混流式水轮机非定常紊流计算及性能预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水轮机中的流动是非定常的三维粘性不可压缩紊流流动,三维非定常紊流流动的研究一直是水轮机流场研究中所面临的难题。由于混流式水轮机组向大型化发展的趋势中,振动问题愈显突出,流场不稳定现象是引起振动的主要原因之一,因而对水轮机非定常紊流流场的研究就凸显重要。在水轮机研究开发中,流态解析和性能预测则是不可或缺的手段,水轮机外特性与流场流态密切相关,只有具有良好的流态分布,才会有优良的外特性指标和性能。目前,国内外在该领域前沿的研究视角多为采用CFD分析软件计算和模拟流场。
     针对非定常紊流计算在混流式水轮机研究领域中的重要地位,本文确定了将非定常紊流计算作为其主要研究内容。本论文的研究框架和方法主要为:
     (1)进行了混流式模型水轮机转轮中的非定常紊流计算。在三维时均N-S方程的基础上,运用Realizable k-ε模型及CFX-TASCflow软件对一混流式模型转轮进行了三维非定常紊流计算,数值模拟了转轮内部三维紊流流场,且通过模型水轮机的外特性试验证明了该计算可较真实地模拟模型转轮的内部流动,流场计算结果合理。
     (2)根据流场计算结果预测了该模型转轮的能量性能、空化性能,并与试验值进行了比较,结果表明,计算所得的效率值和空化系数与实测值比较接近,从而提升、丰富了现有的水轮机设计方法
     (3)进行了混流式模型水轮机全流道中的非定常紊流计算。运用CFX-TASCflow软件和RNG k-ε紊流模型计算了混流式模型水轮机全流道三维非定常紊流,得到了蜗壳、导水机构和尾水管内的瞬时流场及蜗壳进口、固定导叶进出口、转轮前和尾水管内压力场的脉动频率和幅值。通过标准k-ε紊流模型与RNG k-ε紊流模型的比较计算,显示出了尾水管内的旋转涡带现象。经与试验结果比较,RNG k-ε紊流模型比标准k-ε紊流模型能更好地模拟由自激引起的非定常流动,计算结果与实际情况较为符合。通过模型水轮机全流道瞬变流计算,不仅模拟到转轮前的压力脉动,而且模拟出尾水管中非定常涡带,从而预估出了水轮机中的水力非稳定现象。本研究可对正确进行水轮机全流道三维非定常紊流计算提供一定的参考
     本文所取得的研究成果充实了水轮机研发设计领域的理论研究成果。对优化混流式水轮机的设计,提高水轮机的效率,缩短研发周期,准确预测水轮机的水力性能,具有较好的理论指导意义及技术支持,且具有较强的工程应用价值。
The flow in a hydraulic turbine is three-dimensional viscid, incompressible and unsteady turbulent flow. The research on a 3D unsteady turbulent flow is a challenging problem, which the study of the flow field in a turbine has to face. As hydraulic turbines are developed toward large-sized, the problem of vibration is becoming more prominent. The unsteady flow phenomena are one of the main reasons that cause vibrations. Therefore, it is of great importance for research on the unsteady turbulent flow in a turbine. Nowadays, in the field of research and development of a hydraulic turbine, computation fluid dynamics (CFD) has become an indispensable method for analyzing the flow patterns and predicting turbine performance. Turbine characteristics are closely related to the state of flow in a flow field. Only if the flow is well distributed, a turbine has excellent characteristics and performance. In all advanced flow research all over the world, the CFD analysis is applied to calculate and simulate a flow field, hence to predict the efficiency of a runner and the performance of cavitation.
     The numerical simulation on the unsteady turbulent flow characteristics of Francis turbines flow filed has a great importance for turbine research. This thesis focuses on the unsteady turbulent flow calculations and its analysis. The framework of theoretical studies and methods in this dissertation are as follows:
     (1) Unsteady turbulent flow simulation in a model Francis turbine runner. Based on the 3D time average N-S equations, the 3D unsteady turbulent flow in a model Francis turbine runner is numerically simulated using realizable k-εturbulent model and CFX-TASCflow software. The calculation has been proven by characteristic tests of the model turbine. The reasonable comparison of the calculation and experiment reveals that the inner flow in the model runner may be truly simulated.
     (2) The energy and cavitation performances are predicted by means of numerical simulation. Compared with the test results, it shows that the computed efficiency and cavitation coefficient agree with the experiment data. The numerical calculation methods has improved and enriched the hydraulic turbine design.
     (3) Unsteady turbulent calculation in an entire model Francis turbine. The 3D unsteady turbulent flow in an entire model Francis turbine is simulated using the RNG k-sturbulent model and CFX-TASCflow software. Transient flow fields are simulated in the spiral casing, including the entire stay vane ring, and the draft tube. Based on the standard k-εmodel and RNG k-εmodel, the whirl vortexes in the draft tube are simulated. In comparison with the experimental data, it concludes that the self-stimulated unsteady flow is simulated better with RNG k-εmodel than the standard k-εmodel. The results computed with RNG k-smodel are in good agreement with experiment data. We simulated not only the pressure fluctuation in front of the runner, but also the unsteady vortex in the draft tube by means of the unsteady flow computation in an entire model turbine. Thus, the realistic hydraulic unsteady phenomena occurring in the turbine was predicted. The result shows that this research provides the great value on calculating 3D unsteady turbulent flow in an entire turbine accurately.
     The results of this study fill up deficiencies on the theoretical research in the studying and developing fields of a hydraulic turbine. These provide significant theoretical guide and technical support to optimize the design of a Francis turbine, to increase the efficiency, to shorten the time of research and development, to accurately predict the hydraulic performance. It will be valuable in engineering application.
引文
1.贾金生,以可持续更加绿色的方式发展水电,中国三峡建设,2007,2:5-6
    2. 彭程,21世纪中国水电工程.北京:中国水利水电出版社,2006
    3. Goede E. An advanced flow simulation technique for hydraulic turbomachinery. In:IAHR Symposium. Belgrade,1990
    4. Gianluca Iaccarino. Predictions of a turbulent separated flow using commercial CFD codes. Journal of Fluids Engineering, 2001,123(12):819-828
    5. Hermod BREKKE. A review on turbine design. In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:A52 (1-8)
    6. Schiestel R. A hermitian-fourier numerical method for solving the incompressible N-S equations. Computers fluids.1995,24(6): 739-752
    7. K.Miyagawa. Study on stay vane instability due to vortex shedding. In:22nd IAHR symposium on hydraulic machinery and systems. Stockholm, Sweden,2004:B12-2-1~12
    8. Y. Bazilevsa, V.M. Calo. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering. 2007,197(1):173-211
    9. Wolfgang Rodi. DNS and LES of some engineering flows. Fluid Dynamics Research.2006,38(2-3):145-173
    10.Wen-quan WANG, Li-xiang ZHANG. Large-eddy simulation of turbulent flow considering inflow wakes in a Francis turbine blade. Journal of Hydrodynamics,2007,19(2):201-209
    11. Lipei A, Jost D. Numerical and experimental flow analysis in a Francis turbine. In:Proceedings of the 17th IAHR symposium on hydraulic machinery and systems. Beijing, China,1994
    12. Parkinson E, Dupont P, Hirschi R. Comparison of flow computation results with experimental flow surveys in a Francis turbine. In: Proceedings of the 17th IAHR symposium on hydraulic machinery and systems, Beijing, China,1994
    13. Drtina P, Sallaberger M. Hydraulic turbines-basic principles and state-of-the-art computational fluid dynamics applications. Proceedings of the IMECHE Part C Journal of Mechanical Engineering Science.1999,213(1):1-85
    14. Ruprecht A, Heitele M, Helrnrich T, et al. Numerical simulation of a complete Francis turbine including unsteady rotor/stator interactions, In:Proceeding of 20th IAHR symposium on hydraulic machinery and systems and cavitation, Charlotte, USA,2000
    15. Ruprecht A,混流式水轮机中非定常流动的数值模拟,国外大电机,1999,3:60-63
    16. Yasuyuki Enomoto. Design optimization of a Francis turbine runner using multi-objective genetic algorithm. In:22nd IAHR symposium on hydraulic machinery and systems. Stockholm, Sweden, 2004:A01-2-1~10
    17. Laurent TOMAS, Camille PEDRETTI, Thierry CHIAPPA, et al. Automated design of a Francis turbine runner using global optimization algorithms. In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:B1-8
    18.Agouzoul M, Reggio M, Camarcro R, Calculation of turbulent flows in a hydraulic turbine draft tube. ASME Journal of fluids engineering,1990,112:257-263
    19. Vu T C, Shyy W. Navier-Stokes flows analysis for hydraulic turbine draft tubes. ASME Journal of fluids engineering,1990, 112:199-204
    20. Vu T C, Shyy W. Viscous analysis as a design tool for hydraulic turbine components. ASME Journal of fluids engineering.1990,112: 5-11
    21. Dragical J.混流式水轮机部件的单独和联合CFD模拟,国外大电机,2000,2:59-63
    22.杨建明.水轮机尾水管和转轮中湍流计算研究:[博士学位论文].北京:清华大学,1999
    23.曹树良,杨辅政,吴玉林,用代数应力紊流模型预估水轮机转轮内部三维流场,清华大学学报(自然科学版),1998.38(4):113-126
    24.高忠信,水轮机转轮内部三维粘性流动计算与性能预测,水利学报,2001,7
    25. Vu T C, Shyy W. Performance prediction by viscous flow analysis for Francis turbine runner. Journal of Fluids Engineering, Transaction of the ASME,1994,116:116-120
    26.Drtina P, Sebestyen A. Numerical prediction of hydraulic losses in the spiral casing of a Francis turbine. In:Hydraulic machinery and cavitation. Netherlands,1996:101-110
    27.郭鹏程,罗兴琦,基于计算流体动力学的混流式水轮机性能预估,中国电机工程学报,2006,26(17):132-137
    28.吴玉林,水轮机叶轮内三维紊流计算及效率预估,工程热物理学报.1996,17(3):313-326
    29. Vu T C, Safia RETIEB. Accuracy assessment of current CFD tools to predict hydraulic turbine efficiency hill chart. In: Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:A1-6
    30. K. Yoshirera, H.Kato, H. Yamagushi, et al. Study on the internal flow of a sheet cavity, cavitation and Multiphase Flow. ASME FED, 1998,64:93-108
    31. Y.T.Shen, S.Gowing. Cavitation effects on foil lift, Cavitation and Multiphase Flow. ASME FED,1993,153:209-213
    32.Φ yvind Antonsen. CFD simulation of von Karman vortex Shedding. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:A07-3-1~10
    33. Mirjam SICK, Peter DOERFLER, Manfred SALLABERGER, et al. CFD simulation of the draft tube vortex, In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002
    34.任静,轴流式转轮的三维紊流场分析及优化设计:[博士后研究报告]北京:清华大学,1999
    35.朱耀泉,三峡水轮机高水头运行水力稳定性研究,水利水电技术,1996,27(12):6-9
    36.陶星明,刘光宁,关于混流式水轮机水力稳定性的几点建议,大电机技术,2002,2:40-49
    37.刘光宁,混流式水轮机的水头变幅和运行工况问题兼论论三峡发电机若干问题.见:哈尔滨大电机研究所研究报告.哈尔滨,1995
    38.覃大清,赵希久,岩滩电站水轮机稳定性研究报告(模型部分).见:哈尔滨大电机研究所研究报告.哈尔滨,1997
    39.覃大清,赵洪田,赵阳,关于混流式水轮机的几点新认识,大电机技术,1998,3
    40. Joongcheol Paik. Numerical simulation of flow in a hydroturbine draft tube using unsteady statistical turbulence models. In: 22nd IAHR symposium on hydraulic machinery and systems. Stockholm, Sweden,2004:A10-1-1~10
    41. Maryse Page. Unsteady rotor-stator analysis of a Francis turbine. In:22nd IAHR symposium on hydraulic machinery and systems. Stockholm, Sweden,2004:B03-1-1~11
    42. Christophe NICOLET, Philippe ALLENBACH. New tool for the simulation of transient phenomena in Francis turbine power plants. In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:B54(1-9)
    43. Ales SKOTAK, Josef MIKULAEK, Lada LHOTAKOVA. Effect of the inflow conditions on the unsteady draft tube flow. In: Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:A75(1-8)
    44. Ruprecht A,非定常流动分析在水力机械中的应用,国外大电机,2001,4:52-60
    45. Conny Larsson. Experimental investigation of the transient inlet flow field of a Francis turbine runner. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:A07-3-1~10
    46. SHAO Qi, LIU Shuhong. Three-Dimensional simulation of unsteady flow in a model Francis hydraulic turbine. Tsinghua Science and Technology.2004,9(6):693-699
    47. OHNISHI Hirofumi, HAN Fengqin, KUBOTA Takashi.3-D Viscous flow in spiral case of a Francis turbine. In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne Switzerland,2002:A49(1-6)
    48. Thomas SCHERER, Peter FAIGLE, Thomas ASCHENBRENNER. Experimental analysis and numerical calculation of the rotating vortex rope in a draft tube operating at part load. In:Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:B52(1-10)
    49. Albert RUPRECHT, Thomas HELMRICH, Thomas ASCHENBRENNER, et al. Simulation of vortex rope in a turbine draft tube, In: Proceedings of the 21st IAHR symposium on hydraulic machinery and systems. Lausanne, Switzerland,2002:A86(1-8)
    50. Ruprecht A, Bauer C, RiedelbauchS. Numerical analysis of three-dimension flow through turbine spiral case, stay vanes and wicket gates. In:Proceeding of 17th IAHR symposium on hydraulic machinery and systems and cavitation. Beijing, China,1994:71-82
    51. Sick M, Casey M V, Galpin P. Validation of a stage calculation in a Francis turbine. In:Proceeding of 18th IAHR symposium on hydraulic machinery and systems and cavitation. Valencia, Spain,1996
    52. F.Shi. Numerical study of pressure fluctuations caused by impeller diffuser interaction in a diffuser pump stage. Journal of Fluids Engineering.2001,123(9):466-474
    53. Denton J D. The calculation of three-dimensional viscous flow through multistage turbomachines. ASME Journal of Turbomachinery. 1992,114:18-26
    54. Rodi W, Scheuerer G. Calculation of heat transfer to convection-cooled gas turbine blades. ASME Journal of engineering for gas turbine and power.1985,107:620-627
    55. Koya M, Kotatc S, Numerical analysis of fully three-dimensional periodic flows through a turbine stage. ASME Journal of engineering for gas turbine and power.1985,107:945-952
    56.Muggli, Guilich F A. Flow analysis in a pump diffuser (part 2): Validation and limitations of CFD for diffuser flows. ASME Journal of fluids engineering.1997,119:978-984
    57. Kaechele T, Hauff C, Aschenbernner T. Discussion of Several Numerical Approaches for the Stator-rotor Interaction. In: Proceeding.s of 20th IAHR Symposium on Hydraulic Machinery and Cavitation. Charlotte, NC, USA,2000
    58. Kech H. Numerical hill chart prediction by means of CFD stage simulation for a complete Francis turbine. In:Proceedings of the 18th IAHR symposium on hydraulic machinery and systems and cavitation. Valencia, Spain,1996
    59. Ruprecht A, Heitele M, Helrnrich T, et al. Numerical simulation of a complete Francis turbine including unsteady rotor/stator interactions. In:Proceeding of 20th IAHR symposium on hydraulic machinery and systems and cavitation. Charlotte, USA,2000
    60.张梁,吴伟章,吴玉林等,混流式水轮机三维非定常湍流计算,见:中国工程热物理学会流体机械学术会议,中国广东,2002
    61. Smagorinsky J S. General circulation experiments with the primitive equation. Monthly Weather Review,1963,91:99-164
    62. H K Versteeg, W Malalasekera. An introduction to computational fluid dynamics. In:The finite volume method, Wiley, New York, 1995
    63.彭国义,曹树良,林汝长,水力机械转轮正问题数值研究与进展,甘肃工业大学学报,1997,23(3):28-32
    64. John D, Anderson J R. Computational fluid dynamics—the basics with applications.北京:清华大学出版社,2003
    65. Merle C Potter, David C, Wiggert. Mechanics of fluids. Beijing: China Machine Press,2003
    66. Frank M White. Fluid mechanics.北京:清华大学出版社,2004
    67.金忠清,N-S方程的数值解法和紊流模型,南京:河海大学出版社,1989
    68.苏铭德,计算流体力学基础,北京:清华大学出版社,1997
    69.黄克智,薛明德,张量分析,北京:清华大学出版社,2003
    70. CFX-TASCflow Theory Documentation, Version 2.10. AEA Technology Engineering Software Limited Waterloo, Ontario, Canada N2L 5Z4
    71. Alexander Yakhot. Turbulent flow around a wall-mounted cube:A direct numerical simulation. International journal of heat and fluid flow,2006
    72.王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004
    73.是勋刚,湍流,天津:天津大学出版社,1994
    74. Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering.1974,3:269-289
    75. Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows model development and validation. Computers fluids.1995,24(3):227-238
    76.陈景仁,湍流模型及有限元分析法,上海:上海交通大学出版社,1989
    77. Huh K Y, Golay M W, Manno V P. A method for reducing of numerical diffusion in the donor cell treatment of convection. Journal of Computation Physics.1986,63:201-221
    78.陶文铨,数值传热学(第二版),陕西:西安交通大学出版社,2001
    79. de Vahl Davis G, Mallinson G D. An evaluation of upwind and central difference approximation by a study of recirculating flow. Computation Fluids.1976,4:29-43
    80. Hutchinson B R, Raithby G D. A multigrid method based on the additive correction strategy. Numerical heat transfer.1.986,9: 511-537
    81.刘超群,多重网格及其在计算流体力学中的应用,北京:清华大学出版社,1995
    82. CFX-TASCflow User Documentation, Version 2.10. AEA Technology Engineering Software Limited Waterloo. Ontario, Canada N2L 5Z4
    83.Moritz Frobenius. Cavitation prediction in hydraulic machinery. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:BO 1-2-1~13
    84. IEC60193. Hydraulic turbines, storage pumps and pump-turbines Model acceptance tests. IEC,1999
    85. Sebastian Muntean.3D Flow analysis in the spiral case and distributor of a Kaplan turbine. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:A10-2-1~11
    86. Sebastien Houde. Improving the efficiency of a 200 MW Francis turbine-Part 1:Hydrodynamic design. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:A13-2-1-10
    87. Jean Leduc. Improving the efficiency of a 200 MW Francis turbine-Part 2:Structural analysis. In:22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden,2004:A13-1-1~10
    88.韩凤琴,肖业祥,久保田乔,小型水轮机蜗壳三维粘性流动解析,农业机械学报,2004,35 (2):40-43
    89. Yakhot V, Orszag S A. Renormalization group analysis of turbulence:Basic theory, Journal of scientific computing. 1986,1(1):3-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700