不接触电极探测方法及仪器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制出不接触电极发射与接收系统,提出了不接触电极复电阻率探测方法,并推导出相应计算与解释公式。
     通过仿真、模型和活断层探测实验验证了不接触电极探测的可行性;采用双频脉冲发射方法,解决了由于单频脉冲谐波分量能量相对较弱,进行频散率测量时存在困难的问题;确定了发射电极与接收电极的形状、面积、极距对接收信号的影响,推导出线电极装置系数。
     采用复电阻率不接触电极探测方法,不仅保持了原有不接触电极视电阻率勘探方法的实时、高效率的优点,同时又可以通过频散率测量,探测目标体的介电性差异,可以应用于环境污染、工程勘探等方面,探测塑料、水泥等目标体,拓宽了原有不接触电极勘探方法的应用范围。
In the investigation and evaluation of national resources, electrical detection methods play an increasingly important role. With the progress of the technology, they also used to solve some engineering detection problems such as reservoir dam leakage, highway roadbed detection and so on. Traditional electrical methods adopt grounded electrode to measure resistivity, that is, using copper electrode or other non-polarized electrodes. In the good conditions, grounded electrode can provide the necessary power supply to improve detection depth and resolution. But in the bedrock exposed areas and other cases in which the contact electrode is forbidden, the non-contact electrode will be adopted to meet the requirements and be expected to improve the work efficiency based on traditional electrical methods. Therefore, we proposed a project Application of non-contact electrode methods and got the support of the Department of National Resource.
     Current non-contact electrode measurements transmit fixed frequency and adopt the open capacitance pole plate to make a resistance-capacitance coupling network with the ground. But the resistivity measurement methods cannot distinguish the deference between those targets which have similar resisitivity but quite different in dielectric parameter. So we proposed the non-contact electrode detection to distinguish the deference the complex impedance.
     1. Development of transmitter and receiver for non-contact electrode detection
     Transmitter is an indispensable equipment of active source electromagnetic methods. Time domain electromagnetic methods (TDEM), frequency domain electromagnetic methods (FDEM), inspired polarized methods (IP), charging methods and controlled sources audio frequency magnetotellurics technologies (CSAMT) require power or current from the transmitters as active source. The performance of the transmitter will directly affect the accuracy of the interpretation results. After studied the Ohm-Mapper system, we developed and tested the transmitter system with intermittent transmitting sine current.
     In complex impedance measurement methods, the major observation parameters are the amplitude△Uf , the apparent dispersion rate Ps and the phase of voltage signal with different frequency. There are two measurement methods: one is dual frequencies measurement, that is, calculating the apparent dispersion rate Ps through measuring the signal amplitude and phase with dual frequencies; the other method is called harmonic wave measurement, that is, through measuring the amplitude and phase of base wave and odd harmonic waves to get the PS, and it only need the base wave current. The absolute phase measurement is sample but it is very difficult to transfer the synchronization signal in fieldwork and it will increase the complexity of the electric circuit. The harmonic wave measurement is sample too, but it is also difficult to detect the weak harmonic wave signal according to the Fourier transform. So we adopted dual frequencies pulse as transmitting resource and use Insulated Gate Bipolar Transistor (IGBT) bridge circuit. We developed the transmitter prototype that can transmit single frequency pulse and dual frequencies pulse.
     2. Development of the receiver for non-contact electrode detection
     To satisfy acquisition of field data, the receiver should be stability, low power consumption, portable, large storage capacity and high accuracy. According to above requirements, a receiver was developed based on DSP techniques. DSP chips integrate real-time processing and control capacity. They are flexible to manipulation with low power consumption and computing capacity with high speed. These features provide ideal solution to the problems of immense computation and field interpretation.
     Laboratory tests and experiments were made focused on measurement of noise level of receiver, depressing of power frequency disturbance and removing of error data. These improvements ensure the overall properties of receiver to satisfy field detection.
     Non-contact electrode method means injection the current power into the ground through the capacitance coupling. In the apparent resistivity measurement, the ground can be equivalent to a resistance network. The ground and the electrodes can be equivalent to a series of parallel capacitor. The voltage obtained from the receiver electrodes divided by the transmitting current is apparent resistivity. The dissertation adopted the transmitter electrodes and receiver electrodes as“cable electrodes”and deduced the configuration coefficient K of the“cable electrodes”.
     After testing experimental parameters of the circular electrodes, rectangular electrodes and cable, it can be concluded that the obtained voltage will increase as the increase of area of plats and length of the cable. The obtained voltage will decrease as the increase of distance between receiver electrodes and transmitter electrodes. The experiment results indicated that the performance of the cable electrodes were better than other electrode forms. So we adopted the cable as the transmitter electrodes and receiver electrodes.
     3. Simulations and tests of non-contact electrodes method for apparent resistivity detection
     The principle of non-contact electrodes method for apparent resistivity detection was studied. The expressions electromagnetic field excited by electric dipole in infinite homogenous space and half homogenous space are presented. The expressions of Harmonic wave excited by electric dipole put on the surface of half homogenous space are presented. The expressions of electromagnetic field in half space including high resistivity layer excited by electric dipole are presented. The electromagnetic fields excited by electric dipole in infinite homogenous space, half homogenous space, half space with high resistivity layer and half space with high resistivity globe were simulated employing MATLAB.
     Based on apparent resistivity detection method, transmitter electrodes and receiver electrodes were proved to be‘line electrodes’according to experiments. The configuration coefficient of non-contact electrodes method was presented.The configuration coefficient of non-contact cable electrode K is:
     In laboratory, tests of axial arrayed non-contact electrodes were made. In the suburb of Changchun city, the method was used to detect active fault. Detection results have been compared with results from other electrical methods like transient electromagnetic method (employing GDP-32), composite profile method, and frequency electromagnetic method (employing GEM-2). These results have good agreements, which verified the feasibility of non-contact electrodes method.
     4. Detection of non-contact electrode method for complex impedance
     Based on the theory of non-contact electrode for apparent resistivity, we deduced the related calculation formula and interpretation formula. We simulated the correlation computation of complex sequence in advance for the actual field detection.
     The resistance dispersion is that the resistivity of rock changes with the excitation frequency. It is one important character of the rock medium. In general, frequency electromagnetic detection belongs to complex resistivity detection. Using the dispersion of electric parameter for geological evaluation is the major character of complex resistivity detection. Some oversea researchers conducted the complex resistivity measurement in lab, but did not mention the instrument development. The dissertation stated the theory of complex resistivity measurement, developed the relevant instrument system, simulated and interpreted the experimental data. At last, it was proved the feasibility and validity of the methodology.
     In general, we think rock has its resistance and capacitance. We can introduce the resistance and capacitance network model to study the dispersion of rock and deduce the complex resistivity of rock:
     In general, we interpret the resistivity spectrum based on the Cole-Cole model assumptions, the spectrum can be described as:
     The dissertation adopted the cole-cole model to validate the relationship between complex resistivity and excitation frequency.
     The complex resistivity can be obtained from the parameters:ρ0,η,c andτ, it also can be derived from the amplitude and phase angle.
     Principle of non-contact four-electrode method is presented. The amplitude and phase of normalized complex resistivity, especially whenεr varies linearly, were simulated employing MATLAB. Based on the interpretation of data and computer simulation, phase correlation detection was implemented. Detection result of active fault detection in suburb of Changchun city verifies feasibility and validity of non-contact electrodes method for complex resistivity detection.
     5. Conclusions
     Major innovations:
     (1). Propose the non-contact electrode detection for complex resistivity.
     The dissertation presented the non-contact electrode detection for complex resistivity based on the apparent resistivity detection and deduced the calculation and interpretation formulas, and the simulation is conducted using MATLAB. It simulates, the earth model of liear changingεr. It not only keeps the advantages of apparent resistivity detection such as real-time and efficiency, but also can detect the targets with different dispersion character. It can be used in environmental pollution and engineering detection for detecting the objects of differences in permittivity such as plastic and cement broading the application of this method.
     (2). Double-frequency transmitting technology in electrical method using non-contact electrode
     The non-contact electrode method utilized dual frequency pulse synchronized transmitting to detected the phase difference and measure the dispersion rate, which is difficult for single frequency pulse transmitting to measure the dispersion rate with correlation detection because of the weak harmonic energy.
     (3). Employing the electrical method of non-contact electrode to detect city faultage
     Faultage is the source of various kinds of geological disaster. City faultage detection is important for engineering security evaluation and disaster prevent. The field results comparison of detecting city faultage between non-contact electrodes method, and TEM, composite profile method, and FEM respectively shows this method is feasible in faultage detecting.
     Major existing problems:
     (1). The equivalent circuit model is the simplified form to study the relationship between the resistivity and frequency. It is also used to introduce the conductive mechanism and dispersion of rock medium. The dissertation presented the resistance-capacitance network model to simulate the ground medium, but actually the situation is much more complicated, there no deeper research in the dissertation.
     (2). The instrument is not commercialized yet.
引文
[1] 何继善. 电法勘探的发展和展望[J]. 地球物理学报, 1997, 40(增): 308-316.
    [2] 李金铭. 电法勘探方法发展概况[J]. 物探与化探, 1996, 20(4): 250-258.
    [3] 程德福, 林君. 部分工程与环境物探仪器现状与展望[J]. 地学仪器, 1997, (4): 1-4.
    [4] 魏文博. 我国大地电磁测深新进展及展望[J]. 地球物理学进展, 2002, 17(2): 245-254.
    [5] 刘士毅, 张明华. 中国金属矿地球物理勘查[J]. 地学前缘. 1998, 5(1-2): 201-207.
    [6] 吴其斌, 崔霖沛. 国外勘查地球物理的若干进展-1996年[J]. 物探与化探, 1998, 22(l): 10-20.
    [7] Б.Л.Столов, Н.Г.Шкабарня. Изучение Рудоностный Структур Приморья Методами Электроразведки[M]. ДВГТУ, 1995: 5-18.
    [8] http://www.geometrics.com/geoelectrical/geoelectrical.html[OL]. Geometrics Inc., 2005.
    [9] 刘英, 曹晓珑, 李学敏. 变间隙不接触电极及其测量绝缘材料εr和tanδ的技术[J]. 电工技术学报, 2005, 20(1): 45-49.
    [10] 李兆林, 王先锋, 曹晓珑, 楼巧琴. 用非接触电极测试聚丙烯薄膜的相对电容率和介质损耗因数的研究[J]. 绝缘材料, 2005, (1): 52-55.
    [11] 陈儒军. 伪随机多频电磁法观测系统研究[D].
    [12] 于生宝. 不接触电极测量在电法中的应用[R]. 国土资源部项目验收报告, 2003:1-30.
    [13] 于生宝等. 不接触电极探测方法研究[J]. 仪器仪表学报, 2006, 27(4): 416-419.
    [14]中南大学博士学位论文, 2003.张辉, 李桐林. 利用 Cole-Cole 模型组合得到 SIP 真参数的联合频谱最优化反演[J].西北地震学报, 2004, 26(2): 108-112.
    [15] 谢捷生. 我国时间域激电仪的发展过程及现状[J]. 地学仪器, 1996, (1): 7-10.
    [16] 林君, 石磊. GPS 在地球物理勘探中的应用展望[J].地学仪器, 1996, (4): 1-5.
    [17] Ingelise M?ller, Bo H. Jacobsenz, and Niels B.Christensen.Rapid inversion of 2-D geoelectrical data by multichannel deconvolution. [J]. Geophysics, 2001,66, (3) :800–808
    [18] 董浩斌, 王传雷. 分布式智能化高密度电法测量系统[J]. 地学仪器, 1997, (4): 26-27.
    [19] 姜作勤. 国内外地学领域计算机应用设备配置的现状[J]. 地学仪器, 1997, (3): 1-7.
    [20] 何继善. 伪随机三频电法研究[J]. 中国有色金属学报, 1994, 4(1): 1-7.
    [1] 武汉地质学院金属物探教研室. 电法勘探教程[M]. 地质出版社, 1980: 1-117.
    [2] 傅良魁. 电法勘探教程[M]. 地质出版社, 1983: 7-117.
    [3] R. 科埃略, B. 阿拉德尼兹. 电介质材料及其介电性能[M]. 科学出版社, 2000: 48-133.
    [4] A. A. 考夫曼, G. V. 凯勒. 频率域和时间域电磁测深[M]. 地质出版社, 1987: 144-279.
    [5] 顾功叙. 地球物理勘探基础[M]. 地质出版社, 1990: 63-97.
    [6] M. C. 日丹诺夫. 电法勘探[M]. 潘玉玲, 王守坦译. 中国地质大学出版社, 1990: 1-168.
    [7] 盛庆新. 计算电磁学要论[M]. 科学出版社, 2004: 1-15.
    [8] 米萨克. G. 纳比吉安. 勘查地球物理电磁法第一卷理论[C]. 赵经祥, 王艳君译, 地质出版社, 1992.1: 1-348.
    [9] 王蔷, 李国定, 龚克. 电磁场理论基础[M]. 清华大学出版社, 2001: 25-234.
    [10] Andreas Kemna, Andrew Binley, and Lee Slater.Crosshole IP imaging for engineering and environmental applications[J]. Geophysics,2004, 69(1): 97–107.
    [11] 张赛珍, 王庆乙, 罗延钟. 中国电法勘探发展概况[J]. 地球物理学报, 1994, 37(增 1): 408-424.
    [12] 薛克先, 冯永江. 重庆地质仪器厂地震、电法勘探、测井等仪器的回顾与展望[J]. 地学仪器, 1993, (3): 12-24 .
    [13] 王兴泰. 万明浩等. 工程与环境物探新方法新技术[M]. 北京: 地质出版社, 1996: 108-131.
    [14] 傅良魁. 激发极化法[M]. 北京: 地质出版社, 1982: 3-1572.
    [15] 王鸿钰. 网络化测量和控制[J]. 仪表技术, 2001, (1): 46-49.
    [16] 罗延钟, 张桂青. 频率域激电法原理[M]. 北京: 地质出版社, 1988: 1-172.
    [17] 刘菘. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998: 1-70.
    [18] 蔡军涛, 阮百尧, 罗润林. 层状大地视真频参数测深曲线的反演[J]. 中南大学学报(自然科学版), 2004, 35 (4): 662-666.
    [19] 林品荣, 赵子言. 分布式被动源电磁法系统及其应用[J]. 地震地质. 2001, 23(2): 138-142.
    [20] Carlos A.Dias.Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics, 2000,65(2):437–451.
    [1] 马立峰, 潘霞. 10千瓦瞬变电磁发送系统技术特点及GTR应用技术研究[J]. 地学仪器, 1997, (2): 13-16.
    [2] 白宜诚, 崔燕丽, 蒲慧如. SQ型双频激电仪的研制[J]. 物探与化探, 2002, 26(6): 456-460.
    [3] 重庆地质仪器厂. DZD-6A多功能直流电法仪[OL].2006. http://www.cgif.com.cn/products/dianfa/dzd-6a.htm
    [4] 重庆地质仪器厂. DUK-2A智能高密度电法测量系统[OL]. 2006. http://www.cgif.com.cn/products/dianfa/Duk-2A.htm
    [5] 重庆地质仪器厂. DDC-6型电子自动补偿仪[OL]. 2006. http://www.cgif.com.cn/products/dianfa/ddc-6A.htm
    [6] 重庆地质仪器厂. 大功率激电测量系统[OL]. 2006 http://www.cgif.com.cn/products/dianfa/DJF-10.htm
    [7] 重庆奔腾数控技术研究所. WDFZ-2大功率智能发射机[OL]. 2006.http://www.cqbtsk.com.cn/ Wdfz-2.htm
    [8] 重庆奔腾数控技术研究所. WDJF-1数字幅频激电仪[OL]. 2006. http://www.cqbtsk.com.cn/ Wdjf-1t.htm
    [9] 重庆奔腾数控技术研究所. WGMD-6分布式三维高密度电阻率成像系统[OL]. 2006. http://www.cqbtsk.com.cn/ Wgmd-6.htm
    [10] 董浩斌, 王传雷. 分布式智能化高密度电法仪的特点及应用[C]. 中国地球物理学会.中国地球物理年会年刊(2000), 武汉: 中国地质大学出版社, 2000.
    [11] 董浩斌, 谢瑞和. 多功能PC机数据采集控制接口的研制及在物探中的应用[C]. 中国地球物理学会. 中国地球物理年会年刊(1998), 西安: 西安地图出版社. 1998.
    [12] 鲍光淑, 何继善. 多参数频域激电观测系统的研究[J]. 地学仪器, 1995, (2): 5-10.
    [13] 张友山, 何继善. DF-1微机程控多功能大功率发送机的研制[J]. 物探与化探, 1995, 19(2): 142-147.
    [14] 于生宝, 林君. 瞬变电磁法中发射机关断时间的影响研究[J]. 石油仪器, 1999, 13(6): 15-17.
    [15] 常欣, 邓明等. DDJ-1型多功能激电仪[J]. 地学仪器, 1994, (3): 18-20.
    [16] 曹岩, 曹印三等. DD-1型大功率电磁频测仪[J]. 地学仪器, 1995, (2): 26-28.
    [17] 于生宝等. GPS同步瞬变电磁探测系统设计[J]. 电子测量与仪器学报, 2005, 19(4): 39-42.
    [18] 董浩斌, 王传雷. 分布式智能化高密度电法测量系统[J]. 地学仪器, 1997, (4): 26-27.
    [19] 陈春丽, 邱德洪. DDZS-1多参数找水仪的研制[J]. 地质装备, 2002, 3(1): 27-29.
    [20] 常欣, 邓明等. 高密度电阻率测量系统[J]. 地学仪器, 1996, (1): 27-32.
    [21] 陈鸿志. DW-1型大功率直流电测仪-找水专用新仪器[J]. 地学仪器, 1997, (3): 8-12.
    [1] 陈儒军, 罗维炳, 何继善, 白宜诚, 汤井田. WDD-2伪随机多频电法接收机[J]. 石油仪器, 2003, 12: 8-12.
    [2] 马明建, 周长城. 数据采集与处理技术[M]. 西安: 西安交通大学出版杜, 1998: 9-125.
    [3] 林君. 浮点数据采集原理与实现技术[J]. 地学仪器, 1996, (2): 23-28.
    [4] 高文利, 瞿兴昌. JIY-4A 型地下电磁波仪的设计[J]. 地学仪器, 1997, (2): 3-11.
    [5] 石福升. GPS 同步高速大容量据采集系统设计[J]. 石油仪器, 1998, 12(5), 12-14.
    [6] 郭大江, 史燕. 低频电流磁场法观测系统[J]. 地学仪器, 1996, (2): 14-22
    [7] 何继善. 2n系列伪随机信号及应用[C]. 中国地球物理学会. 中国地球物理年会年刊(1998) , 西安: 西安地图出版社, 1998.
    [8] 何继善, 鲍光淑, 张友山. 双频道数字激电仪[M]. 长沙: 中南工业大学出版社, 1988.
    [9] 郑彩君. 智能仪器提高采样速率的方法[J]. 地学仪器, 1995, (2): 19-25.
    [10] 林君. 虚拟仪器的概念及其进展[J]. 地学仪器, 1995, (3): 1-6.
    [11] 沈兰荪. 高速数据采集系统的原理与应用[M]. 北京人民邮电出版社. 1995: 5-191.
    [12] 刘益成, 罗堆炳. 信号处理与过抽样转换器[M]. 北京: 电子工业出版社, 1997: 1-143.
    [13] 沈兰荪. 智能仪器与信号处理技术[M]. 北京: 科学出版社, 1990: 12-95.
    [14] 沈民奋, 孙丽莎. 现代随机信号与系统分析[M]. 北京: 科学出版社, 1998: 98-127.
    [15] 王宏禹. 数字信号处理专论[M]. 北京: 国防工业出版社. 1995: 66-112.
    [16] 宋万杰, 罗丰. CPLD 技术及其应用[M]. 西安: 西安电子科技大学出版社, 1999: 5-70.
    [17] 王庆乙. TEMS-3S 瞬变电磁测深系统的研制[J]. 地学仪器, 1996, (2): 5-13.
    [18] 马立峰. WDC-2A 瞬变电磁测量系统中的高速采集电路. 地学仪器. 1997, (3): 24 -26.
    [19] 刘松强. 数字信号处理系统及其应用[M]. 北京: 清华大学出版社, 1996: 10-68.
    [20] 谢捷生. JJ-6 型微机激电仪[J]. 地学仪器, 1994, (2): 17-21.
    [21] 豆会平, 魏启. 脉冲瞬变电磁仪的发展状况及对策[J]. 石油仪器, 2000, 14(2): 26-29.
    [22] 张恒涛. 仪器设备抗干扰技术研究[J]. 石油仪器, 14(2): 35-37.
    [1] Richard S. Smith.The realizable resistive limit: A new concept for mapping geological features spanning a broad range of conductances GEOPHYSICS, 2000,65(4):1124–1127
    [2] Adam Pidlisecky1,Rosemary Knight1,and Eldad Haber.Cone-based electrical resistivity tomography[J]. Geophysics, 2006,71(4):G157–G167
    [3] Susumu Sakashita, Hiromasa Shima. Experimental studies on EM tomography: An improved imaging technique for magnetic susceptibility and resistivity[C]. Proc. The 3rd SEGJ/SEG Int. Symp. On Geotomography, SEGJ and SEG submitted. 1995.
    [4] Douglas C.Fraser and Greg Hodges.Induction-response functions for frequency-domain electromagnetic mapping system for airborne and ground configurations. [J]. Geophysics, 2007.72(2) : F35–F44.
    [5] Hiromasa Shima, Susumu Sakashita. Developments of non-contact data acquisition techniques in electrical and electromagnetic explorations[J]. Jourmal of Applied Geophysics, 1996, 35, 167-173.
    [6] Gasnier. S., Hiromasa Shima, Susumu Sakashita and Abdelhadi. A. Development of multi-component multi-frequency data acquisition system for borehole EM tomography[C]. 56th. Mtg Eur. Assn. Expl. Geophys., Extended Abstracts. 1994.
    [7] Torres-Verdin, C. and Haashy, T. M. Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation[J]. Radio Sci., 1994, 29, 1051-1079.
    [8] Jiuping Chen.and Douglas W. Oldenburg.A new formula to compute apparent resistivities from marine magnetometric resistivity data[J]. Geophysics, 2006,71(3): G73–G81
    [9] Shima, H., S. Sakashita, and T. Kobayashi, Developments of non-contact data acquisition techniques in electrical and electromagnetic explorations[J].Journal of Applied Geophysics, 1996, 35, 167–173.
    [10] 张友山, 何继善. 三频激电相对相位观测法[J]. 中南矿冶学院学报, 1994, 25(4): 417. 121.
    [11] 柯式镇, 刘迪军, 冯启宁. 线圈法岩心复电阻率扫频测量系统研究[J]. 勘探地球物理进展, 2003, 26 (4): 309-312.
    [12] 何继善, 柳建新. 伪随机多频相位法及其应用简介[J]. 中国有色金属学报, 2002, 12(2): 374-376.
    [13] 刘桂雄, 冯云庆, 申柏华. 现场总线与虚拟仪表技术相融合的发展新趋势[J]. 传感器技术, 2002, 21(7): 59-6l.
    [14] 黄俊革. 三维电阻率/极化率有限元正演模拟与反演成像. 中南大学博士论文[D]. 2003, 6: 1-78.(3)
    [15] 于生宝, 王忠, 嵇艳鞠. 瞬变电磁法浅层探测技术[J]. 电波科学学报, 2006, 21(2): 1-4.
    [16] 何继善. 双频道激电法研究[M]. 长沙: 湖南科学术出版杜, 1989.
    [17] Sofia Davydycheva1,Nikolai Rykhlinski, and Peter Legeido.Electrical-prospecting method for hydrocarbon search.using the induced-polarization effect.[J]. Geophysics, 2006,71( 4): G179–G189
    [18] 张友山, 何继善. 伪随机三频波激电法[J]. 中南大学学报, 1995, 26(2): 157-161.
    [19] 王玉明. 提高频谱激电物探接收机抗干扰能力的一种探讨[J]. 地学仪器, 1994, (4): 22-28.
    [20] 杨生, 鲍光淑, 张全胜. 远参考大地电磁测深法应用研究[J]. 物探与化探, 2002, 26(1): 27 -31.
    [21] 应怀樵. 波形和频谱分析与随机数据处理[M]. 北京: 中国铁道出版社. 1983: 176-310.
    [22] 吴汉荣, 谢婷婷. 激电相对相位测量及其地质效果[C]. 勘查地球物理勘查地球化学文集 3 集-激发极化法专集. 北京: 地质出版社, 1985. 295-300.
    [23] 罗延钟, 马永旺, 昌彦君等. 电场差分法一维正演研究[J]. 地球科学—中国地质大学学报, 1997, 22 (1): 74-80.
    [1] 柯式镇, 何亿成, 邓友明等. 复电阻率测井响应的数值模拟[J]. 测井技术, 2002, 26( 6) : 446-448.
    [2] 陆启行. 复电阻率测量使用柯尔-柯尔模型拟合中若干问题的探讨[J]. 物化探计算技术, 1985, 7(1): 45-49.
    [3] 阮百尧, 罗润林. 一种新的复电阻率频谱参数的递推反演方法[J]. 物探化探计算技术, 2003, 25 (4): 298-301.
    [4] Peter Stummer, Hansruedi Maurer, and Alan G. Green.Experimental design: Electrical resistivity data sets that provide optimum subsurface information. [J]. Geophysics, 2004,69 (1) :120–139.
    [5] 安珊, 李能根. 含水岩石复电阻率的实验研究[J]. 测井技术, 1998, 22(5): 315- 317.
    [6] 柯式镇, 冯启宁. 岩电实验中非线性最小二乘法拟合软件[J]. 测井技术, 1996, 20(5): 379-383.
    [7] 李翰如. 电介质物理导论[M]. 成都: 成都科技大学出版社, 1990: 1-216.
    [8]. 姜恩承, 令狐松, 叶青竹, 王丹. 频率域复电阻率数学模型研究[J]. 测井技术, 2002, 26(2): 98-100.
    [9] 方俊鑫, 殷之文. 电介质物理学[M]. 北京: 科学出版社, 1998: 16-52.
    [10] 罗延中, 张桂青. 频率域激电法原理[M]. 北京: 地质出版社, 1988.
    [11] 席振铢, 张友山, 张宪润. 运用对称四极测深研究层状极化介质频谱特征[J]. 中南工业大学学报(自然科学版), 2003, 34(1): 8-10.
    [12] 刘崧, 薛继安, 徐建华. 求地下极化体真柯尔—柯尔参数的研究[J]. 物探与化探, 2000, 24(1): 51-61.
    [13] Gao J, Liu D J, Feng Q N. Comparison of resistivity measurement in lab with computer modeling results and their combined applications[C]. In: SPWLA 41st Symposium , 2000: 445-457.
    [14] 聂馨五, 张赛珍, 周安昌. 激发极化法探测油气田—效果及异常模式探讨[J]. 地球物理学报, 1987, 30 (4): 412 -422.
    [15] Oliver Kuras,David.Beamish, Philip I.Meldrum, and Richard D.Ogilvy. Fundamentals of the capacitive resistivity technique. [J]. Geophysics, 2006,71(3) :135–152.
    [16] 王自力, 张赛珍. 一种真复电阻率谱参数的求解方法[J]. 地球物理学报, 1990, 35(6): 712-721.
    [17] 罗延钟, 方胜. 视复电阻率频谱的一种近似反演方法[J]. 地球科学, 1986, 11(1): 93-102.
    [18] 阮百尧, 罗润林. 一种新的复电阻率频谱参数的递推反演方法[J]. 物探与化探计算术, 2003, 25 (4): 298-301.
    [19] 刘崧, 薛继安, 徐建华. 求地下极化体真柯尔-柯尔参数的研究[J]. 物探与化探, 2000,24(1): 51-61.
    [20] 蔡军涛, 阮百尧, 罗润林. 层状大地视真频参数测深曲线的反演[J]. 中南大学学报(自然科学版), 2004, 35(4): 662-666.
    [21] 张桂青, 罗延钟, 崔先文. 由视谱直接反演真谱参数的实用方法[J]. 地球科学, 1991, 16(2): 229-239.
    [22] 刘崧, 官善友, 高鹏飞. 求极化椭球体真cole-cole 参数的联合谱激电反演[J]. 地球物理学报, 1994, 37(增刊): 542-551.
    [23] Benderitter, Y., A. Jolivet, A. Mounir, and A. Tabbagh, Application of the electrostatic quadripole to sounding in the hectometric depthrange. [J]. 1994,Journal of Applied Geophysics, 31, 1–6.
    [24] Bristow, Q., and C. J. Mwenifumb, Evaluation of a Russian-designedborehole resistivity probe based on a capacitive principle: Eastern Canada and national and general programs. [J]. Current Research Geological Survey of Canada, 1998-D, 65–73.
    [25] 刘崧, 鲁永康, 薛继安. 电场差分法理论研究[J]. 地球物理学报, 2002, 45, (4): 584-595.
    [26] Grard, R., A quadrupolar array for measuring the complex permittivity of the ground: Application to earth prospection and planetary exploration. [J]. Measurement Science & Technology, 1990, 1, 295–301.
    [27] Grard, R., and A. Tabbagh, A mobile four-electrode array and its application to the electrical survey of planetary grounds at shallow depths. [J]. Journal of Geophysical Research, 1991,96, B3, 4117–4123.
    [28] 刘钦圣. 最小二乘问题计算方法[M]. 北京: 北京工业大学出版社, 1989: 1-148
    [29] Panissod, C., M. Dabas, A. Hesse, A. Jolivet, J. Tabbagh, and A. Tabbagh, Recent developments in shallow-depth electrical and electrostaticprospecting using mobile arrays. [J]. Geophysics, 1998,63, 1542–1550.
    [30] Craig Ulrich and Lee D.Slater.Induced polarization measurements on unsaturated, unconsolidated sands[J]. Geophysics, 2004,69(3):762–771.
    [31] Ringhandt, A., and H. G. Wagemann, An exact calculation of the 2-dimensional capacitance of a wire and a new approximation formula[J]. IEEE Transactions on Electron Devices, 1993,40, 1028–1032.
    [32] Sakurai, T., and K.Tamaru, Simple formulas for two- and three dimensional capacitances[J].IEEE Transactions on Electronic Devices, 1983, 30,183–185.
    [33] 柳建新, 何继善. 一种区分矿与非矿的有效方法-伪随机多频相位法原理及其应用[J]. 中国地质, 2001, 28(9): 41-46.
    [34] Tabbagh, A., A. Hesse, and R. Grard, Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole:Field trials on archaeological sites[J]. Geophysical Prospecting, 1993,41,579–597.
    [35] Tabbagh, A., and C. Panissod, 1D complete calculation for electrostatic soundings interpretation[J]. Geophysical Prospecting, 2000, 48, 511–520.
    [36] Junxing Cao, Zhenhua He, Jieshou Zhu, and Peter K.Fullagarz. Conductivity tomography at two frequencies[J]. Geophysics, 2003,68(2):516–522.
    [37] Wait, J. R., Comments on: “Application of the electrostatic quadripole to sounding in the hectometric depth range,” Benderitter et al., authors[J].Journal of Applied Geophysics, 1995, 34, 79–80.
    [38] 昌彦君, 罗延钟, 彭复员. 时间谱电阻率法中的剩余电磁效应研究[J]. 吉林大学学报(地球科学版) 2003, 33( 1): 92-95.
    [39] M. A. Perez-Flores, S. Mendez-Delgado, and E. Gomez-Trevino. Imaging low-frequency and dc electromagnetic fields using a simple linear approximation[J]. Geophysics, 2001, 66(4): 1067-1081.
    [40] 陈丰, 林传易, 张蕙芳. 矿物物理学概论[M]. 科学出版社, 1995: 326-357.
    [41] Lee, S. K., S.-J. Cho, Y. Song, and S.-H. Chung, Capacitivelycoupled resistivity method - Applicability and limitation: MULLITAMSA[J].Geophysical Exploration, 2002, 5, no. 1, 23–32.
    [42] 陈桂明, 张明照等. 应用MATLAB语言处理数字信号与数字图象[M], 北京: 科学出版杜, 2000: 1-211.
    [43] 庄明商, 尚世贵. 用激电时间谱视参数评价激电异常的应用效果[J]. 物探与化探, 1995, 19 (3): 218-223.
    [44] 吴长祥, 雍凤军. 复电阻率法在油田勘探中的应用[J]. 石油物探, 1996, 35(4): 111-118.
    [45] 柯式镇, 冯启宁, 孙艳茹. 岩石复电阻率频散模型及其参数的获取方法[J]. 测井技术, 1999, 23 (6): 416-418.
    [46] Lee D.Slater and David Lesmesz.IP interpretation in environmental investigations[J]. Geophysics, 2002,67(1):77–88.
    [47] 任俞. 电法勘探圈划油气藏的新技术-差分标定法简介[J]. 国外油气勘探, 1991, 3(2): 84-95.
    [48] 陈序三, 赵文杰, 朱留方. 复电阻率测井方法及其应用[J]. 测井技术, 2001, 25(5): 327-331.
    [49] 钱瘦石. 激发极化法勘探油气藏效果分析及改进意见[J]. 石油地球物理勘探, 1991, 26 (3): 349-360.
    [50] 刘崧. 激电法直接探测油气藏的有效性及提高其应用效果的途径[J]. 地质科技情报, 1992, 11 (4): 81-86.
    [1] 林君, 石磊. 卡式仪器的现状与未来[J]. 地学仪器, 1995, (1): 1-8.
    [2] 柯庆华, 于生宝. 嵌入式PC104在不接触电法测量中的应用[J]. 吉林大学学报(信息科学版), 2005, 23(1): 92-96.
    [3] 刘德欣. TD3直流电法仪[J]. 地学仪器, 1993, (1): 65-69.
    [4] 柯马罗夫. B. A. 激发极化法电法勘探[M]. 阎立光等译. 北京: 地质出版社, 1983.
    [5] 石松连. “八五”期间勘查地球物理仪器设备的若干进展[J]. 地学仪器, 1996, (2): 1-5.
    [6] 李志武. 多通道电探系统[J]. 地学仪器, 1995, (4);1-7.
    [7] 冯永江, 周寅伦. DZD-2型多功能直流电法仪[J]. 地学仪器, 1993, (4): 32-37.
    [8] 年宗元. 我国堪查地球物理的若干进展[J]. 物探与化探, 1996, 20(6): 401-418.
    [9] 石松连. 第三十届国际地质大会科学展览会: 勘查地球物理仪器一瞥[J]. 地学仪器, 1996, (4): 6-9.
    [10] 李实, 宋建平, 李创社. 瞬变电磁仪中几种干扰的消除方法[J]. 西安交通大学学报, 2001, 35(4): 373-376.
    [11] 石松连. “八五”计算机在物化探中应用的回顾与展望[J]. 物探化探计算技术, 1996, 18(1): 1-5.
    [12] 薛克先. 微型计算机的变迁与勘探仪器[J]. 地学仪器, 1996, (1): 1-6.
    [13] 邹桂根. 仪器仪表可靠性设计[M]. 上海: 上海交通大学出版社, 1990. 3.
    [14] 冯永江. 多功能直流电法仪的设计思想及应用实例[J]. 地学仪器, 1994, (4): 13-22.
    [1] 何继善. 电法勘探的发展和展望[J]. 地球物理学报, 1997, 40(增): 308-316.
    [2] 李金铭. 电法勘探方法发展概况[J]. 物探与化探, 1996, 20(4): 250-258.
    [3] 程德福, 林君. 部分工程与环境物探仪器现状与展望[J]. 地学仪器, 1997, (4): 1-4.
    [4] 魏文博. 我国大地电磁测深新进展及展望[J]. 地球物理学进展, 2002, 17(2): 245-254.
    [5] 刘士毅, 张明华. 中国金属矿地球物理勘查[J]. 地学前缘. 1998, 5(1-2): 201-207.
    [6] 吴其斌, 崔霖沛. 国外勘查地球物理的若干进展-1996年[J]. 物探与化探, 1998, 22(l): 10-20.
    [7] Б.Л.Столов, Н.Г.Шкабарня. Изучение Рудоностный Структур Приморья Методами Электроразведки[M]. ДВГТУ, 1995: 5-18.
    [8] 于生宝. 不接触电极测量在电法中的应用[R]. 国土资源部项目验收报告, 2003:1-30.
    [9] 于生宝等. 不接触电极探测方法研究[J]. 仪器仪表学报, 2006, 27(4): 416-419.
    [10] http://www.geometrics.com/geoelectrical/geoelectrical.html[OL]. Geometrics Inc., 2005.
    [11] 刘英, 曹晓珑, 李学敏. 变间隙不接触电极及其测量绝缘材料εr和tanδ的技术[J]. 电工技术学报, 2005, 20(1): 45-49.
    [12] 李兆林, 王先锋, 曹晓珑, 楼巧琴. 用非接触电极测试聚丙烯薄膜的相对电容率和介质损耗因数的研究[J]. 绝缘材料, 2005, (1): 52-55.
    [13] 张辉, 李桐林. 利用Cole-Cole模型组合得到SIP真参数的联合频谱最优化反演[J].西北地震学报, 2004, 26(2): 108-112.
    [14] 谢捷生. 我国时间域激电仪的发展过程及现状[J]. 地学仪器, 1996, (1): 7-10.
    [15] 林君, 石磊. GPS 在地球物理勘探中的应用展望[J].地学仪器, 1996, (4): 1-5.
    [16] Ingelise M?ller, Bo H. Jacobsenz, and Niels B.Christensen.Rapid inversion of 2-D geoelectrical data by multichannel deconvolution[J]. Geophysics, 2001,66, (3) :800–808
    [17] 董浩斌, 王传雷. 分布式智能化高密度电法测量系统[J]. 地学仪器, 1997, (4): 26-27.
    [18] 陈儒军. 伪随机多频电磁法观测系统研究[D]. 中南大学博士学位论文, 2003.
    [19] 姜作勤. 国内外地学领域计算机应用设备配置的现状[J]. 地学仪器, 1997, (3): 1-7.
    [20] Carlos A.Dias.Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics, 2000,65(2):437–451.
    [21] 武汉地质学院金属物探教研室. 电法勘探教程[M]. 地质出版社, 1980: 1-117.
    [22] 傅良魁. 电法勘探教程[M]. 地质出版社, 1983: 7-117.
    [23] R.科埃略,B.阿拉德尼兹.电介质材料及其介电性能[M].科学出版社, 2000: 48-133.
    [24] A. A. 考夫曼, G. V. 凯勒. 频率域和时间域电磁测深[M]. 地质出版社, 1987: 144-279.
    [25] 顾功叙. 地球物理勘探基础[M]. 地质出版社, 1990: 63-97.
    [26] M. C. 日丹诺夫. 电法勘探[M]. 潘玉玲, 王守坦译. 中国地质大学出版社, 1990: 1-168.
    [27] 盛庆新. 计算电磁学要论[M]. 科学出版社, 2004: 1-15.
    [28] 米萨克. G. 纳比吉安. 勘查地球物理电磁法第一卷理论[C]. 赵经祥, 王艳君译, 地质出版社, 1992.1: 1-348.
    [29] 王蔷, 李国定, 龚克. 电磁场理论基础[M]. 清华大学出版社, 2001: 25-234.
    [30] Andreas Kemna, Andrew Binley, and Lee Slater.Crosshole IP imaging for engineering and environmental applications[J]. Geophysics,2004, 69(1): 97–107.
    [31] 张赛珍, 王庆乙, 罗延钟. 中国电法勘探发展概况[J]. 地球物理学报, 1994, 37(增 1): 408-424.
    [32] 薛克先, 冯永江. 重庆地质仪器厂地震、电法勘探、测井等仪器的回顾与展望[J]. 地学仪器, 1993, (3): 12-24 .
    [33] 王兴泰,万明浩等. 工程与环境物探新方法新技术[M]. 北京: 地质出版社, 1996: 108-131.
    [34] 傅良魁. 激发极化法[M]. 北京: 地质出版社, 1982: 3-1572
    [35] 王鸿钰. 网络化测量和控制[J]. 仪表技术, 2001, (1): 46-49.
    [36] 罗延钟, 张桂青. 频率域激电法原理[M]. 北京: 地质出版社, 1988: 1-172.
    [37] 刘菘. 谱激电法[M]. 武汉: 中国地质大学出版社, 1998: 1-70.
    [38] 蔡军涛, 阮百尧, 罗润林. 层状大地视真频参数测深曲线的反演[J]. 中南大学学报(自然科学版), 2004, 35 (4): 662-666.
    [39] 林品荣, 赵子言. 分布式被动源电磁法系统及其应用[J]. 地震地质. 2001, 23(2): 138-142
    [40] 何继善. 伪随机三频电法研究[J]. 中国有色金属学报, 1994, 4(1): 1-7.
    [41] 马立峰, 潘霞. 10千瓦瞬变电磁发送系统技术特点及GTR应用技术研究[J]. 地学仪器, 1997, (2): 13-16.
    [42] 白宜诚, 崔燕丽, 蒲慧如. SQ型双频激电仪的研制[J]. 物探与化探, 2002, 26(6): 456-460.
    [43] 重庆地质仪器厂. DZD-6A多功能直流电法仪[OL].2006.http://www.cgif.com.cn/products/dianfa/dzd-6a.htm
    [44] 重庆地质仪器厂. DUK-2A智能高密度电法测量系统[OL]. 2006. http://www.cgif.com.cn/products/dianfa/Duk-2A.htm
    [45] 重庆地质仪器厂. DDC-6型电子自动补偿仪[OL]. 2006. http://www.cgif.com.cn/products/dianfa/ddc-6A.htm
    [46] 重庆地质仪器厂. 大功率激电测量系统[OL]. 2006 http://www.cgif.com.cn/products/dianfa/DJF-10.htm
    [47] 重庆奔腾数控技术研究所. WDFZ-2大功率智能发射机[OL]. 2006. http://www.cqbtsk.com.cn/ Wdfz-2.htm
    [48] 重庆奔腾数控技术研究所. WDJF-1数字幅频激电仪[OL]. 2006. http://www.cqbtsk.com.cn/ Wdjf-1t.htm
    [49] 重庆奔腾数控技术研究所. WGMD-6分布式三维高密度电阻率成像系统[OL]. 2006. http://www.cqbtsk.com.cn/ Wgmd-6.htm
    [50] 董浩斌, 王传雷. 分布式智能化高密度电法仪的特点及应用[C]. 中国地球物理学会.中国地球物理年会年刊(2000), 武汉: 中国地质大学出版社, 2000.
    [51] 董浩斌, 谢瑞和. 多功能PC机数据采集控制接口的研制及在物探中的应用[C]. 中国地球物理学会. 中国地球物理年会年刊(1998), 西安: 西安地图出版社. 1998.
    [52] 鲍光淑, 何继善. 多参数频域激电观测系统的研究[J]. 地学仪器, 1995, (2): 5-10.
    [53] 张友山, 何继善. DF-1微机程控多功能大功率发送机的研制[J]. 物探与化探, 1995, 19(2): 142-147.
    [54] 于生宝, 林君. 瞬变电磁法中发射机关断时间的影响研究[J]. 石油仪器, 1999, 13(6): 15-17.
    [55] 常欣, 邓明等. DDJ-1型多功能激电仪[J]. 地学仪器, 1994, (3): 18-20.
    [56] 曹岩, 曹印三等. DD-1型大功率电磁频测仪[J]. 地学仪器, 1995, (2): 26-28.
    [57] 于生宝等. GPS同步瞬变电磁探测系统设计[J]. 电子测量与仪器学报, 2005, 19(4): 39-42.
    [58] 董浩斌, 王传雷. 分布式智能化高密度电法测量系统[J]. 地学仪器, 1997, (4): 26-27.
    [59] 陈春丽, 邱德洪. DDZS-1多参数找水仪的研制[J]. 地质装备, 2002, 3(1): 27-29.
    [60] 常欣, 邓明等. 高密度电阻率测量系统[J]. 地学仪器, 1996, (1): 27-32.
    [61] 陈鸿志. DW-1型大功率直流电测仪-找水专用新仪器[J]. 地学仪器, 1997, (3): 8-12.
    [62] 陈儒军, 罗维炳, 何继善, 白宜诚, 汤井田. WDD-2 伪随机多频电法接收机[J]. 石油仪器, 2003, 12: 8-12.
    [63] 马明建, 周长城. 数据采集与处理技术[M]. 西安: 西安交通大学出版杜, 1998: 9-125.
    [64] 林君. 浮点数据采集原理与实现技术[J]. 地学仪器, 1996, (2): 23-28.
    [65] Hiromasa Shima, Susumu Sakashita. Developments of non-contact data acquisition techniques in electrical and electromagnetic explorations[J]. Jourmal of Applied Geophysics, 1996, (35):167-173.
    [66] 石福升. GPS 同步高速大容量据采集系统设计[J]. 石油仪器, 1998, 12(5):12-14.
    [67] Gasnier. S., Hiromasa Shima, Susumu Sakashita and Abdelhadi. A. Development of multi-component multi-frequency data acquisition system for borehole EM tomography[C]. 56th. Mtg Eur. Assn. Expl. Geophys., Extended Abstracts. 1994.
    [68] 何继善. 2n系列伪随机信号及应用[C]. 中国地球物理学会. 中国地球物理年会年刊(1998) , 西安: 西安地图出版社, 1998.
    [69] Torres-Verdin, C. and Haashy, T. M. Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation[J]. Radio Sci., 1994, 29: 1051-1079.
    [70] 郑彩君. 智能仪器提高采样速率的方法[J]. 地学仪器, 1995, (2): 19-25.
    [71] 林君. 虚拟仪器的概念及其进展[J]. 地学仪器, 1995, (3): 1-6.
    [72] 沈兰荪. 高速数据采集系统的原理与应用[M]. 北京人民邮电出版社,1995: 5-191.
    [73] 刘益成, 罗堆炳. 信号处理与过抽样转换器[M]. 北京: 电子工业出版社, 1997: 1-143.
    [74] 沈兰荪. 智能仪器与信号处理技术[M]. 北京: 科学出版社, 1990: 12-95.
    [75] 沈民奋, 孙丽莎. 现代随机信号与系统分析[M]. 北京: 科学出版社, 1998: 98-127.
    [76] 王宏禹. 数字信号处理专论[M]. 北京: 国防工业出版社,1995: 66-112.
    [77] 宋万杰, 罗丰. CPLD 技术及其应用[M]. 西安: 西安电子科技大学出版社, 1999: 5-70.
    [78] 王庆乙. TEMS-3S 瞬变电磁测深系统的研制[J]. 地学仪器, 1996, (2): 5-13.
    [79] 马立峰. WDC-2A 瞬变电磁测量系统中的高速采集电路. 地学仪器. 1997, (3): 24 -26.
    [80] 刘松强. 数字信号处理系统及其应用[M]. 北京: 清华大学出版社, 1996: 10-68.
    [81] 谢捷生. JJ-6 型微机激电仪[J]. 地学仪器, 1994, (2): 17-21.
    [82] 豆会平, 魏启. 脉冲瞬变电磁仪的发展状况及对策[J]. 石油仪器, 2000, 14(2): 26-29.
    [83] 张恒涛. 仪器设备抗干扰技术研究[J]. 石油仪器, 2000,14(2): 35-37.
    [84] 柯式镇, 刘迪军, 冯启宁. 线圈法岩心复电阻率扫频测量系统研究[J]. 勘探地球物理进展, 2003, 26 (4): 309-312.
    [85] 何继善, 柳建新. 伪随机多频相位法及其应用简介[J]. 中国有色金属学报, 2002, 12(2): 374-376.
    [86] 黄俊革. 三维电阻率/极化率有限元正演模拟与反演成像. 中南大学博士论文[D], 2003, 6: 1-78.
    [87] 高文利, 瞿兴昌. JIY-4A 型地下电磁波仪的设计[J]. 地学仪器, 1997, (2): 3-11.
    [88] Jiuping Chen.and Douglas W. Oldenburg.A new formula to compute apparent resistivities from marine magnetometric resistivity data[J].Geophysics,2006,71(3):G73–G81.
    [89] 郭大江, 史燕. 低频电流磁场法观测系统[J]. 地学仪器, 1996, (2): 14-22
    [90] 何继善, 鲍光淑, 张友山. 双频道数字激电仪[M]. 长沙: 中南工业大学出版社, 1988.
    [91] Douglas C.Fraser and Greg Hodges.Induction-response functions for frequency-domain electromagnetic mapping system for airborne and ground configurations[J]. Geophysics, 2007.72(2) : F35–F44.
    [92] 柳建新, 何继善. 一种区分矿与非矿的有效方法-伪随机多频相位法原理及其应用[J]. 中国地质, 2001, 28(9): 41-46.
    [93] 张友山, 何继善. 三频激电相对相位观测法[J]. 中南矿冶学院学报, 1994, 25(4): 417- 421.
    [94] Richard S. Smith.The realizable resistive limit: A new concept for mapping geological features spanning a broad range of conductances. Geophysics, 2000,65(4):1124–1127.
    [95] Adam Pidlisecky1,Rosemary Knight1,and Eldad Haber.Cone-based electrical resistivity tomography[J]. Geophysics, 2006,71(4):G157–G167
    [96] 刘桂雄, 冯云庆, 申柏华. 现场总线与虚拟仪表技术相融合的发展新趋势[J]. 传感器技术, 2002, 21(7): 59-6l.
    [97] Susumu Sakashita, Hiromasa Shima. Experimental studies on EM tomography: An improved imaging technique for magnetic susceptibility and resistivity[C]. Proc. The 3rd SEGJ/SEG Int. Symp. On Geotomography, SEGJ and SEG submitted. 1995.
    [98] 于生宝, 王忠, 嵇艳鞠. 瞬变电磁法浅层探测技术[J]. 电波科学学报, 2006, 21(2): 1-4.
    [99] 何继善. 双频道激电法研究[M]. 长沙: 湖南科学术出版杜, 1989.
    [100] Sofia Davydycheva1,Nikolai Rykhlinski, and Peter Legeido.Electrical-prospecting method for hydrocarbon search.using the induced-polarization effect[J].Geophysics, 2006, 71( 4): G179–G189
    [101] 张友山, 何继善. 伪随机三频波激电法[J]. 中南大学学报, 1995, 26(2): 157-161.
    [102] 王玉明. 提高频谱激电物探接收机抗干扰能力的一种探讨[J]. 地学仪器, 1994, (4): 22-28.
    [103] 杨生, 鲍光淑, 张全胜. 远参考大地电磁测深法应用研究[J]. 物探与化探, 2002, 26(1): 27 -31.
    [104] 应怀樵. 波形和频谱分析与随机数据处理[M]. 北京: 中国铁道出版社,1983: 176-310.
    [105] 吴汉荣, 谢婷婷. 激电相对相位测量及其地质效果[C]. 勘查地球物理勘查地球化学文集 3 集-激发极化法专集. 北京: 地质出版社, 1985:295-300.
    [106] 罗延钟, 马永旺, 昌彦君等. 电场差分法一维正演研究[J]. 地球科学—中国地质大学学报, 1997, 22 (1): 74-80.
    [107] 柯式镇, 何亿成, 邓友明等. 复电阻率测井响应的数值模拟[J]. 测井技术, 2002, 26( 6) : 446-448.
    [108] 陆启行. 复电阻率测量使用柯尔-柯尔模型拟合中若干问题的探讨[J]. 物化探计算技术, 1985, 7(1): 45-49.
    [109] 阮百尧, 罗润林. 一种新的复电阻率频谱参数的递推反演方法[J]. 物探化探计算技术, 2003, 25 (4): 298-301.
    [110] Peter Stummer, Hansruedi Maurer, and Alan G. Green.Experimental design: Electrical resistivity data sets that provide optimum subsurface information[J].Geophysics, 2004, 69(1) :120–139.
    [111] 安珊, 李能根. 含水岩石复电阻率的实验研究[J]. 测井技术, 1998, 22(5): 315- 317.
    [112] 柯式镇, 冯启宁. 岩电实验中非线性最小二乘法拟合软件[J]. 测井技术, 1996, 20(5): 379-383.
    [113] 李翰如. 电介质物理导论[M]. 成都: 成都科技大学出版社, 1990: 1-216.
    [114] 姜恩承, 令狐松, 叶青竹, 王丹. 频率域复电阻率数学模型研究[J]. 测井技术, 2002, 26(2): 98-100.
    [115] 方俊鑫, 殷之文. 电介质物理学[M]. 北京: 科学出版社, 1998: 16-52.
    [116] 罗延中, 张桂青. 频率域激电法原理[M]. 北京: 地质出版社, 1988.
    [117] 席振铢, 张友山, 张宪润. 运用对称四极测深研究层状极化介质频谱特征[J]. 中南工业大学学报(自然科学版), 2003, 34(1): 8-10.
    [118] 刘崧, 薛继安, 徐建华. 求地下极化体真柯尔—柯尔参数的研究[J]. 物探与化探, 2000, 24(1): 51-61.
    [119] Gao J, Liu D J, Feng Q N. Comparison of resistivity measurement in lab with computermodeling results and their combined applications[C]. In: SPWLA 41st Symposium , 2000: 445-457.
    [120] 聂馨五, 张赛珍, 周安昌. 激发极化法探测油气田—效果及异常模式探讨[J]. 地球物理学报, 1987, 30 (4): 412 -422.
    [121] Oliver Kuras,David.Beamish, Philip I.Meldrum, and Richard D.Ogilvy. Fundamentals of the capacitive resistivity technique[J].Geophysics, 2006,71(3) :135–152.
    [122] 王自力, 张赛珍. 一种真复电阻率谱参数的求解方法[J]. 地球物理学报, 1990, 35(6): 712-721.
    [123] 罗延钟, 方胜. 视复电阻率频谱的一种近似反演方法[J]. 地球科学, 1986, 11(1): 93-102.
    [124] 阮百尧, 罗润林. 一种新的复电阻率频谱参数的递推反演方法[J]. 物探与化探计算术, 2003, 25 (4): 298-301.
    [125] 刘崧, 薛继安, 徐建华. 求地下极化体真柯尔-柯尔参数的研究[J]. 物探与化探, 2000, 24(1): 51-61.
    [126] 蔡军涛, 阮百尧, 罗润林. 层状大地视真频参数测深曲线的反演[J]. 中南大学学报(自然科学版), 2004, 35(4): 662-666.
    [127] 张桂青, 罗延钟, 崔先文. 由视谱直接反演真谱参数的实用方法[J]. 地球科学, 1991, 16(2): 229-239.
    [128] 刘崧, 官善友, 高鹏飞. 求极化椭球体真cole-cole 参数的联合谱激电反演[J]. 地球物理学报, 1994, 37(增刊): 542-551.
    [129] Benderitter, Y., A. Jolivet, A. Mounir, and A. Tabbagh.Application of the electrostatic quadripole to sounding in the hectometric depthrange[J]. Journal of Applied Geophysics, 1994, 31, 1–6.
    [130] Bristow, Q., and C. J. Mwenifumb.Evaluation of a Russian-designedborehole resistivity probe based on a capacitive principle[C].Eastern Canada and national and general programs: Current Research Geological Survey of Canada, 1998-D: 65–73.
    [131] 刘崧, 鲁永康, 薛继安. 电场差分法理论研究[J]. 地球物理学报, 2002, 45 (4): 584-595.
    [132] Grard, R., A quadrupolar array for measuring the complex permittivity of the ground: Application to earth prospection and planetary exploration[J].Measurement Science & Technology, 1990, (1): 295–301.
    [133] Grard, R., and A. Tabbagh, A mobile four-electrode array and its application to the electrical survey of planetary grounds at shallow depths[J]. Journal of Geophysical Research, 1991, 96, B3: 4117–4123.
    [134] 刘钦圣. 最小二乘问题计算方法[M]. 北京: 北京工业大学出版社, 1989: 1-148.
    [135] Panissod, C., M. Dabas, A. Hesse, A. Jolivet, J. Tabbagh, and A. Tabbagh, Recentdevelopments in shallow-depth electrical and electrostaticprospecting using mobile arrays[J].Geophysics, 1998, 63(5):1542–1550.
    [136] Craig Ulrich and Lee D.Slater.Induced polarization measurements on unsaturated, unconsolidated sands[J].Geophysics, 2004,69(3):762–771.
    [137] Ringhandt, A., and H. G. Wagemann, An exact calculation of the 2-dimensional capacitance of a wire and a new approximation formula[J].IEEE Transactions on Electron Devices, 1993,40, 1028–1032.
    [138] Sakurai, T., and K. Tamaru, 1983, Simple formulas for two- and three dimensional capacitances [J].IEEE Transactions on Electronic Devices, 30,183–185.
    [139] Shima, H., S. Sakashita, and T. Kobayashi, 1996, Developments of noncontact data acquisition techniques in electrical and electromagnetic explorations[J].Journal of Applied Geophysics, 35, 167–173.
    [140] Tabbagh, A., A. Hesse, and R. Grard, Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole:Field trials on archaeological sites[J].Geophysical Prospecting, 1993,41,579–597.
    [141] Tabbagh, A., and C. Panissod, 1D complete calculation for electrostatic soundings interpretation[J].Geophysical Prospecting, 2000, 48, 511–520.
    [142] Junxing Cao,Zhenhua He, Jieshou Zhu, and Peter K.Fullagarz. Conductivity tomography at two frequencies[J].Geophysics, 2003,68(2):516–522.
    [143] Wait, J. R., Comments on: “Application of the electrostatic quadripole to sounding in the hectometric depth range,” Benderitter et al., authors[J].Journal of Applied Geophysics, 1995, 34, 79–80.
    [144] 昌彦君, 罗延钟, 彭复员. 时间谱电阻率法中的剩余电磁效应研究[J]. 吉林大学学报(地球科学版) 2003, 33( 1): 92-95.
    [145] M. A. Perez-Flores, S. Mendez-Delgado, and E. Gomez-Trevino. Imaging low-frequency and dc electromagnetic fields using a simple linear approximation[J]. Geophysics, 2001, 66(4): 1067-1081.
    [146] 陈丰, 林传易, 张蕙芳. 矿物物理学概论[M]. 科学出版社, 1995: 326-357.
    [147] Lee,S.K.,S.-J.Cho,Y.Song,and S.-H.Chung,Capacitivelycoupled resistivity method - Applicability and limitation: MULLITAMSA[J].Geophysics Exploration, 2002,5(1): 23–32.
    [148] 陈桂明, 张明照等. 应用MATLAB语言处理数字信号与数字图象[M], 北京: 科学出版杜, 2000: 1-211.
    [149] 庄明商, 尚世贵. 用激电时间谱视参数评价激电异常的应用效果[J]. 物探与化探, 1995, 19 (3): 218-223.
    [150] 吴长祥, 雍凤军. 复电阻率法在油田勘探中的应用[J]. 石油物探, 1996, 35(4):111-118.
    [151] 柯式镇, 冯启宁, 孙艳茹. 岩石复电阻率频散模型及其参数的获取方法[J]. 测井技术, 1999, 23 (6): 416-418.
    [152] Lee D. Slater and David Lesmesz.IP interpretation in environmental investigations[J]. Geophysics, 2002,67(1):77–88.
    [153] 任俞.电法勘探圈划油气藏的新技术-差分标定法简介[J].国外油气勘探,1991,3(2): 84-95.
    [154] 陈序三, 赵文杰, 朱留方. 复电阻率测井方法及其应用[J]. 测井技术, 2001, 25(5): 327-331.
    [155] 钱瘦石. 激发极化法勘探油气藏效果分析及改进意见[J]. 石油地球物理勘探, 1991, 26 (3): 349-360.
    [156] 刘崧. 激电法直接探测油气藏的有效性及提高其应用效果的途径[J]. 地质科技情报, 1992, 11 (4): 81-86.
    [157] 林君, 石磊. 卡式仪器的现状与未来[J]. 地学仪器, 1995, (1): 1-8.
    [158] 柯庆华, 于生宝. 嵌入式PC104在不接触电法测量中的应用[J]. 吉林大学学报(信息科学版), 2005, 23(1): 92-96.
    [159] 刘德欣. TD3直流电法仪[J]. 地学仪器, 1993, (1): 65-69.
    [160] 柯马罗夫. B. A. 激发极化法电法勘探[M]. 阎立光等译. 北京: 地质出版社, 1983.
    [161] 石松连. “八五”期间勘查地球物理仪器设备的若干进展[J]. 地学仪器, 1996, (2): 1-5.
    [162] 李志武. 多通道电探系统[J]. 地学仪器, 1995, (4);1-7.
    [163] 冯永江, 周寅伦. DZD-2型多功能直流电法仪[J]. 地学仪器, 1993, (4): 32-37.
    [164] 年宗元. 我国堪查地球物理的若干进展[J]. 物探与化探, 1996, 20(6): 401-418.
    [165] 石松连. 第三十届国际地质大会科学展览会: 勘查地球物理仪器一瞥[J]. 地学仪器, 1996, (4): 6-9.
    [166] 李实, 宋建平, 李创社. 瞬变电磁仪中几种干扰的消除方法[J]. 西安交通大学学报, 2001, 35(4): 373-376.
    [167] 石松连. “八五”计算机在物化探中应用的回顾与展望[J]. 物探化探计算技术, 1996, 18(1): 1-5.
    [168] 薛克先. 微型计算机的变迁与勘探仪器[J]. 地学仪器, 1996, (1): 1-6.
    [169] 邹桂根. 仪器仪表可靠性设计[M]. 上海: 上海交通大学出版社, 1990. 3.
    [170] 冯永江. 多功能直流电法仪的设计思想及应用实例[J]. 地学仪器, 1994, (4): 13-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700