岩石坝基灌浆压力波动机理及其稳定性自动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:当前我国进入了水利水电工程大规模开发建设的关键时期,作为大坝基础施工主要加固手段的灌浆技术得到了大范围的推广运用。由于建坝高度的不断升级,灌浆加固坝基岩体以形成抗渗透能力强、耐久性好的基础防渗帷幕变得尤为关键。灌浆工程因是隐蔽工程,其施工质量和灌浆效果难以进行直观检测,必须要借助于对灌浆施工参数的分析来评定。由于受到压力波动、浆液流变特性和岩体裂隙几何结构特征等诸多因素的影响,灌浆质量检测和控制的自动化程度不高。尤其灌浆压力的反馈控制仍然采取人工调节以致其控制精度和控制响应时间无法满足工程实际的需要,且容易因操作失误致使灌浆压力超限而造成岩体张拉破坏、地层抬动变形,引起工程安全事故。
     基于以上情况,本文采取理论与实践相结合的方法,通过总结和归纳浆液在大坝基岩裂隙中的渗流特性来了解灌浆控制机理;通过分析和总结岩体变形效应及灌浆压力的计算方法来提出灌浆压力的综合设计原则;基于对灌浆压力波动机理的探讨、灌浆管路流体力学数学建模和自动控制分析,设计研发了灌浆压力自动控制系统(GPAC系统);通过室内模拟灌浆试验和糯扎渡水电站坝基帷幕灌浆现场试验对该系统进行控制性能的验证和灌浆效果评价,以改进和完善系统。论文的研究工作主要包括以下内容:
     (1)讨论和总结灌浆压力的组成及其经验取值法、坝基帷幕灌浆压力的逆推计算法和灌浆试验确定最大灌浆压力法(包括常规压水试验和水力阶撑试验);根据灌浆压力过大引起的水力劈裂效应、扩缝效应和压力挤密效应,详细分析这些岩体变形效应的发生机理及有利、可控的岩体变形发生时相应灌浆压力的计算方法。综合上述,提出了灌浆压力的综合设计原则与确定方法。
     (2)从灌浆管路系统的流量压降关系和浆液的流变特性出发,探讨了管路系统中灌浆压力的波动机理,认为:灌浆孔内地层的阻尼特性、调节阀的流量特性和运行开度以及灌浆泵的脉动特性是造成循环式灌浆管路系统内灌浆压力波动变化的主要影响因素。根据灌浆管路浆液一维流动模型的流量压降关系建立了管路系统的静态平衡控制方程组;根据可压缩流体的非定常流动,对灌浆管道中的瞬变流动进行动态瞬变分析,建立其基本微分方程,运用特征线法进行网格划分和有限差分,根据边界条件,用Newton-Raphson算法求其数值解,用一系列代表灌浆管道、管路设备、灌浆孔和调节阀的非线性代数方程组来简化和描述整个灌浆管路,并研究管路中基本组成部件的阻尼系数的计算方法,从而得出灌浆压力稳定性控制的量化计算控制量,进而提出灌浆管路中灌浆压力稳定性的流体力学模型,为编制灌浆压力稳定性计算软件提供了数学模型和控制参数。
     (3)根据常规PID控制和模糊控制的算法原理与控制器设计,分析和论述各自的优点和局限性。根据灌浆压力波动的特点、自动控制的精度要求和反应时间要求,将常规PID控制和模糊控制结合起来使用,提出具有参数自整定和控制规则自适应特点的复合式控制算法即基于T-S模型的模糊PID控制算法(TS-FPID算法)。
     (4)从软件界面、基本功能和硬件组成等方面详细介绍基于TS-FPID控制算法和灌浆管路系统流体力学模型的灌浆压力自动控制系统(GPAC系统)。GPAC系统上层软件采用SIEMENS WINCC V7和STEP7软件开发,控制系统底层采用SIEMENS S7-400系列可编程序控制器,系统网络采用PROFIBUS DP协议。
     (5)根据实际灌浆工况布设灌浆管路进行室内模拟灌浆试验,包括:灌浆泵脉动特性试验、电动调节阀阻尼系数试验、灌浆压力自动控制试验等。试验结果表明:当灌浆压力在0-5MPa内变化时,GPAC系统可在5-6s响应时间内实现压力自动控制,并将控制精度保持在压力设定值的5%以内,稳定性良好,达到了压力波动幅度的设计控制目标。在糯扎渡水电站坝基帷幕灌浆现场试验中,运用GPAC系统对灌浆压力进行实时检测和反馈控制。现场试验结果表明,试验区的灌浆效果显著,岩体裂隙和渗水通道被浆液充分填塞,岩体力学性能得到很大改善,岩层整体性更好,试验区防渗性能达到了设计要求的防渗标准。GPAC系统控制精度高、响应时间短、稳定性好,远远优越于人工控制,具有良好的工程经济性和安全性,可以在其他工程实践中推广应用。
Abstract:With water conservancy and hydropower projects greatly enlarged in China at present, grouting technology has been widely used as a major reinforcement method of dam foundation constructions. As continuous upgrading for the height of concrete dam, the anti-seepage ability and durability of the foundation impervious curtain for high concrete dam become much more significant. Due to subtle characteristics of grouting engineering, both its construction quality and grouting effect are difficult to visually detect, which must be assessed by analysis on the grouting parameters. Because of the influence of many factors including pressure fluctuations, slurry rheological properties and geometry characteristics of rock fracture, automation degree of grouting quality monitoring and control are not high in practice now. In particular, the grouting pressure feedback control still take manual adjustment in which control accuracy and response time could not meet the actual needs, meanwhile engineering accidents are vulnerable to happen because of overrun grouting pressure caused by operational errors.
     In view of above, according to the methods of theory and practice, mechanism of grouting control are researched by analyzing the seepage characteristics of grout in fracture of rocky dam foundation, the integrated design principles of grouting pressure are proposed by analyzing rock deformation and calculate methods of grouting pressure, the grouting pressure automatic control system (GPAC) is developed based on the grouting pressure fluctuation mechanism studying, hydrodynamics mathematical modeling of grouting pipe network and automatic control theory analysis, GPAC system is improved by indoor grouting experiments and in-situ curtain grouting tests of Nuozhadu hydropower station. The major study contents are listed as follows:
     (1) The composition of grouting pressure and related calculation methods such as empirical method, reverse method of dam foundation curtain grouting, grouting experiment method including water pressure test and hydraulic jacking test are studied in detail. According to analyzing the occurrence mechanism of hydraulic fracturing effect, crack expansion effect and pressure compaction effect, the integrated design principles of grouting pressure is proposed.
     (2) On the basis of flow-pressure drop relationship of grouting piping systems and rheological properties of grouting slurry, fluctuation mechanism of grouting pressure is studied. Damping characteristics of grouting formation, flow characteristics and opening degree of regulating valve, and fluctuation characteristics of grouting pump are thought to be the main influencing factors causing the grouting pressure change in the circulating grouting pipe system. The static equilibrium equations of pipeline system are established based on flow-pressure drop relationship in one-dimensional model of grouting slurry flow in pipelines. In order to establish the basic differential equations of pipeline system, transient analysis on grouting slurry flow in pipelines is made based on hypothesis that flow is compressible and unsteady. Then characteristic method is used to mesh generation and finite difference, afterward, the equations are solved by Newton-Raphson method according boundary conditions. The whole grouting pipelines are simplified and represented as series of nonlinear algebra equations, which describe the grouting pipes, equipments, grouting hole and regulating valves. Meanwhile calculation methods on damping coefficients of fundamental composition in grouting system are studied in order to provide accurate calculation control values for pressure stabilization. Finally, the hydrodynamic model of grouting pressure stabilization and related control parameters is proposed for programming pressure fluctuation control software.
     (3) The algorithm principle and controller design of PID control and fuzzy control are studied in order to summarize their respective advantages and limitations. According to the fluctuation characteristics of grouting pressure, control accuracy and response time requirements during automatic control process, a set of composite control algorithm with particularities of parameter self-tuning and adaptive control rules which named as TS-FPID is proposed by combining the PID control algorithm and fuzzy control algorithm.
     (4) Grouting pressure automatic control system (GPAC) which based on hydrodynamics mathematical modeling of grouting pipeline system and the TS-FPID control algorithm is illustrated in detail through the software interface, basic functions and hardware composition. The upper software of GPAC system is developed on SIEMENS WINCC V7and STEP7, the hardware of GPAC system is composed by SIEMENS S7-400programmable logic controller (PLC), PROFIBUS DP is used as system network.
     (5) Indoor simulation grouting test such as grout pump pulsation characteristics tests, regulating valve damping coefficient tests, grouting pressure automatic control tests and etc are performed according to the actual grouting conditions. The simulation results show that grouting pressure can be automatic controlled in5-6s and control precision can be kept on less than5%of designed pressure value by GPAC system when the grouting pressure changes in the range of0-5MPa, the design target of pressure fluctuations control is met. GPAC system is used for real-time monitoring and feedback control on grouting pressure in dam foundation curtain in-situ grouting test of Nuozhadu hydropower, the test results show that grouting effect of test zone is well, rock fracture and water seepage channel are fully packed by slurry whilst mechanical properties of rock mass and strata integrity are greatly improved, the design standard of anti-penetration capability is met. Compared to manual regulation, control accuracy and response time of GPAC system are more superior which have better benefit on engineering economic and security in addition. GPAC system should be promoted to widely use in other engineering practice.
引文
[1]孙钊.大坝基岩灌浆[M].北京:中国水利水电出版社,2004.
    [2]王柏乐,刘瑛珍,吴鹤鹤.中国土石坝工程建设新进展[J].水力发电,2005,31(1):63-65.
    [3]谭靖夷.我国坝工技术的发展[J].水力发电,2004,30(12):60-63.
    [4]葛家良.注浆技术的现状与发展趋势向综述[J].矿业世界,1995,(1):1-7.
    [5]薛守义,刘汉东.岩土工程学科性质透视[M].郑州:黄河水利出版社,2002.
    [6]张文萍,黄理军,童优良.溪洛渡水电站上游围堰帷幕灌浆施工技术研究[J].农业技术与装备,2010,(24):23-26.
    [7]张文倬.坝基灌浆若干问题刍议[J].云南水电技术,2001,(1):57-61.
    [8]张文倬.地基灌浆设计中的问题[J].云南水电技术,2009,(2):36-44.
    [9]陈彦玉.混凝土坝裂缝灌浆关键技术问题探讨[J].长江科学院院报,2011,28(3):54-58.
    [10]李凤玲.灌浆压力控制系统的关键技术研究[D].长沙:中南大学,2009.
    [11]马新,陈宝义,刘三虎.乌江渡水电站岩溶地区高压灌浆施工特殊情况的处理[J].探矿工程(岩土钻掘工程),2005,32(1):13-15.
    [12]郑治.高科技建成东风高拱坝[J].水电勘测设计,1999,(3):9-20.
    [13]杨启贵,程少荣.高压灌浆修建隔河岩坝基防渗帷幕灌浆试验论证[J].人民长江,1997,(12):23-25.
    [14]李锡均.碎裂岩体中高压灌浆形成防渗帷幕的试验与研究[J].水利技术监督,2004,12(3):47-49.
    [15]李志刚,崔雪玉.高压灌浆塞在天荒坪高压固结灌浆中的应用[J].探矿工程,1999,(6):25-26.
    [16]宋平,马显光.高压灌浆技术在五里冲水库溶塌体中的应用[J].云南水力发电,2000,16(4):34-37.
    [17]邝健政,昝月稳.岩土注浆理论与工程实例[M].北京:科学出版社,2001.
    [18]张农.巷道滞后注浆围岩控制理论与实践[M].徐州:中国矿业大学出版社,2004.
    [19]马秀荣,郝哲.岩体注浆理论评述[J].有色矿冶,2001,17(1):3-6.
    [20]张金接.稳定性水泥浆体在岩体裂隙中的流动性能及其灌浆技术[J].水利学报,1993,(7):69-74.
    [21]苏培莉.裂隙煤岩体注浆加固渗流机理及其应用研究[D].西安:西安科技大学,2010.
    [22]曾祥熹,陈志超.钻孔护壁堵漏原理[M].北京:地质出版社,1990.
    [23]罗平平,何山,张玮,等.岩体注浆理论研究现状及展望[J].山东科技大学学报:自然科学版,2005,24(1):46-48.
    [24]张良辉.渗入灌浆理论评述及发展动向[J].石家庄铁道学院学报,1995,8(2):26-30.
    [25]Wittke W.采用膏状稠水泥浆灌浆新技术[C].中国岩石力学与工程学会.现代灌浆技术译文集.北京:水利电力出版社,1991:48-58.
    [26]Lombardi G. The role of the cohesion in cement grouting of rock[C]. In Transactions of the 15th International Conference on Large Dams. Lausanne: International Commission on Large Dams(ICOLD),1985:235-261.
    [27]Shi Cai-jun, Day R L. Acceleration of the reactivity of fly ash by chemical activation[J]. Cement and Concrete Research,1995, (25):15-21.
    [28]郑长成.裂隙岩体灌浆的模拟研究[D].长沙:中南大学,1999.
    [29]郑长成.岩体裂隙内稳定水泥浆液扩散范围的理论分析[J].水利与建筑工程学报,2006,(6):1-5.
    [30]Baker C. Comments on paper Rock stabilization in rock mechanics[M]. New York:Muler, Springer-Verlag NY,1974.
    [31]Blair S C, Thorpe R K, Heuze F E, et al. Laboratory observations of the effect of geological discontinuities on hydrofracture propagation[C]//Proceedings of the US Symposium on Rock Mechanics. Morgantown, WV:[s.n.],1989:443-450.
    [32]刘嘉材.裂缝灌浆扩散半径研究[C].中国水利水电科学院科学研究论文集(第8期).北京:水利出版社,1982:186-195.
    [33]石达民,吴理云.关于注浆参数研究的一点探索[J].矿山技术,1986,(2):14-16.
    [34]张良辉.岩土灌浆渗流机理及渗流力学[D].北京:北方交通大学,1996.
    [35]杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001,(7):41-46.
    [36]Eriksson M. Prediction of grout spread and sealing effect-a probabilistic approach[D]. Stockholm, Sweden:Royal Institute of Technology,2002.
    [37]李宁,张平,闫建文.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,(3):326-330.
    [38]罗平平,朱岳明,赵咏梅,等.岩体灌浆的数值模拟[J].岩土工程学报,2005,(8):918-921.
    [39]蒋中明,冯树荣,陈胜宏,等.裂隙岩体高压压水试验水-岩耦合过程数值模 拟[J].岩土力学,2011,32(8):2500-2506.
    [40]张新敏,蒋中明,冯树荣,等.岩体高压压水试验的渗透系数取值方法探讨[J].水力发电学报,2011,30(1):156-159.
    [41]郭晓刚.高面板坝趾板基础高压灌浆技术及其智能预测与研究控制[D].武汉:中国科学院研究生院,2008.
    [42]夏可风,龙达云.灌浆自动记录仪和灌浆施工自动化[J].水力发电,1994,(3):24-25.
    [43]王秀文,张生祥,冯昌珍,等.灌浆自动记录仪在观音阁坝基帷幕灌浆中的应用[J].水利水电技术,1995,(8):54-57.
    [44]张凤玲,王英贤,宋相国,等.GY-II型灌浆自动记录仪初步应用[J].长江科学院院报,1996,13(4):54-56.
    [45]冯昌珍,吉宝光,李庚年,等.观音阁水库帷幕灌浆的施工[J]水利水电技术,1995,(9):55-59.
    [46]林耀祥,余济禹.GY型灌浆自动记录仪的应用和展望[J].中国三峡建设,1996,(10):26-27.
    [47]鄢泰宁,曹鸿国,乌效鸣.检测技术及勘察工程仪表[M].武汉:中国地质大学出版社,1996.
    [48]彭环云,徐力生,贺茉莉,等.地质工程测试技术与仪表[M].长沙:中南大学出版社,2010.
    [49]夏可风,张志良.J31智能灌浆记录仪和J31-D多路灌浆监控系统[J].水利水电科技进展,2000,20(1):58-59.
    [50]王金发,高鸣安,罗熠.GY型灌浆自动记录仪及其在三峡工程的应用[J].人民长江,1999,30(9):9-10.
    [51]龙达云,夏可风.多路灌浆监测系统的研究与应用[J].水力发电,1999,(11):43-44.
    [52]韩伟,赵存厚.小浪底灌浆工程中开发和应用的灌浆监控系统[J].水利水电技术,2001,32(11):33-34.
    [53]徐力生,郭定明,彭环云,等.LJ-II型灌浆压水测控系统的研制与应用[J].水利水电技术,2003,34(11):67-69.
    [54]徐力生,陈伟,彭环云,等.三参数、大循环灌浆自动记录仪的技术特点及发展趋势[J].水利规划与设计,2004,(03):79-82,86.
    [55]张景秀.坝基防渗于灌浆技术[M].北京:中国水利水电出版社,2002.
    [56]吴景浓,李健康,颜玉定,等.室内水压致裂法的初步实验研究[J].水利学报,1982,(7):52-57.
    [57]谢兴华,速宝玉.裂隙岩体水力劈裂研究综述[J].岩土力学,2004,25(2):330-336.
    [58]邹金锋,李亮,杨小礼,等.土体劈裂灌浆力学机理分析[J].岩土力学,2006,27(4):625-628.
    [59]李新平,刘金焕,彭元平,等.压应力作用下裂隙岩体的断裂模式与强度特性[J].岩石力学与工程学报,2002,21(增刊):1942-1945.
    [60]Ito T, Hayashi K. Analysis of crack reopening behavior for hydrofrac stress measurement[C]//Haimson B. Rock mechanics in 1990s:Pre-print proceedings of the 34th U.S. Symposium on Rock Mechanics. Madison:University of Wisconsin-madison,1993:335-338.
    [61]王桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩土工程学报,1996,18(4):68-74.
    [62]林栋利.浅谈岩体灌浆压力的选择[J].广西水利水电,2005,(3):5-6.
    [63]於习军,徐年丰.三峡工程基础帷幕灌浆压力的论证确定与应用分析[J].广西水利水电,2002,23(14):19-21.
    [64]李小青,高金川.试论灌浆压力对灌浆效果的影响[J].地质科技情报,1999,18(增刊):66-68.
    [65]郑长成.灌浆压力对裂隙岩体可灌性的影响分析[J].湖南文理学院学院:自然科学版,2006,1 8(3):65-68.
    [66]Belloni L G, Stefani R. The vajont slide:instrumentation-past experience and the modern approach[J]. Engineering Geology,1987, (24):445-474.
    [67]胡尚清,高红,吴萍.灌浆压力对灌浆效果的影响因素分析[J].黑龙江水专学报,2006,27(2):41-42.
    [68]Grundy C F. The treatment by grouting of permeable foundations of dams[C]. Proc.5th Cong. Large Dams, France:Int. Comn. Large Dams,1955:647-674.
    [69]Lippold F H. Cement and clay grouting of foundations:Pressure grouting with packers[J]. ASCE, Journal of the Soil Mechanics and Foundations Division, 1958,84(SM1):1549.
    [70]Jager C. Rock mechanics and engineering(second edition)[M]. Cambridge: Cambridge University Press,2009.
    [71]Nonveiller E. Grouting theory and practice[M]. Amsterdam:Elsevier Science Publishers B.V,1989.
    [72]Weaver K D, Bruce D A. Dam foundation grouting[M]. New York:ASCE Publications,1991.
    [73]Weaver K D. A critical look at use of "rules of thumb" for selection of grout injection pressures[J]. ASCE Geotechnical Special Publication,2000, (104): 173-180.
    [74]Van den Hoke P J, Van den Berg J T M, Shlyapobersky J. Theoretical and experimental investigation of rock dilatancy near the tip of a propagating hydraulic fracture[C]//Haimson B. Rock Mechanics in 1990s:Proceedings of the 34th U.S. Symposium on Rock Mechanics. Madison:University of Wisconsin-madison,1993:351-354.
    [75]李立刚.小浪底高压旋喷灌浆技术及应用实例简述[J].水利水电科技进展,2002,22(2):40-42.
    [76]Doe T W, Korbin G E. A comparison of hydraulic fracturing and hydraulic jacking stress measurements[C]. Tucson:Proc.28th US symposium on Rock Mechanics,1987:283-290.
    [77]Noorishad J, Doe T W. Numerical simulation of fluid injection into deformable fractures[C]. Proc.23rd Symposium on Rock Mechanics, Berkeley. New York: AIME,1982:645-654.
    [78]Rutqvist J. Theoretical and field studies of coupled hydro-mechanical behavior of fractured rocks-field experiment and modeling[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1992,29(4):411-419.
    [79]Rutqvist J. Determination of hydraulic normal stiffness of fractures in hard rock from well testing[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1995, 32(5):513-523.
    [80]陈群策,李方全.水力阶撑法用于原地应力测量的工作原理及其工程实践[J].岩石力学与工程学报,1998,17(3):305-310.
    [81]毛吉震,陈群策,张彦山.水力阶撑试验在水电工程的应用研究[J].岩土工程学报,2004,26(4):477-481.
    [82]Attewell P B,Farme I W.工程地质学原理(英)[M].北京:中国建筑工业出版社,1982.
    [83]陈伟.裂隙岩体灌浆压力及其稳定性控制方法研究[D].长沙:中南大学,2008.
    [84]Kutzner C. Grouting of rock and soil[M]. Rotterdam, Brookfield:A.A.Balkema, 1996,26-52.
    [85]Ewert F K. The individual groutability of rock[J]. Water Power & Dam Construction,1992,44(1):23-30.
    [86]Warner J. Compaction grouting:rheology vs effectiveness[C]. In:ASCE Proc. Grouting, Soil Improvement and Geosynthetics. New Orlean, LA:[s.n.],1992, (1):694-707.
    [87]Brown D R, Warner J. Compaction grouting[J]. J. Soil Mech. and Found. Div. ASCE,1973,99(8):589-601.
    [88]蒋明镜,沈珠江.考虑材料应变软化的柱形孔扩张问题[J].岩土工程学报,1995,17(4):10-19.
    [89]张忠苗,包风,陈云敏.考虑材料应变软化的球(柱)孔扩张理论在桩底注浆中的研究[J].岩土工程学报,2000,22(2):243-246.
    [90]Graf E D. Compaction grouting technique and observation[J]. J. Soil Mech. and Found. DIV., ASCE,1969,95(5):1151-1158.
    [91]Wong H Y. Discussion of compaction grouting[J]. J. Geotech. Engrg. Div., ASCE, 1974,100(5):556-559.
    [92]Eriksson M, Stille H, Andersson J. Numerical alculations for prediction of grout spread with account for filtration and varying aperture[J]. Underground Space Technology,2000,15(4):353-364.
    [93]张宁,杨敏官,李忠,等.侧壁式压水离心泵的压力脉动特性[J].机械工程学报,2012,48(14):164-168.
    [94]Fell R, Hawkins G, Okeeffe L. Cement grout and permeability of dam foundations[C]. Proc. of the 12th inter. Conf. on SMFE,1989, (2):1355-1362.
    [95]吴望一.流体力学[M].北京:北京大学出版社,1982.
    [96]Chaudhry M H. Applied hydraulic transients(second edition)[M]. New York:Van Nostrand Reinhold,1987.
    [97]Wylie E B, Streeter V L, Suo Lisheng. Fluid transients in systems[M]. Englewood Cliffs, New Jersey:Prentice Hall,1993.
    [98]Streeter V L, Lai C. Waterhammer analysis including friction[J]. Journal of the Hydraulics Division, ASCE,1962,88(HY3):79-112.
    [99]Jaeger C.水力不稳定流[M].王树人,刘天雄,鼓天玫.译.大连:大连工学院出版社,1985:195-204.
    [100]程心一.计算流体力学一偏微分方程的数值解法[M].北京:科学出版社,2000:43-53.
    [101]Brien O, Hyman G G, Kaplan M A. A study of the numerical solution of partial differential equations[J]. Mathand Physics,1951, (12):223-251.
    [102]苏尔皇.管道动态分析及液流数值计算方法[M].哈尔滨:哈尔滨工业大学 出版社,1985.
    [103]胡开文.管道中非定常流动的计算分析[J].农业机械学报,1999,30(5):28-31.
    [104]Fox J A.管网中不稳定流的水力分析[M].陈祖泽.译.北京:石油工业出版社,1983.
    [105]金锥,姜乃昌.停泵水锤及其防护[M].北京:中国建筑工业出版社,1993.
    [106]张亮,李云波.流体力学[M].哈尔滨:哈尔滨工程大学出版社,2001.
    [107]莫乃榕,槐文信.流体力学水力学题解[M].武汉:华中科技大学出版社,2002.
    [108]印建安.高炉煤气余压发电装置中炉顶压力稳定性分析与控制试验研究[D].杭州:浙江大学,2003.
    [109]Neuzil C E, Tracy J V. Flow through fractures[J]. Water Resour Resear,1981, 17(1):191-194.
    [110]Iwai K. Fundamental Studies of fluid flow through a single fracture[D]. Berkely: University.of California, Berkely,1976.
    [111]郝哲,王介强.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496.
    [112]Amadei B. Effect of turbalence on fracture flow and advective transport of solutes[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1995,32(4): 343-356.
    [113]郝哲.岩体注浆行为研究及其计算机模拟[D].沈阳:东北大学,1998.
    [114]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [115]周凤石.往复式正排量泵的特征及其发展趋向[J].石油矿场机械,1995,(3):73-75.
    [116]钱学军,梁全.往复泵排出管线压力脉动理论研究与实验对比分析[J].机械研究与应用,2005,18(1):23-24.
    [117]董怀荣,王平.恒流量往复泵压力变化规律实验研究[J].石油学报,2004,25(6):101-104.
    [118]梁冰,朱玉才.固液两相流泵的边界层理论与应用[M].北京:科学出版社,2003.
    [119]明赐东.调节阀计算选型使用[M].成都:成都科技大学出版社,1999.
    [120]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006.
    [121]董景新,赵长德,熊沈蜀,等.控制工程基础[M].北京:清华大学出版社,2003.
    [122]仇慎谦.PID调节规律和过程控制[M].南京:江苏科学技术出版社,1987.
    [123]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2002.
    [124]何衍庆,姜捷,江艳君,等.控制系统分析、设计和应用-MATLAB语言的应用[M].北京:化学工业出版社,2003.
    [125]杨纶标,高英仪,凌卫新.模糊数学原理及应用(第五版)[M].广州:华南理工大学出版社,2011.
    [126]杨辉,王金章.模糊控制技术及其应用[M].南昌:江西科学技术出版社,1997.
    [127]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.
    [128]张金明,李人厚.模糊控制的系统化设计和稳定性分析[J].自动化学报,2003,15(2):493-497.
    [129]修智宏,任光.T-S模糊控制系统的稳定性分析及系统化设计[J].自动化学报,2004,30(5):731-741.
    [130]邢毅民刘贺平.一种基于TS模型的模糊PID控制器的设计及应用研究[J].工业加热,2003,(3):9-13,21.
    [131]殷铭,戴先中,徐科军.模糊测控仪器仪表研究与应用的新进展[J].自动化仪表[J],1999,20(12):1-4.
    [132]甄立东.西门子WinCC V7基础与应用[M].北京:机械工业出版社,2011.
    [133]张西中,王利民,刘立新.基于WinCC和Step7的S7-400H冗余系统的实现[J].工业控制计算机,2007,20(1):75-76.
    [134]是利娜,吴海卫.基于PLC控制的人机界面远程注浆监测系统研究[J].能源技术与管理,2011,(2):134-136.
    [135]DL/T5148-2001,水工建筑物水泥灌浆施工技术规范[S].北京:中国电力出版社,2001.
    [136]张晓群,吕惠民.压力传感器的发展、现状与未来[J].半导体杂志,2000,25(1):47-50.
    [137]宜晨虹,于锦泉.材料性质对应变式压杆压力传感器测量影响研究[J].高能量密度物理,2012,(1):39-42.
    [138]李小亭,王小杰,方立德,等.新型内外管差压流量计特性研究[J].仪器仪表学报,2012,33(10):2371-2379.
    [139]王洋,代翠.离心泵内部不稳定流场压力脉动特性分析[J].农业机械学报,2010,41(3):91-95.
    [140]Hu Chao-fa, Jia Li. Experimental study on the start up performance of flat plate pulsating heat pipe[J]. Journal of Thermal Science,2011,20(2):150-154.
    [141]贾霖.非接触式流量检测技术研究[J].西北大学学报:自然科学版,1999,29(2):180-182.
    [142]马玉博.电磁流量计原理及常见故障分析[J].大化科技,2012,(2):37-38.
    [143]Bertone G A, Meiksin Z H, Carroll N L. Investigation of a capacitance-based displacement transducer [J]. IEEE Transaction on Instrumentation and Measurement,1990,39(2):424-428.
    [144]王文良,杨继恩,李斌.容栅式直线同步传感器工作原理及系统设计方法[J].传感器世界,1998,(9):23-26.
    [145]谢锐,马铁华,武耀艳,等.嵌入式容栅传感技术及轴功率测试研究[J].仪器仪表学报,2012,33(4):844-849.
    [146]陈祖煜,汪小刚,杨建,等.岩质边坡稳定分析-原理.方法.程序[M].北京:中国水利水电出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700