贝塞尔光束传播与散射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝塞尔光束的横向光强分布表现为一个中心光斑和一系列同心圆环。在物理上可以实现的贝塞尔光束,其无衍射传播范围是有限的。在贝塞尔光束的无衍射范围内,贝塞尔光束保持横向光强分布,即使在遇到不透明障碍物后也可以恢复到原来的横向光强分布。贝塞尔光束独特的光强分布和传播性质使其得到了广泛应用,例如光学成像,微细加工,光学互联和校直,粒子操控,微缩平板印刷,非线性光学等。研究贝塞尔光束的传播性质对于贝塞尔光束的应用是有着十分重要的意义。
     论文研究了超高斯贝塞尔(SGB)光束在湍流大气中的传播性质。基于广义惠更斯-菲涅耳原理,推导出了SGB光束在湍流大气中的光场分布,并对SGB光束的轴上和横截面上的光强分布进行了数值模拟。同SGB光束在真空中的光场分布对比说明:大气湍流的影响改变了SGB光束无衍射传播的距离,但是有的SGB光束在一定程度上仍然可以保持其中心光斑恒定的大小和强度,在湍流大气中可以较小的受到大气湍流的影响。在无线激光通信中,如果用SGB光束代替高斯光束,那么有利于提高光能的利用率,简化光学信号接收系统的结构。
     基于广义洛仑兹米氏理论,论文研究了非偏振贝塞尔光束的球散射性质。应用球面矢量波函数展开法,求得了非偏振理想贝塞尔光束球散射场的解析解,然后求得了无量纲散射函数,散射截面和消光截面。该无量纲散射函数适用于任意大小和折射率的球散射体在光束中任意位置的情况。对无量纲散射函数的数值模拟表明:对于轴上的球散射体,散射场的分布取决于球散射体大小跟光束中心光斑大小的比值;对于较大的球散射体,在贝塞尔光束圆锥角或者附近方向上存在散射极点,这种现象可以用光的量子理论给出较好的解释;对于离轴的球散射体,散射极点分布在由球散射体中心和光轴决定的平面内。
     同样的,基于广义洛仑兹米氏理论,应用傅立叶变换,平面波谱展开法、球面矢量波函数展开法,研究了非偏振贝塞尔高斯光束球散射场。非偏振理想贝塞尔高斯光束的球散射远场跟非偏振贝塞尔光束的球散射远场对比说明:对于离轴的球散射体,光束宽主要改变散射极点的相对大小,但是对于散射极点所在的方向基本没有影响。对散射近场的实验结果和数值模拟相一致证实,关于理想非偏振贝塞尔光束球散射场的推导是正确的。对粒子散射性质的研究有助于了解新的物理现象,设计新的粒子诊断系统。对于贝塞尔光束球散射性质的研究,有望将贝塞尔光束引入到微粒测量技术中。
The transverse intensity distribution of Bessel beams consist ofa central bright spot surrounded by a series of concentric rings. TheBessel beams that can be realized physically have finitenondiffractign propagation range. In the nondiffracting propagationrange, the Bessel beams keep their transverse intensity profileunchanged in their nondiffracting propagation range and canreconstruct their initial transverse intensity profile duringpropagation even disturbed by nontransparent obstacles. Thepropagation properties and the intensity profile characteristics ofthe Bessel beams make them useful in many optical applications suchas optical imaging, microfabrication, optical interconnection andalignment, particle manipulation, microlithography, nonlinearoptics. It is of interest to investigate further the propagationproperties of the Bessel beams for their applications.
     The propagation property of Super-Gaussian Bessel (SGB) beams inturbulent atmosphere is investigated. Based on the generalHuygens-Fresnel principle, the optical field distribution of SGB beamsin turbulent atmosphere is derived. The optical intensity on the axisand that on the cross section are numerically simulated. The comparisonwith the optical field distribution of SGB beams in vacuum show thatthe nondiffracting propagation distance of SGB beams is changed. Butsome SGB beams can still maintain their central spots with constantsize and intensity to some extent, being less disturbed whenpropagating in the atmosphere. In wireless laser communication, if wesubstitute SGB beams for Gauss beams, it is of actual significance toimprove the utilization ratio of light energy and simplify thestructure of the optical signal receiving system.
     Based on the Generalized Lorenz-Mie Theory (GLMT), the scatteringproperty of unpolarized Bessel beams by a sphere is investigated. Theanalytical scattering field solutions of ideal unpolarized Bessel beams by a sphere are derived by means of the spherical vector wavefunctions expansion, after which the dimensionless scatteringfunction as well as the scattering cross section and extinction crosssection is obtained. The dimensionless scattering function isapplicable to spherical scatterers of any size and refractive indexat any position in unpolarized Bessel beams. Numerical simulation ofthe dimensionless scattering function shows that for the on-axisspherical scatterers, the scattering profiles depend on the ratiobetween the size of the spherical scatterers and the central spot sizeof the Bessel beam;for the larger spherical scatterers, the scatteringextreme points exist in the direction or the neighboring direction ofthe conical angle of the Bessel beam, which can be explained betterby the quantum theory of light;for off-axis scatterers, the scatteringextreme points lie in the plane determined by the spherical scatterercenter and the beam axis.
     Similarly, Based on GLMT,by means of Fourier transform, planewaves spectrum expansion and the spherical vector wave functionsexpansion, the scattered field of unpolarized Bessel-Gauss beams isalso investigated. Comparison of the scattering far field with thatof the ideal unpolarized Bessel beams show that the finite beam widthchanges the relative intensity of the scattering extreme points, butalmost has no effects of the directions that the scattering extremepoints exist in for the off-axis spherical scatterers. Theexperimental result is in accordance with that of the numericalsimulation about the scattering near field, which proves thederivation correct about the scattering field of unpolarized Besselbeams by a sphere. The studies of the particle scattering property helpin understanding new physical phenomena or in designing new particlediagnostics systems. The scattering property investigation of Besselbeams make it promising to apply Bessel beams to Particle MeasurementTechnology.
引文
[1] J.Durnin,Exact solutions for non-diffracting beams. I. The scalartheory, J. Opt. Soc. Am. A.,1987,4(4):651-654.
    [2] J.C.Gutierrez-Vega,M.D.Iturbe-Castillo,S.Chavez-Cerda,Alternative formulation for invariant optical fields: Mathieu beams,Opt.Lett.,2000,25(20):1493-1495.
    [3] Georgios A. Siviloglou,Demetrios N. Christodoulides,Accelerating fnite energy Airy beams,Opt.Lett.,2007,32(8):979-981.
    [4] B.Hafizi,P.Sprangle,Diffraction effects in directed radiationbeams,J.Opt.Soc.Am.A,1991,8(5):705-716.
    [5] P.Sprangle, B.Hafizi, Comment on nondiffracting beams, Phys.Rev. Lett.,1991,66(6):837.
    [6] Philip L.Marston, Scattering of a Bessel beam by a sphere,J.Acoust.Soc.Am.,2007,121(2):753-758.
    [7] Y.Lin, W.Seka,J.H.Eberly,et al, Experimental investigation ofBessel beam characteristics,Appl.Opt.,1992,31(15):2708-2713.
    [8] J. Durnin,J. J. Miceli,Jr.,J. H. Eberly,Diffraction-free beams,Phys. Rev.,Lett.1987,58(15):1499-1501.
    [9] S. Chavez-Cerda,G. S. McDonald,and G. H. C. New,Nondiffractingbeams: travelling, standing, rotating and spiral waves, Opt.Commun.,1996,123(1-3):225-233.
    [10]印建平,刘南春,夏勇等,空心光束的产生及其在现代光学中的应用,物理学进展,2004,24(3):336-380.
    [11] A. J. Cox, J. D’Anna, Constant-axial-intensity nondiffractingbeam, Opt. Lett.,1992,17(4):232-234.
    [12] Zhiping Jinag, Qisheng Lu, Zejin Liu, Propagation of aperturedBessel beams, Appl.Opt.,1995,34(31),7183-7185.
    [13] R. Borghi, M. Santarsiero, F. Gori,Axial intensity of aperturedBessel beams,J. Opt. Soc. Am. A,1997,14(1):23-26.
    [14] R.P.MacDonald, S.A.Boothroyd,T.Okamoto, et al, Interboardoptical data distribution by Bessel beam shadowing, Opt.Commun.,1996,122(4-6):169~177.
    [15] Z. Bouchal, J. Wagner, M. Chlup, Self-reconstruction of adistorted nondiffracting beam, Opt.Commun.,1998,151(4-6):207-211.
    [16] F.O.Fahrbach, P.Simon,A.Rohrbach, Microscopy withself-reconstructing beams, nature photon.,2010,204:1-6.
    [17] R.M.Herman,T.A.Wiggins,Production and uses of diffractionslessbeams,J.Opt.Am.A,1991,8(6):932-942.
    [18] Milne Graham, Jeffries Gavin D. M., Chiu, Daniel T., Tunablegeneration of Bessel beams with a fluidic axicon, Appl.Phys.Lett.,2008,92(26):261101.
    [19] J.Durnin,J.J.Miceli.,J.H.Eberly, Diffraction-free beam,Phys.Rev.Lett.,1987,58(15):1499-1501.
    [20] J.H.Mcleod, The axicon:a new type of optical element,J.Opt.Soc.Am,1954,44(8):592-597.
    [21] G.Scott,N.McArdle, Efficient generation of a nearly diffractionfree beam using an axicon, Opt.Eng.1992,31(12):2640-2643.
    [22] Thierry Grosjean, Said Sadat Saleh,Miguel Angel Suarez,et al,Fiber microaxicons fabricated by a polishing technique for thegeneration of Bessel-like beams, Appl.Opt.,2007,46(33):8061-8067.
    [23] Rogel-Salazar J, New GHC, Chavez-Cerda S, Bessel-Gauss beamoptical resonator, Opt.Commun.,2001,190(1-6):117-122.
    [24] Pertti Paakkonen,Jari Turunen, Resonators with Bessel-Gaussmodes, Opt.Commun.,1998,156(4-6):359-366.
    [25] A.N.Khilo, E.G.Katranji,A.A.Ryzhevich, Axicon-based Besselresonator:analytical description and experiment, J.Opt.Soc.A,2001,18(8):1986-1992.
    [26] S Yu Popov, A T Friberg, Apodization of generalized axicons toproduce uniform axial line images,Pure Appl.Opt.,1998,7:537-548.
    [27] R.M.Herman,T.A.Wiggins, High-efficiency diffractionless beamsof constant size and intensity, Appl.Opt.,1994,33(31):7297-7306.
    [28] Tadashi Aruga,Generation of long-range nondiffracting narrowlight beams, Appl.Opt.,1997,36(16):3762-3768.
    [29]蒋志平,陆启生,刘泽金等,贝塞尔光束的应用,光学技术,1997,1:1-9.
    [30] M.KOHNO,Y.MATSUOKA,Microfabrication and drilling usingdiffraction-free pulsed laser beam generated with axicon lens,JSMEInternational Journal Series B,2004,47(3):497-500.
    [31]蒋志平,陆启生,刘泽金,贝塞尔光束与激光打孔,光学技术,1996,1:32-38.
    [32] Y.MATSUOKA,Y.KIZUKA,T.INOUE,The characteristics of laser microdrilling using a Bessel beam, Appl.Phys.A,2006,84(4):423-430.
    [33] R.P.MacDonald,J.Chrostowski,S.A.Boothroyd,et al,Holographicformation of a diode laser nondiffracting beam, Appl. Opt.1993,32(32):6470-6474.
    [34] R.P.MacDonald,S.A.Boothroyd,T.Okamoto etal.,Interboard opticaldata distribution by Bessel beam shadowing. Opt. Commun,1996,122(5):169-177.
    [35] J.Wagner,Z.Bouchal,Experimental realization ofself-reconstruction of the2D aperiodic objects, Opt.Commun.,2000,176(4-6):309-311.
    [36] M.O.Scully,M.S.Zubair,Simple laser accelerator: Optics andparticle dynamics, Phys.Rev.A,1990,44(4):2656-2663.
    [37] B.Hafizi,A.K.Ganguly,A.Ting,etal,Analysis of Gaussian beamand Bessel beam driven laser accelerators,Phys.Rev.E,1999,60(4):4779-4792.
    [38] Dazhi Li,Kazuo IMASAKI, Laser-Bessel-Beam-Driven ElectronAcceleration, Jpn. J.Appl.Phys.,2005,44(8):6079-6083.
    [39] R.M.Herman,T.A.Wiggins,Production and uses of diffractionlessbeams,J.Opt.Soc.Am.A,1991,8(6):932-942.
    [40] T.Wulle,S.Herminghaus, Nonlinear optics of Bessel beams, Phys.Rev. Lett.,1993,70(10):1401-1404.
    [41] J.Arlt,K.Dholakia,L.Allen,et al,Efficiency of second-harmonicgeneration with Bessel beams,Phys.Rev.A,1999,60(3):2438-2441.
    [42] V.N.Belyi,N.S.Kazak,N.A.Khilo,Characteristics of parametricfrequency conversion making use of Bessel light beams,QuantumElectronics,1998,28(6):522-525.
    [43] A.P.Piskarskas,V.Smilgevicius,A.P.Stabinis,Optical parametricoscillator pumped by a Bessel beam, Appl.Opt.1997,36(30):7779-7782.
    [44] D.J.Binksand,T.A.King,Practical Bessel beam pumping ofperiodically poled optical parametric oscillators,J.Mod.Opt.,2001,48(9):1433-1445.
    [45] S. Klewitz,P.Leiderer,S.Herminghaus,et al,Tunable stimulatedRaman scattering by pumping with Bessel beams,Opt.Lett.,1996,21(4):248-249.
    [46] L. Niggl and Max Maier,Efficient conical emission of stimulatedRaman Stokes light generated by a Bessel pump beam, Opt.Lett.,1997,22(12):910-912.
    [47] D. J.Biswas,J.P.Nilaya,M.B.Danailov, Enhancement ofphoto-refractive two-wave mixing gain with a Bessel pump beam,Opt.Commun.,2003,226(1-6):387-391.
    [48] Surya P.Tewari,H.Huang,R.W.Boyd,Theory of third-harmonicgeneration using Besselbeams and self-phase-matching, Phys.Rev.,1996,54(3):2314-2325.
    [49] V.E.Peet,R.V.Tsubin, Third-harmonic generation and multiphotonionization in Bessel beams,Phys.Rev.A,1997,56(2):1613-1620.
    [50] V.E.Peet,S.V.Shchemeljov,Spectral and spatial characteristicsof third-harmonic generation in conical light beams, Phys.Rev.A,2003,67(1):013801.
    [51] A.Ashkin,J.M.Dziedzic, J.E.Bjorkholm,et al,Observation of asingle-beam gradient force optical trap for dielectric particles,Opt.Lett.,1986,11(5):288-290.
    [52] J.Arlt,V.G.Chavez,W.Sibbett,etc.,Optical micro-manipulationusing a Bessel light beam, Opt. Commun.,2001,197(4-6):239-245.
    [53] V.Garces-Chavez,D.McGloin,H.Melville,et al.,Simultaneousmicromanipulation in multiple planes using a self-reconstructinglight beam,Nature,2002,419:145-147.
    [54] L.I.McCann,M.Dykman,B.Golding,Thermally activated transitionsin a bistable three-dimensional optical trap,Nature,1999,402:785-787.
    [55] S.A.Tatarkova, W.Sibbett,K.Dholakia, Brownian particle in anoptical potential of the washboard type, Phys.Rev.Lett.,2003,91(1):038101.
    [56] Graham Milne,Kishan Dholakia,David McGloin,et al, Transverseparticle dynamics in a Bessel beam, Opt. Express,2007,15(21):13972-13987.
    [57] J. Arlt, K. Dholakia, J. Soneson,et al, Optical dipole trapsand atomic waveguides based on Bessel light beams,Phys.Rev.A,2001,63(6):063602.
    [58] M Zamboni-Rached, Stationary optical wave felds with arbitrarylongitudinal shape by superposing equal-frequency Bessel beams:Frozen Waves, Opt.Exp.,2004,12(17):4001-4006.
    [59] C.A.Dartora,K.Z.Nobrega,Alexandre Dartora,et al,Study of FrozenWaves’theory through a continuous superposition of Bessel beams,Optics&Laser Technology,2007,39(7):1370-1373.
    [60] J.Arlt,M.J.Padgett, Generation of a beam with a dark focussurrounded by regions of higher intensity: the optical bottle beam,Opt.Lett.,2000,25(4):191-192.
    [61] B.P.S.Ahluwalia,X-C.Yuan,S.H.Tao, Generation of self-imagedoptical bottle beams,Opt.Commun.,2004,238(1-3):177-184.
    [62] M.D.Wei,W.L.Shiao,Y.T.Lin, Adjustable generation of bottle andhollow beams using an axicon,Opt.Commun.,2005,248:7-14.
    [63]吴健,一种新的光束概念—无衍射光束,强激光与粒子束,1992,4(1):148-152.
    [64]吕百达,对无衍射光束和相关概念的评注,应用激光,1994,14(6):273-280.
    [65]邓锡铭,郭弘,王刚,无衍射发散光束的判据,应用激光,1994,14(3):97-98.
    [66]谢兴龙,陈绍和,邓锡铭,关于衍射与无衍射光束,中国激光,1999,A26(1):65-69.
    [67]吴逢铁,刘彬,卢文和等,离轴障碍物Bessel光束的重建,光电子.激光,2009,20(3):414-417.
    [68]周静,施文敏,徐大雄等,无衍射光束及二元旋转棱镜器件的设计,1994, A21(9):745-749.
    [69]蔡邦维,吕百达,张彬等,旋转棱镜对激光束的变换特性,中国激光,1994,21(1):21-25.
    [70]赵斌,李柱,倾斜axicon透镜的衍射特性,华中理工大学学报,1997,25(4):4-6.
    [71]王海涛,殷纯永,王东生,100米无衍射光束的实现,光学技术,1999,3:32-37.
    [72]周丽萍,赵斌,李柱,圆锥透镜加工误差对光束传输变换的影响,华中科技大学学报,2001,29(3):61-63.
    [73]张青,赵斌,范光照等,无衍射光在直线度误差测量系统中的应用,华中理工大学学报,1997,25(4):1-3.
    [74]周丽萍,赵斌,李柱,无衍射光束在激光三角测量系统中的应用研究,1998,22(1):22-25.
    [75]赵斌,无衍射光莫尔条纹法直线度测量仪,光学仪器,2003,25(2):43-46.
    [76]王中宇,周聪,张朵,无衍射光技术在瞄准系统中的理论与原理实验,北京航空航天大学学报,2006,32(11):1337-1340.
    [77]李萌,王天宇,无衍射激光通信模拟实验系统的设计与实现,激光杂志,2009,30(2):59-61.
    [78]翟中生,基于无衍射光的大景深成像研究,博士学位论文,华中科技大学,2008.
    [79]叶瑞芳,新型水射流导引激光加工系统光学特性与关键技术研究,博士学位论文,厦门大学,2009.
    [80]石顺祥,王学恩,刘劲松编著,物理光学和应用光学,西安:西安电子科技大学出版社,2008,4-7.
    [81]赵凯华,钟锡华,光学(上册),北京:北京大学出版社,1982,182-193.
    [82]苏显渝,李继陶编著,信息光学,北京:科学出版社,1999,31-41.
    [83]石顺祥,王学恩,刘劲松编著,物理光学和应用光学,西安:西安电子科技大学出版社,2008,309-313.
    [84] B.Chen,Z.Chen,J.Pu, Propagation of partially coherentBessel-Gaussian beams in turbulent atmosphere,Optics&LaserTechnology,2008,40:820-827.
    [85]陈宝算,王涛,陈子阳等,高斯-贝塞耳光束在湍流大气中的传输特性,华侨大学学报(自然科学版),2008,29(3):347-352.
    [86] ZhiPing Jiang, Super-Gaussian-Bessel beam, Opt.Commun.,1996,125(4-6):207-210.
    [87] P.L.Marston, Scattering of a Bessel beam by a sphere,J.Acoust.Soc.Am.,2007,121(2):753-758.
    [88] J.A.斯特莱顿,ELECTROMAGNETIC THEORY(何国瑜译),北京:北京航空学院出版社,1986,633-644.
    [89] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave RemoteSensing, Wiley-Interscience, New York,1985,169-172.
    [90] M.I.Mishchenko, Light scattering by randomly oriented axiallysymmetric particles, J.Opt.Soc.Am.A,1991,8(6):871-882.
    [91] J. A. Lock, Improved Gaussian beam-scattering algorithm,Appl.Opt.,1995,34(3):559-570.
    [92] B.Maheu,G.Gouesbet,G.Rrehan, A concise presentation of thegeneralized Lorenz-Mie theory for arbitrary location of the scattererin an arbitraty incident profile,J.Opt.(Paris)1988,19(2):59-67.
    [93] A. Doicu, T. Wriedt, Computation of the beam-shape coefficientsin the generalized Lorenz-Mie theory by using the translationaladdition theorem for spherical vector wave function, Appl.Opt.1997,36(13):2971-2978.
    [94] C.F.Bohren, D.R.Huffman, Absorption and scattering of light bysmall particles, John Wiley, New-York,1983,84-90.
    [95] J.M. Taylor, G.D. Love, Multipole expansion of Bessel andGaussian beams for Mie scattering calculations, J.Opt.Soc.Am.A,2009,26(2):278-282.
    [96] W. J. Wiscombe, Improved Mie scattering algorithms, Appl.Opt.,1980,19(9):1505-1509.
    [97] C.F.Bohren,D.R. Huffman., Absorption and Scattering of Lightby Small Particles[M]. New York: Wiley-Interscience,1983,477.
    [98]F. G. Mitri, Arbitrary scattering of an electromagnetic zero-orderBessel beam by a dielectric sphere,Opt.Lett.,2011,36(5):766—768.
    [99] F.Gori,G.Guattari, BESSEL-GAUSS BEAMS, Opt. Commun.,1987,64(6):491-494.
    [100] P.L.Overfelt,C.S.Kenney,Comparision of the Propagationcharacteristics of Bessel,Bessel-Gauss,and Gaussian beams diffractedby a circular aperture, J.Opt.Soc.Am.A,1991,8(5):732-745.
    [101]黄文龙,吕百达,叶一东等,有限束宽聚焦贝塞尔高斯光束轴上的光强分布,中国激光,1995,22(4):285-292.
    [102]吴逢铁,江新光,轴棱镜顶点加工误差的修正,光学精密工程,2009,17(10):2506-2510.
    [103] J.A.Lock,L.Yang, Interference between diffraction andtransmission in Mie extinction efficiency, J.Opt.Soc.A,1991,8(7):1132-1134.
    [104] S.Sogomonian,S.Klewitz,S.Herminghaus,Self-reconstruction ofa Bessel beam in a nonlinear medium, Opt.Coummnu.,1997,139:313-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700