大直径筒仓的侧压力分析与筒仓地基三维固结分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筒仓广泛应用于粮食、化工、电力、冶金、建材和煤炭等多个行业。随着生产规模的快速发展和存储大量物料的迫切需要,大容量和大直径的圆形筒仓已应运而生,且尺度越来越大,其力学行为也表现得极其复杂。然而目前对大直径圆形筒仓的研究还开展的很少,对筒仓在工作荷载下的力学行为、储料侧压力、地基变形破坏机制还知之甚少,实际设计中多参照现有一般筒仓的设计方法,缺乏可靠的理论依据;由此造成大直径筒仓设计上不合理,引起部分筒仓出现筒壁结构性问题和工程倾斜事故。基于这一现状,本文对大直径圆形筒仓的储料侧压力和地基固结问题展开了较为系统而深入的研究,具体研究工作包括以下三个部分。
     第一部分,大直径圆形筒仓侧压力的极限分析上限方法研究。
     1.针对大直径筒仓内散料特定的破裂面形态,基于极限分析上限定理,建立大直径圆形深仓和浅仓的侧压力解析表达式;通过三个典型算例,验证了解析方法的正确性。在此基础上,深入探讨了筒仓高度和半径对大直径筒仓储料侧压力的影响;结果表明:相同高度的筒仓,半径越大,侧压力合力越大,但二者间并非呈线性关系,而是随着筒仓半径的增大,筒仓侧压力合力增大的幅度逐渐减小。
     2.利用极限分析上限方法,推导出大直径圆形深仓和浅仓的临界高径比计算公式;在此基础上,进一步探讨了散料内摩擦角、储料顶面倾角、仓壁与散料之间的摩擦角等因素对临界高径比的影响。结果表明:仓壁与散料之间的摩擦角δ越小,筒仓临界高径比ξ0越大;储料顶面倾角β越小,临界高径比ξ0越大;当储料顶面倾角为零,即筒仓中散料平堆时,筒仓临界高径比ξ0随着内摩擦角φ的增大先减小后增大,而当储料顶面倾角为自然休止角时,筒仓临界高径比ξ0随着内摩擦角φ的增大单调减小。
     第二部分,大直径圆形筒仓侧压力的三维有限元分析。
     利用有限元程序ADINA,建立考虑筒仓处于静止状态、装料和卸料过程的三维有限元模型,对三种状态下的筒仓侧压力进行了数值分析。结果表明:通过有限元方法得到的侧压力与实测值吻合的较好,证明了有限元方法研究筒仓侧压力的可行性;大直径筒仓装料结束时的侧压力不大于静止侧压力;卸料开始阶段,破裂面与仓壁相交处的侧压力突然增大,最大的卸料侧压力值出现在筒仓底部,卸料开始阶段侧压力比静止侧压力大很多,在破裂面处是静止侧压力的2-3倍,在筒仓设计中应该予以足够的重视。此外,通过变动参数对比分析了散料和筒仓参数对筒仓侧压力的影响。
     第三部分,轴对称变荷载作用下横观各向同性饱和地基的Biot固结分析。
     针对圆形筒仓对地基作用的两个特性—轴对称和变荷载,使用有效应力原理和Laplace—Hankel联合积分变换,对圆形和环形变荷载作用下横观各向同性饱和地基的Biot固结问题进行了分析,得到了Biot固结问题的解析表达式,并且通过算例验证了本文解的正确性。进一步地,将圆形筒仓对地基的加卸载作用简化为梯形循环荷载,计算了基础中心点处的地表沉降,结果表明筒仓加卸载由于周期较长,每一个荷载周期的最大沉降量相差不大,且与恒载作用下的沉降量相差不大。最后研究了土体各向异性对土体沉降的影响,结果发现土体的各向异性对土体沉降有很大的影响。
Silos are widely used in a variety of industries, such as coal, chemicals, electric power, metallurgy, building materials and food. With the development of production, the capacity and diameter of silos is becoming bigger and bigger, and the mechanical behavior of silos is becoming more complex. However, up to date, there is little research on the structural behavior, lateral wall pressure, ground deformation and failure mechanics for large-diameter silos. The current design is more referring to the present design standard for general silos, without reliable theory is built to design a large scale silo. In view of this situation, a series of studies on lateral wall pressure and ground consolidation of circular silos were carried out in this paper. This work includes three parts as below.
     The first part is relevant to upper bound limit analysis method of lateral pressure of large-diameter silos.
     1. According to the specific fracture surface of bulk materials in large-diameter silos, lateral wall pressure of deep and shallow silos was respectively analyzed used upper bound limit analysis method. Analytical expression of lateral wall pressure was obtained. The correctness of this formula was proved through numerical examples. On the basis of this, the influence of silo height and radius on the lateral wall pressure is systematically investigated. The result shows that the lateral wall pressure increases with the increase of silo radius. However, the lateral pressure doesn't increase linely with silo radius, but more and more slow increasing trend between the lateral pressure and silo radius can be shown.
     2. The critical ratio of height to diameter between deep and shallow silo was studied based on the upper bound limit analysis approach. The formula was obtained, and the influence of internal friction angle of bulk solid, top-surface inclination angle of bulk solid and friction angle between bulk solid and silo wall on the critical ratio was comprehensively analyzed. The result shows that the critical ratio of height to diameter increases with the decreasing of the friction angle between bulk solid and silo wall. The critical ratio also increases with the decreases of top-surface inclination angle of bulk solid. When the top-surface inclination angle of bulk solid is zero, the critical ratio decreases firstly, and then increases with the increase of the internal friction angle. When the top-surface angle of bulk solid is the natural angle of repose, the critical ratio decreases monotonically with the increase of the internal friction angle.
     The second part is three-dimensional finite element analysis of lateral wall pressure of silos.
     Elasto-plastic finite element analysis was carried out by using a large commercial software ADINA. Three-dimensional finite element models are respectively built when bulk material in silos was assumed at rest, at filling process and at discharge process. Then the lateral wall pressure under three kinds of conditions was studied. The result shows that wall pressure obtained by FEM is in good agreement with the measured value. It is feasible to study on the lateral wall pressure of silos with FEM. Lateral wall pressure of large-diameter silo at the end of filling process is not larger than the static one. At the beginning of discharge process, the lateral wall pressure increases suddenly at the intersection of the rupture surface and the silo wall. The maximum pressure at the beginning of discharge is at the silo bottom. The lateral pressure at the beginning of discharge is much larger than static lateral pressure. At the intersection of the rupture surface and the silo wall, the lateral wall pressure of discharge is2-3times to static lateral pressure. Lateral pressure at the beginning of discharge should be paid sufficient attention in silo design. In addition, the influence of material parameters on lateral wall pressure is also analyzed.
     The third part is three-dimensional Biot consolidation analysis of transversely isotropic saturated soil ground under axisymmetric variable loading.
     In general, the loading of silos on foundation is an axially symmetric and variable problem. In view of this situation, three-dimensional Biot consolidation of transversely isotropic saturated soil under round and circular load is analyzed. In the analysis process, effective stress and joint Laplace-Hankel integral transformation were used. Analytical solution of Biot consolidation was obtained. The accuracy of this analytical solution was verified by two simple examples. Then, the loading of filling and discharge process of silos is simplied to trapezoidal cyclic loading, the surface subsidence at the center at the silo base is calculated. The result shows that there is little difference on the maximum settlement induced between simplified cyclic loading and constant loading. This is because the process of the loading cycle is very long. Based on the above analysis, the process of loading and unloading is not necessary to consider in the final settlement calculation in actual project. Lastly, the influence of soil anisotropy on foundation settlement was studid. The result shows that soil anisotropy has a great impact on foundation settlement.
引文
[1]原方.曲线挡墙内侧散粒体压力分析及工程应用[D].大连:大连理工大学,2004.
    [2]原方,王复明,肖昭然.曲线挡墙上主动散粒体压力分析及应用[J].岩石力学与工程学报,2004,23(22):3900-3904.
    [3]原方,王复明.浅圆仓散料侧压力计算方法研究[J].大连理工大学学报,2006,46(1):75-79.
    [4]原方,邵兴,王录民等.一种新的浅圆仓散料侧压力计算方法[J].工程力学,2004,21(3):96-100.
    [5]原方,范量,邵兴.大直径浅圆仓贮料侧压力计算公式探讨[J].隧道建设,2004,24(1):17-19.
    [6]邵兴,原方,崔元瑞.浅圆仓仓壁侧压力分析[J].特种结构,2003,23(2):44-45.
    [7]邵兴,原方,崔元瑞.大直径浅圆仓贮料侧压力实用计算方法[J].特种结构,2003,20(2): 16-19.
    [8]邵兴,原方.浅圆仓散料压力计算方法[J].郑州工程学院学报,2003,24(3):77-78.
    [9]陈豪.大直径预应力混凝土筒仓仓壁的受力有限元分析[D].武汉:武汉理工大学,2007.
    [10]李兴照.大直径粮食浅圆仓仓壁压力的测试与分析[D].郑州:郑州工程学院,2008.
    [11]张磊.曲线挡墙散粒体主动侧压力分析及筒仓实践[D].长沙:中南大学,2009.
    [12]刘静.裤型漏斗型钢贮煤仓散料压力分布研究[D].太原:太原理工大学,2009.
    [13]邢立新.大型水泥熟料筒仓结构工作应力试验及有限元分析[D].合肥:合肥工业大学,2010.
    [14]陈长冰.筒仓内散体侧压力沿仓壁分布研究[D].合肥:合肥工业大学,2006.
    [15]马超.筒仓结构—地基相互作用动力计算[D].西安:长安大学,2008.
    [16]付建宝.复杂条件下大直径筒仓侧压力的极限分析和有限元分析[D].大连:大连理工大学,2003.
    [17]Guy Mavrot, Isabelle Sochet, Patrice Bailly. Silo vulnerability:structural aspects [J]. Journal of Loss Prevention in the Process Industries,2003,16 (2):165-172.
    [18]Kiseslbach R. Bursting of a silo [J]. Ebgubeering Failure Analysis,1997.
    [19]陈文明.面粉厂钢板筒仓钢锥斗事故处理[J].煤炭设计,1999,(12):31-33.
    [20]归衡石.钢筒仓倒塌事故和贮料流动影响[J].冶金矿山设计与建设,1999,31(5):50-52.
    [21]Janssen H A. Versuche uber getreidedruck in silozellen [J]. VDI Zeischrift (Dusseldorf), 1895,39:1045-1049.
    [22]Airy W. The pressure of grain minutes of proceedings [J]. Institution of Civil Engineers, 1897,131:347-358.
    [23]Pieper K. and Wenzel F. Druckverhaltnisse in silozellen [D]. Berlin:Verlag von WilhelmErnst&Sohn.1964.
    [24]Walker D M. An approximate theory for pressure and arching in hoppers [J]. Chemical Engineering Science,1966,21:975-997.
    [25]Jenike A W. A theory of flow of particulate solids on converging and diverging channels bassed on a conical yield function [J]. Powder Technology,1987,50 (3):229-236.
    [26]Johanson J R. and Colijin H. New design cuiteria for hoppers and bring [J]. Iron and Steel engineers,1964,1:85-104.
    [27]Johanson J R. and Kleysteuber W K. Flow corrective inserts in bins [J]. Chem. Engng. Progress,1966,62 (11):79-83.
    [28]刘定华.钢筋混凝土筒仓动态压力的计算[J].西安建筑科技大学学报,1994,26(4):349-354.
    [29]刘定华,王建华,杨建斌.钢筋混凝土筒仓侧压力的试验研究[J].西安建筑科技大学学报,1995.27(1):8-12.
    [30]苏乐逍,赵霖,刘建秀.粮食立筒仓弹性变形对卸料动压力的影响与计算[J].工程力学,1999,(6):102-106.
    [31]薛勇.筒仓偏心卸料时贮料作用于仓壁上水平压力的分析[J].郑州粮食学院学报,1999,20(2):44-51.
    [32]付红庆.非对称荷载作用下大直径浅圆仓内力研究[D].郑州:郑州工程学院,2003.
    [33]梁传珍,邢梅梅.浅谈矮圆仓的仓壁荷载问题[J].仓房建设与粮仓机械2000,5:51-52.
    [34]祝瑞珍,张欧.贮料筒仓壁的静压力[J].华北水利水电学院学报,1995,16(3):61-66.
    [35]祝瑞珍,张欧.贮料筒仓壁静压力的弹塑性有限元分析[J].华北水利水电学院学报,1995,16(11):51-57.
    [36]曾丁,黄文彬,华云龙.筒仓壁压的有限元分析[J].农业工程学报,1998,14(2):44-48.
    [37]曾丁,郝保红,黄文彬.筒仓静态壁压的有限元分析[J].中国粉体技术,2000,6(5):6.11.
    [38]冯云田,华云龙.适用于柔性圆筒仓的Jassen修正的公式[J].中国农业大学学报,1996,1(4):107-111.
    [39]张家康,黄文萃,姜涛等.筒仓贮料侧压力系数研究[J].建筑结构学报,1999,20(1):71.74.
    [40]Ooi J Y, Chen J F, Rotter J M. Measurement of solids flow patterns in a gypsum silo [J]. Powder Technology,1998, (99):272-284.
    [41]Ooi J Y, Chen J F. Prediction of static wall pressure in coal silos [J]. Construction and Building Materials,1996,10(2):109-116.
    [42]Karlsson T, Klisinski M. Finite element simulation of granular material flow in plane silos with complicated geometry [J]. Powder Technology,1998,99:29-39.
    [43]Stewart B R. Active and passive wall pressure induced by sorghum grain in a shallow bin [J]. Trans Amer Soc Agric Engrs.1972,15 (1):121-125.
    [44]彭雪平.巨型贮煤筒仓的有限元分析[J].特种结构,2005,22(4):41.42.
    [45]杨雪强,刘祖德.对挡土墙主动土压力的在研究[J].力学与实践1999,21:37-41.
    [46]樊立新,郑山锁.大型筒仓的有限元分析[J].西安矿业学院学报,1996,16(4):320-323.
    [47]雷震,郑山锁.大型贮煤筒仓力学性能分析[J].山西建筑,2003,29(4):25-26.
    [48]黄义,尹冠生.考虑散粒体与仓壁相互作用时筒仓的动力计算[J].空间结构,2002,8(1):3-9.
    [49]Reimbert Marcel, Reimbert Andre. Silos-theory and practice [M]. Trans Tech Publictions, 1976.
    [50]Rankine W J M. On the stability of loose earth [M]. Phil. Trans. Roy. Soc,1957.
    [51]Coulomb C A. Surune application desregles demaximis etminimis a quelques problems destatique relatifs a larchitecture. Memoires savants etrang, l'Acad, Sci.1773, Paris 7, 343-382.
    [52]George Abdel-Sayed, etal. Cold-formed steel farm structures. Part 1:Grain bins. Journal of Structural Engineering,1985,111 (10):2065-2089.
    [53]Lambert F W. The theory and practical design of bunkers [M]. London:British Constructional Steelwork Association,1968.
    [54]Stewart B R. Active and passive wall pressure induced by sorghum grain in a shallow bin [J]. Trans. Amer. Soc. Agric. Engrs.1972,15 (1):121-125.
    [55]Jenike A W. Load assumption and distribution in silo design [C]. Conference of Concrete Silos, Oslo, Norway,1977.
    [56]李国柱,刘定华.筒仓动态压力的计算和测试[J].宁波高等专科学校学报,2000,12(4):1-6.
    [57]刘定华,魏宜华.钢筋混凝土筒仓侧压力的计算与测试[J].建筑科学,1998,14(4):14-17.
    [58]刘定华.大型煤仓仓壁侧压力的试验研究[J].煤矿设计,1995,(1):35-38.
    [59]王建华,刘定华,杨建斌.新型筒中筒仓贮料侧压力研究[J].西安冶金建筑学院学报,1993,25(2):227-232.
    [60]刘定华.筒中筒仓仓壁侧压力的研讨[J].建筑科学,1994,(4):17-20.
    [61]刘定华,郭明昌,杨建斌.筒仓仓壁动态压力的测试和分析[J].西安冶金建筑学院学报,1989,21(1):108-113.
    [62]中华人民共和国国家标准《钢筋混凝土筒仓设计规范》(GB50077-2003)[S].
    [63]克列因Γ K著.陈万佳译.散体结构力学[M].北京:中国铁道出版社,1983.
    [64]Brown C J, Lahlouh E H, ROtter J M. Experiment on a square steel silo [J]. Chemical Engineering Science,2000, (55):4399-4413.
    [65]Much-Andersen J, Ditleven O, Christensen C, Randrup-Thornsen S and Hoffrneyer P. Emprical stochastic silo load model [J]. Engrg. Mech., ASCE,1994,121 (9):981-986.
    [66]Hamadeh H, Kaminski M. Measurement of pressure distribution inside the silo model [J]. Power Handing & Processing,1996,8(2):153-154.
    [67]ACI Committee 313-91. Standard practice for design and construction of concrete silos and stacking tubes for storing granular materials [S]. ACI Manual of concrete practice part 4 bridges, Substructures, Sanitary and other Special Structures.313-1-313-27, 313R-1-313R-22.
    [68]Ditleven O, Christensen C, Randrup-Thornsen S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation [C]. Proc.Probabilistic Structural Mechanics:Adances in Structural Reliability Methods, IUTAM Symp., Springer, New York,1994:134-462.
    [69]Ditleven O, Nikolaj K. Berntsen empirically based gamma-distributed random wall pressure field in silo [J]. Journal of Engineeting Mechanics,1999,125 (5):561-570.
    [70]Ooi J Y, Rotter J M. Wall pressure in suquat steel silos from finite element analysis [J]. Computer Structure,1990,37 (4):361-374.
    [71]Ooi J Y. Bulk solids behaviour and silo wall pressure [D]. University of Sydney,1990.
    [72]Ooi J Y, Chen J F, Rotter J M. Measurement of solids flow patterns in a gypsum silo [J]. Powder Technology,1998,99:272-284.
    [73]Chen J F, Rotter J M, Ooi J Y. Statistical inference of unsymmetrical silo pressures from comprehensive wall strain measurements [J]. Thin-Walled Structures Volume,1998,31: 117-136.
    [74]Wieckowski Z. Finite deformation analysis of motion of bulk materials in silo. Application of finite elemnt method research repeot [R]. Lulea University of Technology: Division of structural mechanics,1994.
    [75]Rombach G, Eibl J. Granual flow of materials in silos:Numerical results [J]. Bulk Solid Handing,1995,1:65-70.
    [76]曾丁,黄文彬,华云龙.筒仓壁压的有限元分析[J].农业工程学报,1998,14(2):44-48.
    [77]曾丁,郝保红,黄文彬.筒仓静态壁压的有限元分析[J].中国粉体技术,2000,6(5):6-11.
    [78]Karlsson T, Klisinski M, Runesson K. Finite element simulation of granular material flow in plane silos with complicated geometry [J]. Powder Technology,1998,29-39.
    [79]Briassoulis D. Finite element analysis of a cylindrical silo shell under unsymmetrical pressure distridutions [J]. Computer and Structures,2000,78:271-281.
    [80]Ayuga F, Guaita M, Aguado P J, Couto A. Discharge and the eccentricity of hopper influence on the silo wall pressures [J]. Journal of Engineering Mechanics,2001,127 (10): 1067-1075.
    [81]Thorsten W R, Guenter A, Rombach G. Numerical aspects of FE simulations of granular flow in silos [J]. Journal of Engineering Mechanics,2001,127 (10):1044-1051.
    [82]Taisana Nilaward. Analysis of bulk-solid pressures in silos by explict finite element method [D].2001.
    [83]Martinez M A, Alfaro L, Doblare M. Simulation of axisymmetric discharging in metallic silos analysis of the induced pressure distribution and comparison with different standards [J]. Engineering Structures,2002,24:1561-1574.
    [84]魏群.散体单元法的基本原理数值方法及程序[M].北京:科学出版社,1991.
    [85]Langston P A, Tuzun U. Continuous potential discrete particle simulations of stress and velocity fields in hopper:Transition from fluid to granular flow [J]. Chemical Engineering,1994,49 (8):1259-1275.
    [86]Langston P A, Tuzun U, Heyes D M. Discrete elemnent simulation of granular flow in 2D and hoppers:Dependence of discharge rate and wall stress on particle interactions [J]. Chemical Engineering,1995,50 (9):967-987.
    [87]周德义等.散粒农业物料孔口出流成拱的离散单元仿真[J].农业工程学报,1996,2(2):86-.190.
    [88]Gavrilov D, Vinogradov O G. Micro instabilities in a system of particles in silos during filling process [J]. Computational Mechanics,1999,24:166-174.
    [89]俞良群,邢纪波.筒仓装卸料时力场及流场的离散单元法模拟[J].农业工程学报,2000,16(4):15-19.
    [90]Hirshfeld D, Rapaporta D C. Granular flow from a silo:Discrete-particle simulations in three dimensions [J]. Eur. Phys. J. E.2001,4:193-199.
    [91]周健,贾敏才等著.土工细观模型试验与数值模拟[M].北京:科学出版社,2008.
    [92]耿雪玉,蔡袁强.变荷载作用下轴对称饱和半空间均质地基Biot固结分析[J].岩土力学,2009,30(8):2264-2270.
    [93]耿雪玉.复杂条件下软粘土地基多维固结分析[D].杭州:浙江大学,2008.
    [94]耿雪玉.循环荷载作用下软粘土地基非线性一维固结分析[D].杭州:浙江大学,2005.
    [95]袁坚敏.软土地基一维非线性固结形状研究[D].杭州:浙江大学,2004.
    [96]严宗雪.软土地基固结特性研究[D].西安:长安大学,2003.
    [97]李广信主编.高等土力学[M].北京:清华大学出版社,2002.
    [98]Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage [M]. Leipzig Deuticke, Vienna,1925.
    [99]Ducan J M. Limitations of consolidation analysis of consolidation settlement [J]. Journal of Geotechnical Engineering, ASCE,1993,119 (9):1333-1359.
    [100]Richart Jr F E. A review of the theories for sand drains [J]. Proc. ASCE,1957,83 (SM3): 1-38.
    [101]Hansbo S, Jamiolkowski M, Kok L. Consolidation by vertical drains [J]. Geotechnique, 1981,31 (1):45-46.
    [102]Davis E H, Raymond G P. A non-linear of consolidation geotechnique [J]. Geotechnique, 1965,15(2):161-173.
    [103]Gibson R E, England G L, Hussey M J L. The theory of one-dimensional consolidation of saturalted clays.1 finite non-linear consolidation of thin homogeneous layers [J]. Geotechnique,1967,17 (3):261-273.
    [104]Gibson R E, Schiffman R L, Cargill K W. The theory of one-dimensional consolidation of thick homogeneous layers [J]. Canadian Geotechnical Journal,1981,18 (2):280-293.
    [105]Barden L, Berry P L. Consolidation of normally consolidated clay [J]. Journal of the Soil Mechanics and Foundation Derision, ASCE,1965,91 (SM5):15-35.
    [106]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34-35.
    [107]王奎华,谢康和,曾国熙.双面半透水边界的一维粘弹性固结理论[J].岩土工程学报,1998,20(2):34-36.
    [108]Biot. General theory of three-dimensional consolidation [J]. Applied physics,1940.
    [109]Booker J R. The consolidation of a finite layer subjected to surface loading [J]. Int. J. Solids Structures,1974,10:1053-1065.
    [110]顾尧章,金波.轴对称荷载下多层地基的Biot固结及其变形[J].工程力学,1992,9(3):81-94.
    [111]胡亚元,王立忠,陈云敏,吴世明.二层地基二维Biot固结理论解答[J].岩土工程学报,1998,20(5):17-21.
    [112]McNamee J, Gibson R E. Displacement functions and linear transforms applied to diffusion through porous elastic media [J]. Q J Mech. Appl. Math.1960,13(1):98-111.
    [113]McNamee J, Gibson R E. Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum [J]. Q J Mech. Appl. Math.1960,13 (2): 210-227.
    [114]Mandel J. Consolidation des sols (etude mathematique) [J]. Geotechnique,3:287-299.
    [115]Cryer C W. A comparison of the three-dimensional consolidation theories of Biot and Terzaghi [J]. Q. J. Mech. Appl. Math.1963,16:401-412.
    [116]陈光敬,赵锡宏.横观各向同性非均质地基的Biot固结轴对称问题求解[J].土木工程学报,1999,32(1):14-20.
    [117]陈光敬,楼晓明.圆形均布荷载下不可压缩各向异性地基的受力变形分析[J].土工基础,2000,14(2):31-35.
    [118]Chen S L, Zhang L M, Chen L Z. Consolidation of a finite transversely isotropic soil layer on a rough impervious base [J]. Journal of Engineering Mechanics,2005,131 (12): 1279-1290.
    [119]单君.周期荷载下单层地基非单调压缩固结理论[D].杭州:浙江大学,2006.
    [120]谢康和.双层地基一维固结理论与应用[J].岩土工程学报,1994,16(5):24-35.
    [121]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5):80-85.
    [122]谢康和.等应变条件下的双层理想井地基固结理论[J].浙江大学学报,1995,29(5):529-539.
    [123]谢康和.层状土半透水边界一维固结分析[J].浙江大学学报,1996,30(5):567-574.
    [124]蔡袁强,徐长节,丁狄刚.循环荷载下成层饱水地基的一维固结[J].振动工程学报,1998,11(2):184-192.
    [125]李冰河,谢康和,应宏伟,曾国熙.变荷载下软粘土非线性一维固结半解析解[J].岩土工程学报,1999,21(3):288-293.
    [126]李冰河,谢康和,应宏伟,曾国熙.初始有效应力沿深度变化的非线性一维固结半解析解[J].土木工程学报,1999,32(6):47-51.
    [127]李冰河,谢永利,谢康和,曾国熙.软粘土非线性一维固结半解析解[J].西安公路交通大学学报,1999,19(1):24-29.
    [128]杨丹,吴世明,陈龙珠.循环荷载下饱和粘土的一维粘弹性解答[J].水利学报,1992,5:52-58.
    [129]关山海,谢康和,胡安峰.低频循环荷载下地基一维固结性状分析[J].岩土力学,2003,24(5):849-853.
    [130]方晔.Gibson地基的一维固结分析[D].杭州:浙江大学,2003.
    [131]陈惠发著.极限分析与土体塑性[M].北京:人民交通出版社,1995.
    [132]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1):1-11.
    [133]Γ K克列因著,陈万佳译.散体结构力学[M].北京:中国铁道出版社,1983.
    [134]秦爱芳.非饱和土一维固结的解析解及半解析解[D].上海:上海大学,2008.
    [135]蔚旭灿.应用数学力学方法研究沥青路面结构特性[D].西安:长安大学,2007.
    [136]廖克武.横观各向同性饱和土体瞬态动力响应研究[D].杭州:浙江大学,2006.
    [137]Sanad A M, Ooi J Y etc. Computations of granular flow and pressures in a flat-bottomed silo [J]. Journal of Engineering Mechanics,2001,127 (10):1033-1043.
    [138]Pablo Vidal, Manuel Guaita, Francisco Ayuga. Analysis of dynamic discharge pressures in cylindrical slender silos with a flat bottom or with a hopper:comparison with Eurocode 1 [J]. Biosystems Engineering,2005,91 (3):335-348.
    [139]Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,12(2):155-164.
    [140]沈珠江.理论土力学[M].北京:水利水电出版社,2000.
    [141]Mcnamee J, Gibson R E. Displacement functions and linear transforms applied to diffusion through porouselastic media [J]. Quarterly Journal of Mechanics and Applied Mathematics,1960,13 (1):98-111.
    [142]Mcnamee J, Gibson R E. Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum [J]. Quarterly Journal of Mechanics and Applied Mathematics,1960,13 (2):210-227.
    [143]纪多辄,石祥锋.横观各向同性圆柱土样轴对称Biot固结的解析解[J].岩土力学,2002,23(6):765-769.
    [144]Chen S L, Zhang L M, Chen L Z. Consolidation of a finite transversely isotropic soil layer [J]. Journal of Engineering Mechanics,2005,131 (12):1279-1290.
    [145]黄松元编.散体力学[M].北京:机械工业出版社,1993.
    [146]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988.
    [147]刘扬,刘巨保,罗敏.有限元法分析及应用[M].北京:中国电力出版社,2008.
    [148]Logans D L著,伍义生,吴永礼等译.有限元方法基础教程:第三版[M].北京:电子工业出版社,2003.
    [149]马奎兴.有限元及软件ANSYS简介[J].水利科技与经济,2004,10(3):190.
    [150]ADINA帮助文件.
    [151]杨奇林.数学物理方程与特殊函数(第2版)[M].北京:清华大学出版社,2011.
    [152]Durbin F. Numerical inversion of Laplace transrorm:An efficient improvement to dubner and Abita's method [J]. The Computer Journal,1974,17 (9):371-376.
    [153]张维然,曾正强等.上海市地面沉降特征及对社会经济发展的危害[J].同济大学学报,2002,30(9):1129-1133.
    [154]范盛金.一元三次方程的新求根公式与新判别法[J].海南师范学院学报(自然科学版),1989,2(2):91-98.
    [155]中华人民共和国国家标准—钢筋混凝土筒仓设计规范GB 20077—2003[S].2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700