高温超导磁强计研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导磁强计具有可直接测量磁场、低噪声、频带宽、低频响应好的特点。它可用于瞬变电磁法的接收传感器,实现直接测量磁场的目的。本文对高温超导磁强计研制取得的成果作了系统的论述,内容包括:高温超导磁强计研制、野外与感应线圈的对比试验、磁场数据的采集、磁场数据的分析处理、杜瓦带宽对测试的影响、与瞬变电磁仪联机参数设定等。主要研究成果如下:
    研制出了低噪声、宽频带、高摆率并具有较高稳定性、适合瞬变电磁法的单分量高温超导磁强计。采用屏蔽技术解决了高频信号的传输、衰减、放大等关键问题,研制出了高温超导磁强计的关键部分—前置放大器,提高了高温超导磁强计的稳定性;采用前置放大器与控制电路分离,减少了干扰,提高了仪器的实用性。研制的单分量高温超导磁强计的指标是:1、磁场噪声 100 fT /Hz;2、摆率 1m T /S;3、带宽 0~30kHz。
    研制出了既能手动调节又能自动调节的三分量高温超导磁强计样机。采用光耦隔离技术、屏蔽技术以及错开三个通道工作频率的方法,减少了数字电路与模拟电路的干扰和三分量之间的串扰,研制出了较稳定的三分量高温超导磁强计;采用微型计算机控制技术和 A/D、D/A 转换技术,实现了三分量高温超导磁强计的自动控制,提高了工作效率。
    研制出了高频无磁杜瓦,填补国内空白。采用具有迭层、独立单元的杜瓦绝热技术,避免绝热层金属薄膜在瞬变电磁一次场激发下产生涡流,消除杜瓦对测量的影响。大量的野外试验表明:高温超导磁强计性能稳定,满足瞬变电磁法要求,在瞬变电磁法中应用高温超导磁强计能够提高勘探深度。实现了高温超导磁强计在瞬变电磁法中的实用化,为深部隐伏矿以及油气勘查提供新的地球物理手段。高温超导技术在瞬变电磁法中的成功应用也是高温超导技术应用的一项重要成果。
The high temperature radio frequency superconducting quantum interference device(HTS RF SQUID) magnetometer is characterized by direct measurements of magneticfields, low noise, broad bandwidth and excellent low frequency response. Theconventional induction coil could be replaced with the HTS RF SQIUD as receiving sensorfor Transient Electromagnetic ( TEM ) meters, therefore realizing direct measurements ofmagnetic fields in TEM surveys. A systematic study on the development of HTS RFSQUID magnetometer to TEM method has been carried out, including the development ofthe HTS RF SQUID magnetometer, field comparison tests between sensors by respectivelyusing HTS RF SQUID and conventional induction coil, field magnetic data acquisition,magnetic data analyses and processing, influence of Dewar bandwidth on measurements,as well as setting parameters as the HTS RF SQUID sensor is connected to a TEM meter.The achievements made through the study are as following:
    A HTS RF SQUID magnetometer, featuring low noise, broad bandwidth, high slewrate and high stability, has been developed, which is suitable for measuringsingle-component magnetic field in TEM surveys. The critical problems relating totransmission, attenuation and amplification of high-frequency signals have beensuccessfully solved by adopting shielding technique. A preamplifier, the key unit for theHTS RF SQUID magnetometer, has been developed, making the stability of themagnetometer significantly improved. By separating the preamplifier from the controlunit, the magnetometer has been made fewer interferences and more practical. Thespecifications of the single-component HTS RF SQUID magnetometer developed throughthe study are as 1. magnetic noise – 100 fT /Hz;2. slew rate – 1 mT/S;and 3.bandwidth – 0 ~ 30 kHz.
    A prototype of three-component HTS RF SQUID magnetometer has also beendeveloped, which can be adjusted either manually or automatically. With such techniquesas optical coupling isolation, shielding and staggered frequencies adopted for the threechannels, the interferences for both digital and analogue circuits and the crosstalk amongthe three channels have been significantly reduced, so making the vector HTS RF SQUIDmagnetometer more stable. By adopting techniques of microcomputer controlling andA/D and D/A converting, the automatic control for the vector HTS RF SQUIDmagnetometer has been realized, resulting in the increase of field survey efficiency.
    A high-frequency non-magnetic Dewar has been developed, so filling in the gap inthis field in China. The heat-isolating metal film was cut in strips to avoid vortex excitedby the primary field of TEM, and thus the influence of Dewar on measurements waseliminated.
    A lot of field experiments show that the HTS RF SQUID magnetometer is of highstability, meet the requirements of TEM surveys and with its detection depth increased.
    To further make the HTS RF SQUID magnetometer practical would provide a new tool forexplorations for deep concealed deposits and oil and gas, making this advanced hightemperature superconducting technique turn into productive force in geophysicalexploration.
引文
[1] A.H.Silver ,J.E.Zimmerman, Quantum states and transition in weakly connected Superconducting rings, Phy.Rev.157,317 (1967)
    [2] 陈文生,超导地球物理仪器原理,北京,地震出版社,1988
    [3] Bednordz J.G. ,Muller K.A. Possible High Tc superconductivity in the Ba-La-Cu-O system, Z Physik B, 1986, 64:189
    [4] 赵忠贤,陈立泉,杨乾生等,Ba-Y-Cu 氧化物液氮温区的超导电性,科学通报,1987,32(4):412
    [5] M. K.Wu, J.R. Ashburu, et al, Superconductivity AT 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys Rev Lett,1987, 58:908
    [6] M.S.Colclough, C.E.Gough, M.Keene, et al, Radio frequency SQUID operation using a eramic high-Tc superconducor, Nature 328,47(1987)
    [7] J.E.Zimmmerman, J.A.Ball, M.W.Cromar, et al, Operation of a YBCO rf-SQUID at 81K, Apll.Phys.Lett51,617(1987)
    [8] Y.Zhang, W.Zander et al. Operation of High-Sensitivity Radio Frequency superconducting Quantum Interference Devices Magnetometer with superconducting Coplanar Resonators at 77k ,Appl.Phys.Lett.(5)1997
    [9] Y. Zhang, et al. Washer rf SQUID Magnetometer with Coplanar Resonators at 77k,Appl.Supercond. ,in ISEC 97
    [10] 马平,马平博士后研究工作报告,北京大学,1998
    [11] P.Ma, S.Z.Wang, et al, Ditch-typed step-edge grain boundry junction and rf SQUID, Physica C (1997),2479:282
    [12] B.R.Spies,D.E.Eggers.The use and misuse of apparent resistivity in electromagnetic models [J].Geophysic.1986
    [13] B.R.Spies,1989.Depth of investigation in electromagnetic sounding methods: Geophysics,54.
    [14] 牛之琏. 时间域电磁法原理. 中南工业大学出版社,1992.
    [15] 蒋邦远. 瞬变电磁法勘探. 北京:地质出版社,1998.
    [16] V.I.Shny, V.P.Timofeev, S.S.Khvostov, et al, UHF high-Tc SQUID, Mod.Phys.B5, 1281(1991)
    [17] 何东风. 低噪声高温超导 rf SQUID 系统和梯度计研究 ,博士论文. 北京:北京大学物理系,1999.
    [18] Y. Zhang, H.Soltner, N.W.Zander, et al, HTS rf SQUIDs with Fully Integrated Planar Tank Circuit Apll.supercond., VOL7,no.2, 2870(1997)
    [19] Y. Zhang, H.R.Yi, J.Schubert, et al, Operation of rf SQUID Magnetometers with a Mulit-Turn flux Transformer integrated with a Superconducting labyrinth Resonator, Apll.supercond. VOL9,no.2, 3396(1997)
    [20] S.N.Erne, H.D.Hahalbohm, H.Lubbig, Theory of rf –biased superconducting quantum interference device for nonhysteretic regime, J. Appl. Phys.47,5440-5442, 1976
    [21] Y. Zhang, M.Muck, K.Herrmann, et al, Low noise YBCO rf-SQUID magnetometer, Appl.Phys.Lett60,645(1992)
    [22] 王赤军,陈晓东,赵毅等, HTc SQUID 在 TEM 上的应用研究,全国超导薄膜和超导电子学学术讨论会文集,1994
    [23] 王赤军,陈晓东,赵毅等 . 高 Tc RF SQUID 磁强计在 LOTEM 上应用存在的诸多问题及解决途径 . 低温物理学报 ,1995 .第 17 卷 : 426-428.
    [24] G.J.Slogget, C.P.Floey, S.LAM, et al, 77K SQUIDs operating in the earth's magnetic field, Apll.supercond. Vol7 3044(1997)
    [25] 赵毅,陈晓东等,‘RF SQUID 职能控制系统', 地质与勘探,2002 年增刊,
    [26]王赤军,陈晓东,赵毅等, ‘高灵敏度、高温低噪声超导量子干涉器磁强计的研制',国地球物理学会年刊,162 页,2001 年
    [27] 陈晓东,赵毅,王赤军 ‘VHF SQUID 磁强计前置放大器研制',地学仪器,1997 年第四期。
    [28]王 赤 军 , 陈 晓 东 , 赵 毅 , “ 77K VHF SQUID 低 噪 声 磁 强 计 的 研 制 ” 仪 器 仪表 学 报 , 第 20 卷 第 3 期 , 1999
    [29]王 赤 军 , 陈 晓 东 , 赵 毅 等 ,“ 77K SQUID 磁 强 计 在 TEM 测 量 上 的 应 用 研 究 ”地 球 物 理 学 报 , 第 42 卷 1999 年 增 刊
    [30] 陈 晓 东 ,赵 毅 ,王 赤 军 等 , ‘高温超导磁强计的研制及在 TEM 上的野外实验', 地ρ(Ω·m) 球学报,2002,第 23 卷第 2 期
    [31] 陈 晓 东 , 赵 毅 , 王 赤 军 等 ‘高温超导磁强计研制及在 TEM 上的应用研究', 地质与勘探,2002 年增刊
    [32] C.P. Foley, K.E. Leslie,1998,Potential use of high Tc SQUIDs for airborne eletromagnetics:Exploration Geophysics,29,30-34
    [33] C.P. Foley, K.E. Leslie,R.A.Binks, el al. Field Trials using HTS SQUID Magnetometer for Ground-based and Airborne Geophysical Applications . IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999. VOL 9 : 3786-3792.
    [34] C.P. Foley, S.Lam, et al. Excess low frequency noise in YBCO rf SQUIDs in weak magnetic fields, Supercond. Sci. Technol., 1998
    [35] C. P et al.,A report of field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications, presented at the ASC conference 1998
    [36] K.E. Leslie, R.A.Binks, C.P. Foley, el al. Operation of a Geophysical HTS SQUID System in Sub-Enviroments, asc 2002
    [37] James B.Lee, David L.Dart, Robert J.Turner et al, Airborne TEM surveying with a SQUIDmagnetometer sensor, Geophysics Vol67.NO.2, 468, 2002
    [38]M.Bick, G.Panaitov, N.Wolters,Y.Zhang, el al. A HTS SQUID Vector Magnetometer for Geophysical Exploration . IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999. VOL 9 : 3780-3783.
    [39] D.F.He, H.-J.Krause. Y.Zhang, M.Bick, H.Soltner, N.Wolters, W.Wolf and H.Bousack. HTS SQUID Magnetometer with SQUID Vector Reference for Operation in Unshielded Environment. IEEE Trans. Applied Superconductivity, vol9, No2.
    [40] 戴远东,谢飞翔,HTc SQUID 用于瞬变电磁法大地测量时的测深估计,低温物理学报,Vol.23, No.2, 2001
    [41] 戴远东,王世光,在瞬变电磁法大地电磁测量中高 Tc SQUID 探头与常规探头的比较,低温物理学报,Vol.18, No.1, 1996
    [42] Y. Zhang, Y.Tavrin, M.Muck, et al, High tempareture rf SQUIDs for biomedical applications, Physiol.Meas. 14,113(1993)
    [43] Chris Carr, David Graham, Jhon C Macfarlane, HTS SQUIDs for the nondestructive evaluation of composite structures, Supercond. Sci. Technol. VOL.16 NO.12 1387 (2003)
    [44] Y.Tavrin, Y. Zhang, W.Wolf, et al, A second-order SQUID gradiometer operating at 77K, Supercond. Sci. Technol. 7,265-268 (1994)
    [45] 诸邦田,电子电路实用抗干扰技术,人民邮电出版社,1994
    [46] 石福升,大功率多频发射系统研究,博士论文. 北京:中国地质大学,2005
    [47] 陈穷,蒋全兴,周开基等,电磁兼容性工程设计手册,国防工业出版社,1993
    [48] 童诗白,模拟电子技术基础,高等教育出版社,1987
    [49] 张肃文,高频电子线路,高等教育出版社,1990
    [50] 李华,MCS-51 系列单片机实用接口技术,北京航空航天大学出版社,1993
    [51] 程守洙,江之永,普通物理学,高等教育出版社,1982
    [52] 王赤军,陈晓东,吕国印等,高温超导量子干涉器磁强计在地球物理勘查中的应用研究,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700