海洋瞬变响应理论计算及浅海底瞬变电磁探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是人类的资源宝库,地球表面的70%是海洋,海底资源和海底工程勘查对于人类的生存和发展及其重要,海洋电磁法是除了地震之外,研究海洋,特别是海底的一种重要的地球物理方法,具有探测深度范围大、破坏性小、实施简单、适应性强、探测准确等特点。
     本论文采用可控源时间域电磁法(瞬变电磁法)进行浅海底探测。基于瞬变电磁理论基础建立了海水、海底两个导电半空间模型,分析了置于海水、海底两个高导电半空间分界面的垂直磁偶极装置和中心回线装置的电磁场响应,并得到相应的感应电动势表达式,仿真计算了海水的影响,研究了垂直磁偶极装置偶极矩变化,海水、海底电导率大小不同等多种条件下的感应电动势和剖面异常曲线形态,为天线装置的选择、仪器的设计和海底探测数据解释提供了理论依据;结合理论分析和大量室内外试验,选取了适用于海底探测的天线装置,确定了采用多匝小线圈的垂直磁偶极装置和中心回线装置进行浅海底探测;为实现滩、浅海近海底3~30米浅层探测,提取全程瞬变二次场,在电路模型基础上分析了一次场的影响和接收线圈的过渡过程,并明确了全程瞬变响应曲线形态;海洋提供了拖曳探测的环境,在陆地、湖水中完成了大量拖曳试验,确定了接收机定时采样的拖曳式测量方式;开发了基于网卡技术的远程通信监控软件,并采用三点指数非线性平滑滤波和对数等间隔抽道进行剖面图的实时处理,在拖曳测量过程中动态显示剖面曲线;在陆地瞬变电磁发射机、接收机基础上,开发了海底瞬变电磁探测系统,进行了仪器和天线装置的抗压、密封、配重等设计,完成了海底模型和海底输油管线探测试验,给出了试验结果,与实际相符,验证了海底瞬变电磁探测系统工作的可靠性和数据解释方法的正确性。
70% of the earth surface is the ocean, in our country, the total area of ocean is equal to the first-third of the land area, the coast line is long and the most area is shallow, significant mineral resources such as oil field, multi-metals sulphuret and sand mineral etc, had been discovered in Bohai Gulf of our country. But explore degree in beach and shallow sea area is very low, the quick and efficient new method technique is also needed in ocean engineering explore in inshore ocean. The method and technique introduced in this paper is applicable to beach and shallow sea.
     The sea-floor is the biggest resources mine in the world, a great deal of petroleum, natural gas and various minerals are in it; the land area and the resource is reduced gradually with the expansion of mankind, developing the new resources environment is extremely urgent. People have already concentrated the attention to the ocean, beginning to build the sea-floor oil pipeline and correspondence cable, developing sea-floor habitation and recreation rooms would be possible with the growing ability of exploring and constructing in the sea-floor. Therefore, some methods, which are of light ruin, wide extension of adaptive depth and simple operating in exploring resource and surveying engineering in sea-floor, are necessary. Besides the earthquake method, Sea Electromagnetic method is a main sea physical geography method.
     This thesis is completed under the assistance of significant item-Ocean Resources Development Technique belonged to The National High Technology Research and Development Program of China (863 Plan). So as to achieve the transient electromagnetic detection of beach and near shallow undersea (3 to 30 meters), it has build two strong electric half space models-the sea model and the sea-floor model, the sea transient electromagnetic response is computed under these models. Aiming at the concrete problems of sea detection, it has studied the antenna equip adapted to sea-floor detection and the instrument system. Concrete research achievements are as following:
     1. It is based on Maxwell equation and set out from frequency-domain, deducing the transient electric field and the vertical magnetism field of vertical magnetism dipole equips under the seawater and the sea-floor two strong half-space models, and concluding the inductive voltage expressions of the vertical magnetism dipole equip and the center loop-line equip. The influence of the seawater on the induction voltage is studied by the emulate research and comparison to that of the land, and the laws of dipole moment on step signal response is analyzed while the vertical magnetism dipole equips are different. It provides the theory foundation for the selection of antenna equip used in sea-floor transient electromagnetic detection, judging the curve form of sea-floor transient response, designing of system and data explanation.
     2. The sea-floor detection is not the same to that in the land. The antenna equip must be designed and sealed well before starting the experiments on the sea. The antenna equip is confirmed to be used in sea-floor probing by follow aspects: dynamic scope of the receiver; the best coupling between transmission loop-line and receive loop line; exceptional curve is as simple as possible; the state of coil is towed simply, etc. Lots of gutter experiments indoor and outside are tested so as to ensure the validity of combination mode of coil selected.
     3. Miniaturizing of transmission and receive antenna (coil) is studied. Transmission coil should be wrapped many turns when small coil is used, in this way the scope value of induction voltage would be higher correspondingly. To the limit, time-constant of lead of transmission coil selected is short, choose the thin lead which can output the maximum current and ensure that transmission wave turning off time is shorter correspondingly and the detection data is more accurate in shallow area.
     4. The distilling technology of the transition course and the all-time transient electromagnetism signals response of receive coil is analyzed so as to judge the sea-floor transient response curve correctly. Based on the circuit theory, it has studied the theory modeling and step response characteristic of receive coil, analyzed the first induction voltage and the second induction voltage and their affection of transition course while transmitting current is ramp step pulse, acquired the response curves of the first induction voltage, transition course of the first induction voltage, the second induction voltage and transition course of the second induction voltage in the case of tilted turning off current, analyzed the effect of transition course on all-time transient induction voltage and studied on the removing of the first induction voltage and distilling technology of all-time transient induction voltage.
     5. Made study on long distance supervision correspondence mode, designed long distance supervision software and dynamic channel data processing software, the three-point index nonlinear smooth filtering technology is adopted in order to suppress noise and remove singular points; it is confirmed that sea-floor transmitter should send continuous bipolar rectangle wave and the receiver should work on timing sampling continuous operation mode by land towed testing; the dynamic scope of receiver is ascertained by emulate compute and experiments, etc. The Sea-floor Transient Electromagnetic Detection System is developed based on above research.
     6. It confirms the implementing scheme of the sea-floor transient electromagnetism exploring system on the sea. The tugboat tows the instruments airproof cabin sink in the bottom, the coil is sink as deeply as possibly and behind the cabin, don’t keep too near so as to avoid to be influenced by electromagnetic instruments. It has designed sea-floor instrument, air-proof for antenna equips, anti-pressing in sea-floor and matched weight for sinking and chosen the nonmagnetic materials for air-proof. The cabin had been test in gutter and lake for many times to ensure the feasibility of work mode and excellent ability of air-proof and anti- press.
     7. In order to prove the validity and accuracy of theory explanation method and antenna selection and the reliability of instruments, a number of field experiments were done,including land,lake and marine experiments. Search for the exact position of transport-oil pipe and seabed model creation were accomplished by applying the technical approach adopt in this paper.
     Main creations in the paper:
     1. It has build the sea-floor and seawater two electric half space models, calculated the transient electromagnetism response of vertical magnetic dipole-dipole equip and center loop-line equip and analyzed the effect of seawater. It has achieved firstly the shallow sea-floor transient electromagnetism detection used by vertical magnetic dipole-dipole equip and center loop-line equip at home. The achievement could be applied to shallow sea resource exploring and engineering environment investigation.
     2. It has brought forth sea-floor towed measurement achieved by small antenna equips and studied on the response characteristic and the facture of small coil. That the Transmission coil should be wrapped with many turns when small coil is used is confirmed, in this way the scope value of induction voltage would be higher correspondingly. Choose the thin lead which can output the maximum current, ensure that transmission wave turning off time is shorter correspondingly. This antenna equip is flexible, convenient, sensitive to high conductance sea-floor and simply to achieve towed measurement.
     3. The Dynamic Channel Idea of Sea-floor Transient Electromagnetic Method is brought forth. The three-point index nonlinear smooth filtering and the real-time section curve disposing of equal logarithm interval channel were achieved by the communication between the instrument system and the master during transient electromagnetic system towed measurement. That the abnormal sea-floor detection could be discovered in time made up the fault which normal transient electromagnetic method is dealt with afterwards and achieve the sea-floor towed continuous measure.
     The paper modeled two half-space and studied the sea transient electromagnetic response characteristic, it has discussed the implementing schemes of main technology in shallow sea-floor electromagnetic detection from coil equips to instrument system and data processing, and focused on the achievement of the whole system. But thanks to the complexity of detecting goal in the sea-floor and inclemency while working on sea, it is necessary to take further study on Shallow Sea-floor Transient Electromagnetic Detection technology Research based on above achievements. There are as following:
     1. Make study on transient electromagnetic response modeling and emulate calculation of sea-floor three-dimension objects, such as sphere, electric sheet, etc, consider the influence of the depth of seawater upon the results and analyzed accurately the ability of detection while the depth of seawater is limit.
     2. Make research on Array Towed Measure Method and Technology so as to improve the accuracy of observation and suppress seawater noise.
     3. Achieve the accurate position of coil in sea-floor and the posture measurement of coil by the sensor fixed on the coil, it is convenient to revising the observation data while processing data and get more reliable explanation results.
引文
[1] 梁高权,柳超.用海底人工电磁场源探测海底.热带海洋,1998,17(4):1~5
    [2] 何继善,鲍力知.海洋电磁法研究的现状和进展.地球物理学进展,1999,14(1):7~39
    [3] 杨建文,Edwards R N.用于海底电导率填图的可控源时域电磁法.中国有色金属学报,1998,8(4):705~713
    [4] 王一新,王家林,王家映等.瞬变电磁系统探测海底电导率的研究.地球物理学报,1998,41(6):841~847
    [5] Edwards R N, Chave A D. A transient electric dipole-dipole method for mapping the conductivity of the sea floor. Geophysics, 1986, 51(4) : 984~987
    [6] Cheesman S J, Edwards R N, Chave A D. On the theory of sea-floor conductivity mapping using transient electromagnetic systems. Geophysics, 1987, 52(2) : 204~217
    [7] Edwards R N. Two-dimensional modeling of a towed in-line electric dipole-dipole sea-floor electromagnetic system: The optimum time delay or frequency for target resolution. Geophysics, 1988, 53(6) : 846~853
    [8] Edwards R N. and Cheesman S J. Two-Dimensional Modelling of a Towed Transient Magnetic Dipole-Dipole Sea Floor EM System. Journal of Geophysics,1987(61),P110~121
    [9] 邓明,魏文博,谭捍东,金胜,邓靖武.海底大地电磁信号采集的技术难点. 现代地质,2002.3,16(1):94~99
    [10] 邓明,魏文博,谭捍东,金胜,董浩斌,邓靖武.海底大地电磁数据采集器. 地球物理学报,2003.3,46(2):217~223
    [11] 邓明,侯胜利,王广福,邱开林,熊玉珍,张启升.中国海底地球物理探测仪器的新进展,勘探地球物理进展,2004 年 8 月,Vol.27,No.4:241-245
    [12] 朴化荣.电磁测深法原理.北京:地质出版社,1990,27~28
    [13] 蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998,
    [14] A A 考夫曼,G V 凯勒.频率域和时间域电磁测深.王建谋译,杨生校.北京:地址出版社,1987 年.282~309
    [15] 程德福,近区磁源瞬变电磁法信号检测技术研究,吉林大学博士论文,2002.12,9~11
    [16] 嵇艳鞠.浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究,吉林大学博士论文,2004.6
    [17] 牛之琏.时间域电磁法原理.长沙:中南工业大学出版社,1992,6~8
    [18] 何继善.电法勘探的发展和展望.地球物理学报,1997,40:308~316
    [19] 李桐林,林君,王东坡.海陆电磁噪声与滩海大地电磁测深研究.地质出版社,2001.4,3~5
    [20] 邓明,魏文博,邓靖武,谭捍东,海底大地电磁探测的室内模拟实验,汕头大学学报(自然科学版),2002,11, Vol.17 No.4, 20~28.
    [21] 静恩杰,李志聃,瞬变电磁法基本原理.中国煤田地质,1995.6,7(2):83~87.
    [22] 静恩杰,李志聃,瞬变电磁法野外工作方法,中国煤田地质,1995.9,7(3):88~91.
    [23] 李实,李创社,张彦鹏,张鹏飞,宋建平.工程勘探瞬变电磁仪关键技术研究.煤田地质与勘探,2001.2,29(1):55~58
    [24] 米萨克 N 纳比吉安主编.勘察地球物理电磁法(第一卷).赵经祥,王艳君译.北京:地质出版社,1992. 120~240
    [25] Tatsuoki Nagaishi ,Hajime ota ,Eiichi Arai ,Toshihiko Hayashi ,Hideo Itozaki . High Tc Tcscquid System for Transient Electromagnetic Geophysical Exploration.IEEE Transations on Applied Super Conductivity , 2005, 15(2): 749~753
    [26] Egon Marx. Neighboring-Patch Integrals in Transient Electromagnetic Scattering. IEEE Transactions on Antennas And Propagation, 1985, AP-33(7): 768~773
    [27] P.L.Jiang, E.Michielssen. Multilevel Plane Wave Time Domain-Enhanced Mot Solver for Analyzing Electromagnetic Scattering from Objects Residing in Lossy Media.IEEE,2005,447~450
    [28] Petre-Marian Nicolae. Modeling The Influence of External Residual Harmonic over the Three-Phase Short-Circuit Transient Electromagnetic Processes In A Cylindrical Rotor Synchronous Generators.IEEE,1999,311~313
    [29] Peter Bohm,Gerhard Wachutka . Modelling and Simulation of the Transient Electromagnetic Behavior of High Power Bus Bars under Switching Conditions.IEEE,2000,303~307
    [30] E.Cardelli, M.Gimignani, M.Raugi. Integral Equation Approach for the Analysis of Three-Dimensional Transient Electromagnetic Heating Effects. IEEE Transactions on Magnetics,1993,29(6):2440~2442
    [31] John D.Norgard,Ronald M.Sega,Michael G.Harrison,Hugh H.Pohle . Infrared Mapping of Transient Electromagnetic Fields Rediated by High Power Microwave PulsedSources.IEEE Transactions on Nuclear Science, 1992,39(6):1912~1920
    [32] Ghada M.Sami . Influence of a Magnetically Permeable Surface Layer on Transient Electromagnetic Field of a Vertical Magnetic Dipole on a Two-Layer Conducting Earth.IEEE,2003,809~814
    [33] 刘长胜,林君.海底表面磁源瞬变响应建模及海水影响分析.地球物理学报,2006.11,49(6):1891~1898.
    [34] A.D.Chave, D.S.Luther, J.H.Filloux. Observations of the Boundary Current System at 26. 50 N in the Subtropical North Atlantic Ocean [J]. Journal of Physical Oceanography, 1997,27,1827-1848.
    [35] R.Nolasco, J.H.Filloux. Magnetotelluric Imaging of the Society Islands Hotspot [J]. Journal of Geophysical Research, 1998, 103,30287-30390.
    [36] LIANG Tiecheng, LIN Jun, CHEN Zubin. Explorating Tunnel Using Electromagnetic Vibrator. Journal of Jilin University(Earth Science EditiOn),2005.7,35(Sup.):87~89
    [37] A.Stephan, K.-M.Strack . A simple approach to improve the S/N ratio for TEM data using multiple receivers.Geophysics, 1991, 56(6):863~869
    [38] Alexander A.Kaufman . The influence of currents induced in the host rock on electromagnetic response of a spheroid directly beneath a loop. Geophysics , 1981.8 , 46(8) :1121~1136
    [39] Rob F. Remis, Peter M.van den Berg . A Modified Lanczos Algorithm for the Computation of Transient Electromagnetic Wave fields. IEEE Transactions on Microwave Theory And Techniques, 1997 , 45(12) : 2139~2149
    [40] Riaz Siushansian, Joe LoVetri . A Comparison of Numerical Techniques for Modeling Electromagnetic Dispersive Media. IEEE Microwave And Guided Wave Lefters, 1995, 5(12):426~428
    [41] Rob F. Remis ,Peter M. van den Berg. A Modified Lanczos Algorithm for the Computation of Transient Electromagnetic Wavefields. IEEE Transactions on Microwave Theory And Techniques, 1997, 45(12): 2139~2149
    [42] Paolo Bernardi, Guglielmo D’Inzeo. A Nonlinear Analysis of the Effects of Transient Electromagnetic Fields on Excitable Membranes. IEEE Transactions on Microwave Theory And Techniques, 1997, 1984, MTT-32(7): 670~679
    [43] Sadasive M.Rao, Tapan K. Sarkar, Soeil A.Dianat. A Novel Technique to the Solution of Transient Electromagnetic Scattering from Thin Wires. IEEE Transactions on Antennas AndPropagation, 1986 , AP-34(5) : 630~634
    [44] Sina Barkeshli, Harold A.Sabbagh, D.J.Radecki, M.Melton. A Nove Implicit Time-Domain Boundary-Integral/Finite-Element Algorithm for Computing Transient Electromagnetic Field Coupling to a Metallic Enclosure. IEEE Transactions on Antennas And Propagation, 1992, 40(10): 1155~1164
    [45] S.Celozzi, M.Feliziani.Analysis of Fast Transient Electromagnetic Fields:a Frequency Dependent 2-D Procedure. IEEE Transactions on Magnetic , 1992, 28(2): 1146~1149
    [46] Sumiko Sakaguchi, Mitsufoshi Oyama. Application of Maxwell Solvers to PD Propagation-Part III: PD Propagation in GIS. IEEE Electrical Insulation Magazine,2003,19(1):7~12
    [47] WANG Baoyi , LIU Changjun, Zhang Hong. Biological effects and applications on transient electromagnetic fields. Asia Pacifie Microwave Conference,1997,53~56
    [48] Henning F. Harmuth, Member. Comments on “Riemann-Green Function Solution of Transient Electromagnetic Plane Waves in Lossy Media”. IEEE Transactions on Electromagnetic Compatibility, 1991, 33(1):72~73
    [49] D.Margetis,R.W.P.King . Comments on “Propagation of EM Pulses Excited by an Electric Dipole in a Conducting Medium”.IEEE Transactions on Antennas And Propagation,1995,43(1):119~120
    [50] J.Grando, G.Labaune, J.C.Alliot, F.Issac, A.Delannoy . Compatison of Experimental And Numerical Results For Transient Electromagnetic Fields Induced on A Scale Model Aircraft By Current Injection Technique, 1989, 1751~1754
    [51] K.Naishadham. Computation of a branch-cut integral arising in transient electromagnetic scattering by a perfectly conducting cylinder. IEE Proceedings, 1989, 136(3): 367~370
    [52] M.Mohana Rao,M.Joy Thomas,B.P.Singh. Computation of EMI Fields in a High Voltage Gas Insulated Subsetation during Switching Operations. IEEE, 2003,743~748
    [53] S.H.Le G.Bisson, P. J. LeOnard, D.Rodger. Finite Element Analysis of Transient Electromagnetic Heating Effects in Three Dimensions.IEEE Transactions on Magnetics, 1993, 29(1):1102~1106
    [54] Balasubramaniam Shanker, Kemal Aygiin, Noel Gres, Eric Michielssen. Fast Integral Equation Based Analysis of Transient Electromagnetic Scattering from Three-Dimensional Inhomogeneous Lossy Dielectric Objects.IEEE, 2001, 532~535.
    [55] H.Miura,S.Nishio,T.Suzuki. Experimental And Analytical Study of The Electromagne to mechanics on Fusion Reactor.IEEE,1994,653~656
    [56] Steven L.Dvorak. Exact, Closed-Form Expressions for Transient Fields in Homogeneously Filled Wave guides. IEEE Transactions on Micro Wave Theory And Techniques, 1994, 42(11): 2164~2170
    [57] Egon Marx. Electromagnetic Pulse Scattered by a Sphere.IEEE Transactions on Antennas And PropagatiOn , 1987, AP-35(4): 412~417
    [58] Michael E.Baginski, Lloyd S.Riggs, Fred J.German. Electrical Breakdown of Soil About Earthed Conductors Resulting from Late Time EMP Effects.IEEE Transactions Electromagnetic Compatibility, 1988,30(3): 380~385
    [59] R.S.Shi, A.Darcherif, J. C. Sabonnadiere. Computation of Transient Electromagnetic Fields Radiated by a TransmissiOn Line : An Exact Model. IEEE TRANSACTIONS ON MAGNETICS, 1995, 31(4): 2423~2431
    [60] H.Kawaguchi,M.Isoda,T.Honma. Consideration on the Dirichlet-Gauge Boundary Element Method from Topological Point of View.IEEE Transactions on Magnetics,1997,33(2):1436~1439
    [61] H.Kawaguchi, T.Honma . Consideration on Numerical Instability of Dirichlet Gauge BEM.IEEE Transactions on Magnetics,1996,32(3):314~917
    [62] Tang Renyuan, Hu Yan,Lu Zhanghong, Yang Shiyou, Miao Lijie . Computation of Transient Electromagnetic Torque In A Turbogenerator Under The Cases of Different Sudden Short Circuits.IEEE Transations on Magnetics, 1990, 26(2):1042~1045
    [63] 周国华,基于 DSP 的瞬变电磁探测系统设计与实现,吉林大学硕士论文,2006.5
    [64] 王艳,浅海底瞬变电磁接收系统研制,吉林大学硕士论文,2005.5
    [65] 王忠,高速、大动态范围瞬变电磁接收机的研制,仪器仪表学报,Vol.27No.4,Apr.2006,p416-419
    [66] 王艳,林君,周国华,李慧,水上拖曳式 TEM 系统模拟实验研究,仪器仪表学报,第 25 卷第 4 期增刊,2004 年 8 月,P38-39
    [67] Ling Tiecheng, Lin Jun, Chen Zubin. Explorating Tunnel Using Electromagnetic Vibrator. Journal of Jilin University(Earth Science Edition),2005.7,35(Sup.):87~89
    [68] 陈小斌,赵国泽,汤吉等. 大地电磁自适应正则化反演算法. 地球物理学报,2005,48(4):937~946
    [69] A.Stephan, K.-M.Strack . A simple approach to improve the S/N ratio for TEM data usingmultiple receivers.GEOPHYSICS, 1991, 56(6):863~869
    [70] 张运霞,韩自豪,周建雄,康鸿文,周韬.PROTEM67D 瞬变电磁仪器在矿井水文地质勘探中的应用效果.工程地球物理学报,2005.4,2(2):123~128
    [71] 曹国栋,刘树才,刘庆生.TEM 小线框技术在近地表结构中的应用---以徐州市淮塔地基结构研究为例.工程地球物理学报,2005.8,2(4):170~175
    [72] 李貅,薛国强,宋建平,郭文波,武军杰.从瞬变电磁场到波场的优化算法. 地球物理学报,2005.9,48(5): 1185~1190
    [73] 康俊佐,邢光龙,杨善德.电磁传播电阻率测井的二维全参数反演方法研究.地球物理学报,2006.1,49(1):275~283
    [74] 赵国泽,詹艳,陈小斌,韩吉民,官云章,张远东,于旭磊,席京德.电磁法在地下水探查中的应用.工程地球物理学报,2004.6,1(3):220~225
    [75] 严良俊,陈清礼,胡文宝,杨世松,刘云彪.灰岩溶洞发育区浅层瞬变电磁法找水效果.工程地球物理学报,2004.2,1(4):83~90
    [76] 薛国强,李貅,宋建平,郭文波.回线源瞬变电磁成像的理论分析及数值计算.地球物理学报,2004.3,47(2):338~343
    [77] 罗延钟,张胜业,王卫平.时间域航空电磁法一维正演研究.地球物理学报,2003.9, 46(5):719~724
    [78] 白登海,Maxwell A Meju,卢健,王立凤,何兆海.时间域瞬变电磁法中心方式全程视电阻率的数值计算.地球物理学报,2003.9,46(5):697~740
    [79] 闫述,陈明生.瞬变电磁场资料的联合时-频分析解释.地球物理学报,2005.1,48(1): 203~208
    [80] 张晓永,瞬变电磁法的中深部铝土矿预测研究.工程地球物理学报,2005.4,2(2):145~148
    [81] 唐新功,胡文宝,严良俊.瞬变电磁法找水研究.工程地球物理学报,2005.6,2(3):181~184
    [82] 郭文波,李貅,薛国强等.瞬变电磁快速成像解释系统研究.地球物理学报,2005.11,48(6):1400~1405
    [83] 何继善,鲍力知.海底无限长水平线电流源电磁场,中南工业大学学学报,2001.12, 32(6):551~554
    [84] 苏发,汤井田,何继善,温佩琳.源近区频域电磁测深电阻率的一种数值计算方法.中国有色金属学报,1996.3,6(1):6~10
    [85] 陈明生.电偶源瞬变电磁测深研究(一)——基本原理.煤田地质与勘探, 1999.2, 27(1):55~59
    [86] 陈明生.电偶源瞬变电磁测深研究(二)——瞬变电磁场的求解方法.煤田地质与勘探,1999.2,27(2):54~57
    [87] 陈明生,解海军.电偶源瞬变电磁测深研究(三)——大地表面瞬变电磁场. 煤田地质与勘探,1999.3,27(3):58~61
    [88] 陈明生,田小波.电偶源瞬变电磁测深研究(四)——瞬变电磁测深视电阻率.煤田地质与勘探,1999.8,27(4):52~55
    [89] 陈明生,田小波.电偶源瞬变电磁测深研究(五)——实测感应电压转换成垂直磁场.煤田地质与勘探,1999.10,27(5):63~65
    [90] 陈明生.电偶源瞬变电磁测深研究(六)——瞬变场资料的反演解释.煤田地质与勘探,28(1):46~49
    [91] 石显新,闫述,陈明生.瞬变电磁勘探中的低阻层屏蔽问题.煤炭学报,30(2):160~163
    [92] 闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析.地球物理学报,2002.3,45(2):275~284
    [93] 闫述,陈明生,傅君眉.瞬变电磁场信号在地下的扩散及地面上的时域响应特性.煤田地质与勘探,2001.4,29(4):55~57
    [94] 郝威,周学军.采用瞬变电磁法的海底光缆定位.光纤与电缆及其应用技术,2005,(1): 20~22
    [95] 张红旗,潘威炎.垂直电偶极子在有介质导电平面上激起的场.电波科学学报,2000.3, 15(1):13~19
    [96] 熊立志,漆兰芬,张元培.一种新的天线阵列位置误差校正算法.电波科学学报, 2004. 4,19(2):192~194
    [97] 周建华,殷建平,张光生.宽带对数周期天线的优化设计.电波科学学报,2000.6, 15(2): 157~161
    [98] 延晓荣,金元松,罗翠梅.阻容加载偶极天线的宽带性能及效率分析.电波科学学报, 2000.6,15(2):169~173
    [99] 余春,郭华民.用于瞬态电磁场测量的宽带脉冲天线.电波科学学报,1997.6, 12(2): 190~194
    [100] 林君,嵇艳鞠,于生宝,王忠,王静,王艳,周国华,吴国强.ATEM-Ⅱ型瞬变电磁系统的实际应用.物探与化探,2004.12,28(6):496~499
    [101] 何展翔,孙卫斌,孔繁恕,王晓帆.海洋电磁法.石油地球物理勘探,2006.8,41(4): 451~459
    [102] 邓明,侯胜利,王广福,邱开林,熊玉珍,张启升.中国海底地球物理探测仪器的新进展.勘探地球物理进展,2003.8,27(4):241~245
    [103] 孙卫斌,李德春.海洋油气电磁勘探技术与装备简介.物探装备,2006.3,16(1):16~32
    [104] 陈儒军,白宜诚,邓明.海底大地电磁探测仪数据采集软件.中南工业大学学报,2002.4,33(2):111~115
    [105] 邓明,沈高山,余平,邓靖武.基于麦克斯韦理论的海底大地电磁探测技术.海洋技术,2003.6,22(2):44~47
    [106] 周彦儒,王晓红.航空热红外遥感在探测石油管道中的应用.国土资源遥感,1998.9,(37):86~89
    [107] 王一新,于鹏,王永涛.海洋电磁测探在石油勘探中的应用前景.中国海上油气地质,1997,11(2):151~152
    [108] 李冶,李庆凯,林君.海底大地电磁探测数据畸变校正方法的研究.自动化与仪器仪表,33~34
    [109] 胡佳音,陈新明,高宇清.自行海底作业车履带式底盘虚拟样机建模探讨.矿业研究与开发,2003.8,23(4):32~57
    [110] 刘庆生,李海侠,王芳,田志,王艾红,陈龙生,张双喜,夏响华,程同锦. 油气藏全空间磁学、地球化学与矿物学结构及意义——检验“烟筒效应”的形成机理.地球科学——中国地质大学学报,2002.9,27(5):637~644
    [111] 徐家声,张效龙.我国第四纪地质科学应用的新领域--海底光缆工程路由勘察.第四纪研究,2003.7,23(4):415~420
    [112] 孙春岩,章明昱,牛滨华,黄新武.天然气水合物地震似海底反射现象 AVO 正演模型研究.现代地质,2003.9,17(3):337~344
    [113] 石 显 鑫 . 水 平 电 偶 源 充 电 电 磁 法 正 常 研 究 及 其 应 用 . 煤 田 地 质 与 勘探,1996.4,24(2):42~47
    [114] 常宗虎,施小成,边信黔,姜秀鹏.浅海海底管线检测与维修中的对线控位方法研究.船舶工程,2003,25(2):49~52
    [115] 张全胜,杨生,刘沈衡.连续电磁剖面法在石油勘探中的应用.资源调查与环境,2002,23(3):205~213
    [116] 姚治龙, 王庆乙,胡玉平,刘俊昌.利用 TEM 测深校正 MT 静态偏移的技术问题.地震地质,2001.6,23(2):257~263
    [117] 王庆乙.TEMS-3S 瞬变电磁测深系统的研制.有色金属矿产与勘查,1996.3,5(3): 169~175
    [118] 翁爱华,刘国兴.西方大地电磁测深法理论发展现状.世界地质,1998.3,17(1):60~68
    [119] 曾昭发,薛建,王者江,田钢,翁爱华.探地雷达物理模拟相似性准则及监测油气污染试验.长春科技大学学报,1998.10,28(4):453~457
    [120] 翁爱华,陆冬华,刘国兴.利用连分式定义瞬变电磁法全区视电阻率研究.煤田地质与勘探,2003.6,31(3):56~59
    [121] 李桐林,翁爱华,林君.海洋环境中大地电磁测深阻抗的 ROBUST 估计.长春科技大学学报,1999.1,29(1):81~83
    [122] 翁爱华,李舟波,王雪秋.地表大回线源在任意层状介质中产生磁场的计算.物探化探计算技术, 2000.8,22(3):245~249
    [123] 嵇艳鞠,林君,于生宝,王忠,周逢道,李慧.ATEM 瞬变电磁系统在长春市活断层勘探中的应用.吉林大学学报(地球科学版), 2005.7,32(Sup.):99~103
    [124] 豆会平,魏启.脉冲瞬变电磁仪的发展状况及对策.石油仪器,2000.8,14(4):26~28
    [125] 李艳萍,高小其.电导率的测定及其在地震监测和水质分析中的应用.内陆地震,2001.3,15(1):88~92
    [126]徐义贤.电磁学中的某些进展与电磁法的有关问题.地球物理学进展,1996.2,11(1):88~96
    [127] 陈本池,牟永光,孙吉定.瞬变电磁法资料的快速反演成像技术与软件.物探与化探,2000.10,24(5):377~286
    [128] 李实,李创社,张鹏飞,包松清,宋建平. 高性能瞬变电磁仪的研制及应用.物探与化探,2000.2,24(1):76~80
    [129] 嵇艳鞠,林君,于生宝,朱凯光,王忠,王静.强场源 TEM 测量仪器和在大型矿山接替资源勘探中的应用研究.地震地质,2005.3,27(1):115~122
    [130] 王艳,刘长胜,林君,周逢道,李慧,周国华.浅海底瞬变电磁探测技术研究新进展.吉林大学学报(地球科学版),2005.7,35(Sup.):23~26
    [131] 林君.电磁探测技术在工程与环境中的应用现状.物探与化探,2000.6,24(3):167~177
    [132] 林君.地球物理弱磁测量仪器进展.石油仪器,1997,11(2),7~11
    [133] 嵇艳鞠,林君,朱凯光,李海生,王艳,陈祖斌.利用瞬变电磁技术进行地下水资源勘察.地球物理学进展,2005.9,20(3):828~833
    [134] 陈本池,牟永光,孙吉定.瞬变电磁法资料的快速反演成像技术与软件.物探与化探,2000.10,24(5):377~386
    [135] 曾向林.瞬变电磁法在工程地球物理勘探中的应用.西部矿探工程,2001.3,series(70):44~45
    [136]于生宝,王忠,嵇艳鞠,林君.瞬变电磁法浅层探测技术.电波科学学报,2006.4,21(2):284~287
    [137] 王忠,嵇艳鞠,林君,于生宝,周国华.全程瞬变电磁系统的浅层探测实验研究.吉林大学学报(地球科学版),2005.7,35(Sup.):95~98
    [138] W.L.Anderson,R.K.Moore. Frequency Spectra of Transient Electromagnetic Pulses in a Conducting Medium. IEEE,1960,603~607

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700