用户名: 密码: 验证码:
TiO_2纳米花和HAP/TiO_2的制备、表征及其光催化降解有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从在1972年Fujishima和Honda发现n—型半导体材料TiO2可以通过光电催化分解水制氢以来,光催化技术得到了广泛关注,被应用于全球密切关注的太阳能的转换、环境污染治理和清洁燃料的生产。几十年来,人们一直努力开发高活性的半导体光催化剂,目前世界各国已经成功地生产出了多种高效的半导体光催化材料。在众多的半导体氧化物催化剂中,TiO2由于生物和化学惰性、强光催化氧化能力、低成本、长期的稳定性等优点使它得到了广泛的应用:作为光催化剂、去除水和空气中的有机污染物、去除水体的重金属污染物和光解水制氢等等。特别是具有特殊微结构的TiO2半导体材料,它们作为光催化剂在这些方面可能具有更出色的性能和应用潜力。最近,人们在分子水平上对TiO2光催化剂的表面结构进行了研究探索,研究发现锐钛矿TiO2的{001}晶面具有比其它晶面高的化学活性。因此有关{001}晶面TiO2材料合成的研究是目前光催化领域的热点课题之一
     另一方面,多环芳烃(PAHs)是一类典型的具有“致癌、致畸和致基因突变”特性的持久性有机污染物,来源分布广泛。PAHs在大气颗粒物表面的光化学反应是其重要的转化途径,研究PAHs在催化剂表面光催化降解转化特性具有重要的理论和实际意义。
     围绕着上面的内容,我们主要开展了以下三个方面的工作:
     (1)本文采用水热法,利用硫酸钛和氟化氢作为原料合成出TiO2纳米花。同时结合扫描电子显微镜(SEM)、X-射线衍射(XRD)、紫外-可见吸收光谱(DRS)、氮气-吸附脱附(BET)、瞬态光伏技术(TPV)、X射线电子能谱(XPS)等手段对样品的结构、形貌及其光学特性进行一系列的表征,并用其降解罗丹明B,使其与P25作对比,发现其催化活性高于P25。
     (2)由于生物材料羟基磷灰石具有较强的吸附性能,我们通过沉淀法将其与TiO2纳米花负载在一起,这样就把羟基磷灰石的吸附性能与TiO2的光催化活性结合起来,并通过一系列的现代物理手段进行表征,证明羟基磷灰石已经成功的负载到了TiO2上,提高了对光的利用率,通过降解罗丹明B,发现其具有很高的催化活性。
     (3)本文用原位红外技术作为检测手段来研究TiO2纳米花和HAP/TiO2对典型PAHs——萘的光催化降解行为。实验结果表明,在紫外光的照射下,萘受到光催化作用会发生开环反应,生成酸酐、芳酮、苯酯、羧酸、苯醛等中间产物,这些中间产物最后可被进一步氧化为二氧化碳和水。
Since the demonstration by Honda and Fujishima of the photoelectrolysis of water using a TiO2 electrode under an anodic bias potential, intensive research efforts have been devoted to the development of photocatalytic materials, with the aim of utilizing solar energy and thus addressing the increasing global concerns of environmental remediation and clean fuel production. Decades of efforts have successfully produced a wide range of efficient semiconductor—based photocatalytic materials for solar energy conversion and environmental remedy. Photocatalysts with high performance have been successfully fabricated by the investigators all over the world. Among various oxide semiconductor photocatalysts, TiO2 was generally recognized as the most promising one due to its biological and chemical inertness, superior photo oxidative, low cost and long—term stability. It has been widely used in photocatalytic applications, including the degradation of organic pollutants in aqueous and gaseous phases, removal of heavy metals from contaminated waters, hydrogen gas generation from photocatalytic water splitting, etc. Especially, TiO2 based photocatalysts with advanced mircrostructures would possess higher performances and potential in these applications.
     Recently, people investigated the TiO2 materials at molecular level through a lot of research and found that the meta—stable{001} facets of anatase are more reactive than the other ones. The investigations related to{001} facets of anatase TiO2 has now become a hot topic in the field.
     On the other hand, PAHs has been known as typical POPs, which are carcinogenic, teratogenic, mutagenic or endocrine disrupting to organisms. The photochemical behaviors of PAHs over atmospheric particles is an typical transforming pathway, so that studies on PAHs photocatalytic degradation over the surface of catalyst particles would make an important contribution to theretical and practical aspects.
     In this thesis, we carried out the following three aspects of investigations about the anatase TiO2 with{001} facets:
     (1) Flower—like anatase TiO2 assemblies with dominant{001} facets exposed were synthesized by a simple, economical hydrothermal route with titanium sulfate and hydrofluoric acid. Their surface morphology and structure were investigated by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X—ray diffraction, and Brunauer—Emmet—Teller N2 gas adsorption—desorption isotherms. The optical property and the photo—induced charge carriers of the flower—like TiO2 were studied by UV—vis diffuse reflectance spectroscopy and transient photovoltage technique. The flower—like TiO2 particles exhibited a good photocatalytic activity in degrading rhodamine B.
     (2) Due to the strong adsorptive capability of the biological material—hydroxyapatite, we loaded it with the flower—like TiO2 together, so that we could combine the adsorption of the hydroxyapatite and the photocatalytic of the flower—like TiO2. Through some modern characterization techniques such as SEM, XRD, DRS, EDS, FTIR, XPS and so on, we proved that hydroxyapatite was successfully loaded on the flower—like TiO2. At the same time, we used them to degrading rhodamine B to compare their photocatalytic activity.
     (3) The in-situ transmission infrared spectroscopy was used to study the photocatalytic reaction of the naphthalene on flower—like TiO2 and HAP/TiO2, and the experimental was carried out under UV irradiation. And the results showed that under the UV irradiation, the nanphthalene's ring will be opened, and the reaction intermediate products were aromatic ketons, Propyl hydroxybenzoate, carboxylic acid, benzene formaldehyde, and the final products are carbon dioxide and water.
引文
[1]BURDA C, CHEN X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev.,2005,105(4):1025-1102.
    [2]HODES G. When small is different:some recent advances in concepts and applications of nanoscale phenomena [J] Adv. Mater.,2007,19(5):639-655.
    [3]孙成林,连钦明.纳米技术与纳米材料制备及应用现状[J].中国非金属矿工业导刊,2006,3(55):16-19.
    [4]XIA Y N, YANG P D, Sun Y G, et al. One-dimensional nanostructures:synthesis, characterization, and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [5]BYRAPPA K, ADSCHIRI T. Hydrothermal technology for nanotechnology [J]. Prog. Cryst. Growth Charact,2007,53(2):117-166.
    [6]SCHER E C, MANNA L, ALIVISATOS A P, et al. Shape control and applications of nanocrystals [J]. R. Soc. Lond. A,2003,361(1803):241-255.
    [7]PARK J, JOO J, KWON S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed.,2007,46(25):4630-4660.
    [8]WANG X, PENG Q, LI Y D. Interface-mediated growth of monodispersed nanostructures [J]. Acc. Chem. Res.,2007,40(8):635-643.
    [9]何承雨.一维纳米材料的生长机理、结构调控及性能研究[D].南京:南京大学,2010.
    [10]ZABET-KHOSOUSI A, DHIRANI A A. Charge transport in nanoparticle assemblies [J]. Chem. Rev., 2008,108(10):4072-4124.
    [11]HABAS S E, LEE H, RADMILOVIC V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth [J]. Nat. Mater.,2007,6:692-697.
    [12]TSUNG C K, KUHN J N, HUANG W Y, et al. Sub-10 nm platinum nanocrystals with size and shape control:catalytic study for ethylene and pyrrole hydrogenation [J]. J. Am. Chem. Soc.,2009, 131(16):5816-5822.
    [13]黄捷.纳米金催化剂的合成及其在二醇氧化制内酯反应中的应用研究[D].上海:复旦大学,2010.
    [14]HOCHBAUM A I, YANG P D. Semiconductor nanowires for energy conversion [J]. Chem. Rev., 2010,110(1):527-546.
    [15]Xia Y, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics [J]. Angew. Chem. Int. Ed.,2009,48(1):60-103.
    [16]Wiley B, Sun Y G, Chen J Y, et al. Shape-controlled synthesis of silver and gold nanostructures [J]. MRS Bull,2011,30(5):356-361.
    [17]Lim B, Kobayashi H, Yu T, et al. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth [J]. J. Am. Chem. Soc.,2010,132(8):2506-2507.
    [18]王周君.负载金属催化剂结构与尺寸控制及其表征[D].天津:天津大学,2010.
    [19]魏任重,沈友良,李凤仪.碳纳米管管径的可控性研究[J].材料科学工艺,2008,16,(6):830-834.
    [20]SADTLER B, DEMCHENKO D O, ZHENG H, et al. Selective facet reactivity during Cation exchange in cadmium sulfide nanorods [J]. J. Am. Chem. Soc.,2009,131(14):5285-5293.
    [21]YIN Y D, ERDONMEZ C, ALONI S, et al. Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra [J]. J. Am. Chem. Soc.,2006,128(39): 12671-12673.
    [22]FENG X J, ZHAI J, JIANG L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films [J]. Angew. Chem. Int. Ed.,2005,44(32):5115-5118.
    [23]LI X L, PENG Q, YI J X, et al. Near monodisperse TiO2 nanoparticles and nanorods [J]. Chem. Eur. J., 2006,12(8):2383-2391.
    [24]WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005, 437(7055):121-124.
    [25]SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002, 298(5601):2176-2179.
    [26]CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev.,2010,110(11):6503-6570.
    [27]KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J] Chem. Soc. Rev., 2009,38(1):253-278.
    [28]TADA H, KIYONAGA T, NAYA S. Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide [J]. Chem. Soc. Rev., 2009,38(7):1849-1858.
    [29]MAEDA K, DOMEN K. Solid Solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light [J] Chem. Mater.,2010,22(3):612-613.
    [30]LIU G L, WANG Z, YANG H G, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. J. Mater. Chem.,2010,20(5):831-843..
    [31]肖璞.二氧化钛纳米材料在直接醇染料电池阳极催化剂中的应用[D].北京:清华大学,化工学院,2010.
    [32]MAEDA K, TERAMURA K, LU D L, et al. Photocatalyst releasing hydrogen from water [J] Nature, 2006,440:295.
    [33]HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [34]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J] Nature,1972,238(5358):37-38.
    [35]ZHENG Q, ZHOU B X, BAI J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand [J]. Adv. Mater.,2008,20(5):1044-1049.
    [36]JI C X, SEARSON P C. Synthesis and characterization of nanoporous gold nanowires [J]. J. Phys. Chem. B,2003,107(19):4494-4499.
    [37]LI F, HE J, ZHOU W L, et al. Synthesis of porous wires from directed assemblies of nanospheres [J]. J. Am. Chem. Soc.,2003,125(52):16166-16167.
    [38]SHCHUKIN D G,CARUSO R A. Template synthesis and photocatalytic properties of metal oxide spheres formed by nanoparticle infiltration [J]. Chem. Mater.,2004,16(11):2287-2292.
    [39]JIANG J, KUCERNAK. Mesoporous microspheres composed of Pt Ru alloy [J]. Chem. Mater.,2004, 16(7):1362-1367.
    [40]SUZUKI K,IKARI K,IMAI H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc.,2004,126(2):462-463.
    [41]HOSONO E S, FUJIHARA B, KAKIUCHI K, et al. Growth of submicrometer-scale Rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions [J]. J. Am. Chem.Soc.,2004,126(25):7790-7791.
    [42]HOSONO E, FUJIHARA S B, IMAI H, et al. One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron [J]. ACS Nano,2007,1(4):273-278.
    [43]GONG X Q, SELLONI A. Reactivity of anatase TiO2 nanoparticles:the role of the minority (001) surface [J].J. Phys. Chem. B,2005,109 (42):19560-19562.
    [44]何晨旭.介孔二氧化钛纳米光催化材料的合成及其改性研究[D].上海:华东理工大学:2010.
    [45]杨丽霞.基于二氧化钛的环境功能纳米材料制备与研究应用[D].湖南:湖南大学:2009.
    [46]DEVI LG, KOTTAM N, KUMAR S G. Preparation and characterization of Mn-doped titanates with a bicrystalline framework:correlation of the crystallite size with the synergistic effect on the photocatalytic activity [J]. J. Phys. Chem. C,2009,113(35):15593-15601.
    [47]OHTANI B, IWAI K, NISHIMOTO S, et al. Role of platinum deposits on titanium (IV) oxide particles:structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions [J]. J. Chem. B.,1997,101(17):3349-3359
    [48]PANPRANOT J, KONTAPAKDEE K, PRASERTHDAM P. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation [J]. J. Phys.Chem.B.,2006,110(15):8019-8024.
    [49]LI H, BIAN Z, ZHU J, et al. Mesoporous Au/TiO2 nanocomposites with enhanced hotocatalytic activity [J].J. Am. Chem. Soc.,2007,129(15):4538-4539.
    [50]LEE, S-K, MILLS. Detoxification of water by semiconductor photocatalysis [J]. J. Ind. Eng. Chem., 2004,10(2):173-187.
    [51]Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces [J] Phys. Rev. B:Condens.Matter Mater. Phys.,2001,63(15):155409-155419.
    [52]DIEBOLD U, RUZYCKI N, HERMAN G S, et al. One step towards bridging the materials gap: surface studies of TiO2 anatase [J].Catal. Today,2003,85(2-4):93-100.
    [53]YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453(7195):638-641.
    [54]YANG X H, LI Z, LIU G, et al. Ultra-thin anatase TiO2 nanosheets dominated with{001} facets: thickness-controlled synthesis, growth mechanism and water-splitting properties [J]. CrystEngComm, 2011,13(5):1378-1383.
    [55]LIU G, YANG H G, WANG X, et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN [J]. J. Am. Chem. Soc.,2009,131(36):12868-12869.
    [56]LIU M, PIAO L, ZHAO L, et al. Anatase TiO2 single crystals with exposed{001} and{110} facets: facile synthesis and enhanced photocatalysis [J]. Chem. Commun.,2010,46(10):1664-1666.
    [57]OLIVER P M, WATSON G W, KELSEY E T, et al. Atomistic simulation of the surface structure of theTiO2 polymorphs rutile and anatase [J]. J. Mater. Chem.,1997,7(3):563-568.
    [58]YANG H G, LIU G, QIAO S Z, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} Facets [J]. J. Am. Chem. Soc.,2009,131(11):4078-4083
    [59]HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. J. Am. Chem. Soc,2009,131(9):3152-3153.
    [60]CHEN J S, LOU X W. Lithium storage capabilities of Anatase TiO2 Nanosheets [J]. Electrochem Commun.,2009, 11(25):2332-2335.
    [61]SUN C H, YANG X H, CHEN Y S, et al. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance [J]. Chem. Commun.,2010, 46(33):6129-6131.
    [62]YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453(7195):638-641.
    [63]DINH C T, NGUYEN T D, KLEITZ F, et al. Shape-controlled synthesis of highly crystalline titania nanocrystals [J]. ACS Nano,2009,3(11):3737-3743.
    [64]DAI Y Q, COBLEY C M, ZENG J, et al. Electrical transport in single-wall carbon anotubes [J]. Nano Lett,2009,9(1):455-493.
    [65]WANG X, LIU G, WANG L, et al. TiO2 films with oriented anatase{001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes [J]. J. Mater. Chem.,2011, 21:869-873.
    [66]LIU G, SUN C, YANG H G, et al. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity [J] Chem. Commun.,2010,46(5):755-757.
    [67]LIU G, YANG H G, WANG X, et al. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant{001} facets [J]. J. Phys. Chem. C,2009,113(52):21784-21788.
    [68]LI J M, XU D S. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active{100} facets [J]. Chem. Commun.,2010,46(13):2301-2303.
    [69]ZHU J, WANG S, BIAN Z, et al. Controlled synthesis, structures and properties of one-, two-, and three-dimensional lanthanide coordination polymers based on (8-quinolyloxy)acetate [J]. CrystEngComm,2010,12(1):216-225.
    [70]CHEN J S, TAN Y L, LI C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage [J]. J. Am. Chem. Soc.,2010,132(17):6124-6130.
    [71]FANG W Q, ZHOU J Z, LIU J, et al. Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated by{001} facets [J]. Chem.Eur. J.,2011,17(5):1423-1427.
    [72]AMANO F, PRIETO-MAHANEY O O, TERADA Y, et al. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity [J]. Chem. Mater.,2009, 21(13):2601-2603.
    [73]ALIVOV,FAN Z H. A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high{001} facet percentage [J] J. Phys. Chem. C,2009,113(16):12954-12957.
    [74]HU X, ZHANG T, Z JIN, et al. Single-crystalline anatase TiO2 dous assembled microsphere and their photocatalytic activity [J].Cryst. Growth Des.,2009,9(5):2324-2328.
    [75]ALIVOV Y, FAN Z H. A TiO2 nanostructure transformation:form ordered nanotubes to nanoparicles [J]. Nanotechnology,2009,20:405610-405613.
    [76]LIU X, GENG D, WANG X, et al. Role of DNA in condensation and combinative self-assembly [J].Chem. Commun.,2010,46:955-957.
    [77]ZENG Y, ANGREW HONG P K, WAVREK D A. Integrated chemical-biological treatment of benzo[a] pyrene [J]. Water Res.,2000,34(5):1157-1172.
    [78]CALLAHAN M A, SLIMAK M W, GABELC N W, et al. Water-related environmental fate of 129 priority pollutants, Washington, DC, U.S. environmental protection agency [J].1979, EPA-440/4-79-029.
    [79]ALSHAWABKEH A N, SARAHNEY H. Effect of current density on enhanced transformation of naphthalene [J]. Env. Sci. Tec.,2005,39(15):5837-5843
    [80]HYKRDOVA L, JIRKOVSKY J, MAILHOT G, et al. Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene:comparison of kinetics and proposal of mechanism [J]. J. Pho. Pho. A:Chemistry,2002,151:181-193.
    [81]GARCIA-MARTINEZ M J, CANOIRA L, BLAZQUEZ G, et al. Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings [J] Chem. Eng. J.,2005, 110:123-128.
    [82]XIE, J P, LEE J Y, WANG D I C. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution [J]. Chemistry of Materials,2007,9(11):2823-2830.
    [83]HA T H, KOO H J, CHUNG B H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halideions [J]. J. Phys. Chem. C,2007,111(3):1123-1130.
    [84]FENG X D, SAYLE D C, WANG Z L, et al. High-resolution thin-film device to sense texture by touch [J] Science,2006,312(5779):1501-1504.
    [85]CHEN X, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications and applications [J] Chem. Rev.,2007,107(95):2891-2895.
    [86]PENN R L, BANFIELD J F, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania [J]. Geochim. Cosmochim. Acta,1999, 63:1549-1557.
    [87]DINH C T, NGUYEN T D, KLEITZ F, et al. Shape-controlled synthesis of highly crystalline titania nanocrystals [J]. ACS Nano,2009,3(11):3737-3743.
    [88]DIEBOLD U. The surface science of titanium dioxide [J]. Surf. Sci. Rep.,2003,48:53-229.
    [89]BARNARD A S, CURTISS L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J]. Nano Lett.,2005,5(7):1261-1266.
    [90]ZMBOV K F, MARGRAVE J L. Mass spectrometric studies at high temperatures. XVI. sublimation pressures for TiF3 and the stabilities of TiF2 (g) and TiF (g) [J]. J. Phys. Chem.,1967,719(9): 2893-2895.
    [91]YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J] Nature,2008,453(7195):638-641.
    [92]HAN X G, KUANG Q, JIN M S, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. J. Am. Chem. Soc.,2009,131(9): 3152-3153.
    [93]LIU SW, YU J G, MANN S. Synergetic codoping in fluorinated Ti1-xZxO2 hollow microspheres [J]. J. Phys. Chem. C.,2009,113(42):10712-10717.
    [94]YU J C, YU J G, HO W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater.,2002,14(9):3808-3816.
    [95]代振宇.纳米羟基磷灰石/聚氨基酸复合材料的制备与应用研究[D].重庆:重庆医科大学,2011.
    [96]KIKUCHI M, IKOMA T, ITOH S, et al. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen [J]. Compos. Sci. Technol.,2004, 64:819-825.
    [97]FIDANCEVSKA E, RUSESKA G, BOSSERT J, et al. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania [J]. Mater. Chem. Phys.,2007,103: 95-100.
    [98]杨春丽.羟基磷灰石表面改性、功能化及其应用研究[D].浙江:浙江大学:2009.
    [99]QUEA W, KHORB K A, XUB J L, et al. Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes [J]. J. Eur. Ceram. Soc., 2008,28:3083-3090.
    [100]刘莹.功能性纳米羟基磷灰石的制备、表征及性能研究[D].吉林:吉林大学,2009.
    [101]MATHIEU L M, MUELLER T L, BOURBAN P E, et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering [J]. Biomaterials,2006,27:905-916=
    [102]LEGEROS R Z. Calcium phosphate in oral biology and medicine [J]. Karger A. G.,1991, 15:1662-3843.
    [103]KANEDA K, MORI K, HARA T, et al. Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses [J]. Cat. Surv. Asia.,2004,8(4):231-239.
    [104]NISHIKAWA H. Surface changes and radical formation on hydroxyapatite by UV irradiation for inducing photocatalytic activation [J]. J. Mol. Catal. A:Chem.,2003,206(1-2):331-338.
    [105]NONAMI T, TAODA H, HUE NT, et al. Apatite formation on TiO2 photocatalyst film in a pseudo body solution [J]. Mater Res. Bull,1998,33(1):125-131.
    [106]WU W J, GEORGE H N. Kinetics of heterogeneous nucleation of calcium phosphates on anatase and rutile surfaces [J]. J. Colloid Interf Sci.,1998,199(2):206-211.
    [107]PARK S B, KIM K J, MOON S J. Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titania sol [J]. J. Colloid Interf Sci,1997,191(2):398-406.
    [108]ZHU K, YANAGISAWA K, SHIMANOUCHI R, et al. Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method [J]. J. Euro. Ceram. Soc.,2006, 26(4-5):509-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700