlinear suppression of range ambiguities inpulse-diverse radar. Electronics Letters,2001,37(20):1252–1253
    [82]P. A. Zulch, R. H. Hancock, W. Moran, et al. Transmit waveform diversity for space based radar.2006IEEE International Radar Conference,2006:113-118
    [83]陆必应.天基GMTI与解模糊方法研究:[博士学位论文].长沙:国防科学技术大学,2006
    [84]M. A. Richards. Fundamentals of radar signal processing. McGraw-Hill, New York,2005
    [85]R. M. Davis, R. L. Fante, R. P. Pe. Phase-coded waveforms for radar. IEEE Transactions onAerospace and Electronic Systems,2007,43(1):401-408
    [86]H. Deng. Synthesis of binary sequences with good autocorrelation and crosscorrelation bysimulated annealing. IEEE Transactions on Aerospace and Electronic Systems,1997,32(1):98–107
    [87]V. C. Vannicola, T. B. Hale, M. C. Wicks, et al. Ambiguity function analysis for the chirp diversewaveform (CDW).2001IEEE International Radar Conference,2001:666-671
    [88]位寅生,许诺,侯颖辉.星载雷达弱目标长时间积累算法研究.系统工程与电子技术,2007,29(10):1638-1642
    [89]王俊.微弱目标信号积累检测的方法研究:[博士学位论文].西安:西安电子科技大学,1999
    [90]王俊,张守宏.微弱目标积累检测的包络移动补偿方法.电子学报,2000,28(12):74-77
    [91]Y. Sun, P. Willett, Hough transform for long chirp detection. IEEE Transactions on Aerospaceand Electronic Systems,2002,38(2):553-569
    [92]J. K. Zeng, Z. S. He, H. M. Liu, Modified hough transform for searching radar detection, IEEEGeoscience and Remote Sensing Letters,2008,5(4):683-686
    [93]Li Mo, Siliang Wu, Hai Li. Radar detection of range migrated weak target through longtermintegration. Chinese Journal of Electronics,2003,12(4):539-544.
    [94]R. P. Perry, R. C. Dipietro, R. L. Fante. SAR imaging of moving target. IEEE Trans onAerospace and Electronic Systems,1999,35(1):188-200
    [95]R. P. Perry, R. C. Dipietro, R. L. Fante. Coherent integration with range migration usingkeystone formatting.2007IEEE Radar Conference,2007:863-868
    [96]Daiyin Zhu, Yong Li, Zhaoda Zhu. Keystone transform without interpolation for SAR groundmoving-target imaging. IEEE Geoscience and Remote Sensing Letters,2007,4(1):18-22
    [97]Yang Li, Tao Zeng, Teng Long. Range migration compensation and doppler ambiguityresolution by keystone transform.2006CIE International Conference on Radar, Shanghai,2006:1-4
    [98]S. J. Yuan, T. Wu, M. Mao, et al. Application research of keystone transform in weak high-speedtarget detection in low-PRF narrowband chirp radar.2008International Conference on SignalProcessing,2008:2452-2456.
    [99]张顺生,张伟.低信噪比下基于Keystone变换的多目标检测.电子科技大学学报,2008,37:23-26
    [100]张顺生,曾涛.基于keystone变换的微弱目标检测.电子学报,2005,33(9):1675-1678
    [101] M. I. Skolnik, Radar Handbook (Third Edition). New York: McGraw-Hill,2008
    [102] J. S. Herd, A. J. Fenn. Design Considerations for space-based radar phased arrays.2005IEEE MTT-S International Microwave Symposium,2005:1631-1634
    [103] J. H. G Ender, C. H Gierull, D. Cerutti-Maori. Improved space-based moving target indicationvia Alternate Transmission and Receiver Switching. IEEE Transactions on Geoscience andRemote Sensing,2008,44(12):3960-3974
    [104] J. W. Garnham. Application of digital beamforming for look-down,clutter limited, MTI radarwith specific application to space based radar.1998IEEE Aerospace Conference,1998:349-357
    [105] P. Swerling. Probability of detection for fluctuating target. Trans. IRE Prof. Group onInformation Theory.1960. IT-6(3):269-308
    [106] M. A. Fischman, C. Le, P. A. Rosen. A digital beamforming processor for the joint DoD/NASAspace based radar mission.2004IEEE International Radar Conference,2004:9-14
    [107] J. Su, M. Xing, G. Wang, et al. High-speed multi-target detection with narrowband. IET Radar,Sonar&Navigation,2010,4(4):595-603
    [108]赵建宏,杨建宇,熊金涛,等.回波越距离单元走动的MTD研究.电波科学学报,2007,22(3):481–485
    [109]李刚,许稼,彭应宁,等.基于混合积累的SAR微弱运动目标检测.电子学报,2007,35(3):576-579
    [110] J. Arnold, S. W. Shaw, H. Pasternack. Efficient target tracking using dynamic programming.IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):44-56
    [111]宋慧波,高梅国,田黎育,等.一种基于动态规划法的雷达微弱多目标检测方法.电子学报,2006,34(12):2142-2145
    [112] R. G. White, A. Beaney. An analytical approach to system optimisation for space based AMTIsystems.2002IEEE International Radar Conference, Edinburgh, Scotland, October2002:270-274
    [113] J. S. Herd, A. J. Fenn. Design considerations for space-Based radar phased arrays.2005IEEE MTT-S International Microwave Symposium,2005:1631-1634
    [114] V. Amuso, P. Antonik, R. A. Schneible, et al. Evolutionary computation approach tomulti-mission waveform design.2002IEEE International Radar Conference,2002:454-458
    [115] G. M. Herbert. Clutter modelling for space-time adaptive processing in airborne radar.IET Radar, Sonar&Navigation,2010,4(2):178-186
    [116] R. L.米切尔,孙训达译.雷达系统模拟.北京:科学出版社,1982
    [117] F. K. Li, W. T. K. Johnson. Ambiguities in spaceborne synthetic aperture radar. IEEETransactions on Aerospace and Electronic Systems,1983,19(3):389-397.
    [118]文春艳.天基雷达的杂波建模与仿真:[硕士学位论文].成都:电子科技大学,2009.
    [119] T. Thayaparan, S. Kennedy, Detection of a manoeuvring air target in sea-clutter using jointtime-frequency analysis techniques. IEE Proceedings Radar, Sonar and Navigation,2004,151(1):19-30,
    [120] J. J. Chen, J. Chen, S. L. Wang, Detection of ultra-high speed moving target based on matchedFourier transform.2006CIE International Conference on Radar,2006:1-4
    [121] J. K. Zeng, Z. S. He, H. M. Liu, Improvement of target detection methods by multiwayfiltering. IEEE Transactions on Geoscience and Remote Sensing,2008,46(8):2407-2417
    [122] J. Li, H. Liu, Z. He. A practical method for range migration compensation in chirp radar.Progress In Electromagnetics Research,2009,7:15-28
    [123] John W. Garnham, Michael T. Tuley. Space based radar technology trade analysis.1997IEEEInternational Radar Conference, Huntsville, AL,1997:127-144
    [124] H. G. Joachim, H. G. Christoph, C.M. Delphine. Improved space-based moving targetindication via alternate transmission and receiver switching, IEEE Transactions on Geoscienceand Remote Sensing,2008,44(12):3960-3974
    [125] H. D. Grifflths, P. Mancini, Ambiguity suppression in sars using adaptive array techniques.1991Geoscience and Remote Sensing Symposium,1991:1015-1018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700