飞秒激光作用下金属薄膜表面瞬态反射现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的发展,飞秒激光技术在能源、材料、信息技术和微加工等领域中有着广泛的应用,其中飞秒激光作用下材料内能量转换与传递过程的微观机理是重要的研究内容。能量转换与传递过程在微观层面上体现为载流子间的相互作用,其作用时间极短,一般都处在皮秒至飞秒量级。飞秒激光瞬态热反射(FTTR)技术通常又称为飞秒激光泵浦-探测技术,可以用来分辨并观测这些载流子间的相互作用过程,是观测微观能量转换与传递过程及对其规律进行研究的主要实验手段。本文主要研究了飞秒激光对金属薄膜进行加热后,金属薄膜表面的瞬态反射率的变化现象,详细讨论了金属内电子的热输运过程。主要概括如下:
     1.简单介绍了双温模型、三温模型和非热模型三种针对超短脉冲激光与物质相互作用的模型,用以描述金属内不同载流子之间的非平衡态热输运过程。
     2.介绍了进行泵浦-探测实验的准备工作,包括实验系统的搭建和实验样品的制备两部分。讨论了实验系统中的主要仪器的选择,介绍了主要仪器的参数及其工作原理;介绍了磁控溅射镀膜原理、镀膜设备以及退火原理和退火设备等。
     3.对Ag薄膜、Cr薄膜、Co薄膜和NiFe合金薄膜进行了单泵浦光束的泵浦-探测实验,阐述了具体实验过程,描述了薄膜的瞬态反射率曲线的变化趋势,分析了薄膜内电子和声子的运动规律,重点讨论了当电-声子发生非平衡弛豫时,通过探测薄膜表面的反射光而得到的瞬态反射率曲线的变化规律以及电子的热化时间、加热时间等的变化。另外,在以玻璃作为衬底的Cr薄膜和NiFe合金薄膜上发现了多次瞬态反射率突变现象,这个现象在使用单束泵浦激光光束加热的泵浦-探测实验中很少被详细的讨论。
     4.为深入研究多次瞬态反射率突变现象,搭建了双泵浦光束的实验系统。对Pt薄膜和Ag薄膜进行了双光束泵浦-探测实验研究。在对Pt薄膜上的瞬态反射率信号的研究中,发现在20nm的玻璃衬底的Pt薄膜的瞬态反射率曲线上出现了一个在单泵浦光束加热的泵浦-探测实验中很少出现过的现象:薄膜在双飞秒激光泵浦光束的作用下,ΔR/R曲线急剧下降到一个低值后,在最长达到约130ps的延迟时间内ΔR/R曲线维持在低反射率状态,随后ΔR/R曲线再上升到热平衡状态。由于薄膜内的电子温度与薄膜的瞬态反射率值成正比,所以也表明Pt薄膜内的电子温度在130ps的时间内维持在低温状态。另外在对Ag薄膜进行双泵浦光束实验时,在小于15ps的时间延迟内发现了多至4次的瞬态反射率突变现象,说明在小于15ps的延迟时间内Ag薄膜内的电子温度发生了多次急剧的上升或下降。这些现象的出现对研究飞秒激光与物质相互作用的机理有着重要的意义。
With the development of laser technology, femtosecond laser is widely used in energy, materials, information technology and micro machining field. The microscopic mechanism of energy conversion and transfer process in materials by femtosecond laser heating is an important research content. The energy conversion and transfer process embody the interactions between the carriers at a micro level, the time scale of the interactions is very short, generally in picosecond to femtosecond level. The femtosecond transient reflection technique (FTTR) is often called the femtosecond pump probe technique, it can distinguish and observe the interactions between the carriers, so it is the main experimental method to observe and research the micro energy transfer processing and the regularities. This paper mainly studied on the transient reflectivity changes on some metal films'surface, and discussed the heat transport process of electron-electron and electron-phonon in the metal films by femtosecond laser heating. It was summarized as follows:
     1. We introduced three kinds of models when the ultrafast pulses laser heat the metal films:the two temperature model, the three temperature model and the nonthermal model. They aimed at the nonequilibrium heat transport process of different carriers in metal films.
     2. The preparations of the pump probe experiment was introduced in details. It contained two parts:the building of the pump probe experiment system and the preparation of samples. The working principle of the main instruments was discussed in details, and also the samples preparing using magnetron sputtering method was introduced, which included the principle of plating, the coating equipment and the annealing equipment etc..
     3. We performed pump probe experiments by using single pump beam to heat Ag films, Cr films, Co films and NiFe alloy films. We expounded the specific experimental process, described the trend of the transient reflectivity curve, and analyzed the movement of electrons and phonons in the thin films. We discussed the variation regularities of transient reflectivity curves for the electron-phonon nonequilibrium relaxation occuring, and analysis the electron thermalization time, the heating time et al.. We found and discussed the multiple transient reflectivity mutation phenomenon on the Cr films and NiFe alloy films of glass substrates, which were not discussed in detail in other pump probe experiments when the pump beam was single.
     4. In order to deeply analysis the multiple transient reflectivity mutation phenomenon, we set up the experimental system of double pump beams. The Pt films and the Ag films were also studied by pump probe technology. By analysis the transient reflectivity signals on Pt films, we found that the transient reflectivity curves of platinum film of20nm on glass substrates had a different phenomenon:after the Pt films heated by the double laser pulses, the AR/R curves sharply declined to a low value, the lasting time was approximately130ps when the ΔR/R curves remained at the low reflectivity level, and then the ΔR/R curves rose to the thermal equilibrium state. The phenomenon was not experienced in single pump beam experiments. Due to the electron temperature of films was proportional to the transient reflectivity of the films, so the electron temperature of the Pt film maintain at low temperature state in130ps. In addition, when the silver films were heated by the double pump beams, the transient reflectivity changed sharply up to4times in the delay time of less than15ps, so the electron temperature of the Ag thin films rapidly increased or declined many times in less than15ps. In a word, the emergence of these phenomena was important to research the interactions of femtosecond laser and metals.
引文
[1]Huaqiong Li, Feng Wen, Yee Shan Wong, Freddy Yin Chiang Boey, Venkatraman S. Subbu, David Tai Leong, Kee Woei Ng, Gary Ka Lai Ng, Lay Poh Tan. Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells[J]. Acta Biomaterialia,2012,8(2):531-539.
    [2]Costantino Corbari, Audrey Champion, Mindaugas Gecevicius, Martynas Beresna, Matthieu Lancry, Bertrand Poumellec, Yves Bellouard, and Peter G. Kazansky. Picosecond laser machining in the bulk of transparent dielectrics:critical comparison with fs-laser direct writing[J]. CLEO:Applications and Technology,2012, ATu3L.2.
    [3]Costantino Corbari, Audrey Champion, Mindaugas Gecevicius, Martynas Beresna, Yves Bellouard, and Peter G. Kazansky. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass[J]. Optics Express,2013,21(4):3946-3958.
    [4]Anoop N. Samant, Narendra B. Dahotre. Laser machining of structural ceramics-A review. Journal of the European Ceramic Society[J].2009,29(6):969-993.
    [5]E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, A. E. Dormidonov, and V. P. Kandidov. Anti-Stokes wing of femtosecond laser filament supercontinuum in fused silica[J]. Optics Letters,2013,38(1):16-18.
    [6]D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro.2.1μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass[J]. Optics Letters,2012,37 (6):996-998.
    [7]Fletcher L., Witcher J.J., Troy N., Reis, S.T., Brow R.K., Krol D.M.. Direct femtosecond laser waveguide writing inside zinc phosphate glass[J]. Optics Express,2011,19:7929-7936.
    [8]Henry N. Chapman, Petra Fromme, Anton Barty, et al. Femtosecond X-ray protein nanocrystallography [J]. Nature,2010,470:73-77.
    [9]M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durecu, A. Couairon, and A. Mysyrowicz. Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids:a new regime of filamentation[J]. Phys. Rev. Lett., 2013,110,115003-4.
    [10]I.Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter.Ultrahigh-speed random number generation based on a chaotic semiconductor laser phys[J]. Rev. Lett.,2009,103:024102-4.
    [11]Adrian H. Quarterman, Keith G. Wilcox, Vasilis Apostolopoulos, Zakaria Mihoubi, Stephen P. Elsmere, Ian Farrer, David A. Ritchie & Anne Tropper[J]. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics,2009, 3:729-731.
    [12]W.O. Popoola, Z. Ghassemlooy, C.G. Lee, A.C. Boucouvalas scintillation effect on intensity modulated laser communication systems—a laboratory demonstration [J]. Optics & Laser Technology,2010,42(4):682-692.
    [13]Cesar Jauregui, Tino Eidam, Hans-Jiirgen Otto, Fabian Stutzki, Florian Jansen, Jens Limpert, and Andreas Tunnermann. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express,2012,20(12):12912-12925.
    [14]王清月.飞秒激光技术及其新兴相关学科[J],量子电子学,1994,11(4):211
    [15]D. E. Spence, P. N. Kean and W. Sibbet.60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser[J]. Opt.lett,1991,16(1):42-47.
    [16]S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate[J]. Optics Letters,1997,20(22):1562-1564.
    [17]I.D. Jung, F. X. Kartner, N. Matuschek, D. sutter, F. Morier Genoud, G Zhang, U. Keller, V. Scheuer, M. Tilsch and T. Tilschudi. Self-starting 6.5 fs from a KLM Ti:sapphire laser[J]. Opt.lett.,1997,22:1009-1011.
    [18]M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabecl, P. Corkum, U. Heinzmann, M. Drescher & F. Krausz. Attosecond Metroogy[J], Nature,2001, 414:509-513.
    [19]Strickl D, Mourou G Compression of amplified chirped optical pulses[J]. Opt. Commun., 1985,56:219-221.
    [20]Noel S, Hermanna J. Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses[J]. Appl. Phys. Lett.,2009,94:053120-053123.
    [21]Jean-Yves Bigot, Mircea Vomir & Eric Beaurepaire. Coherent ultrafast magnetism induced by femtosecond laser pulses[J]. Nature Physics,2009,5:515-520.
    [22]Yonglai Zhang, Li Guo, Shu Wei, Yinyan He, Hong Xia, Qidai Chen, Hong-Bo Sun, Feng-Shou Xiao. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nanotaday,2010,5(1):15-20.
    [23]Crawford T. H. R., Yamanaka, J., Botton, GA.; Haugen, H.K.. High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon[J]. J. Appl. Phys.,2008,103:053104-053111.
    [24]Yang Liao, Jiangxin Song, En Li, Yong Luo, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka and Katsumi Midorikawa. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab Chip,2012,12, 746-749.
    [25]J. Bonse, J. Kruger S. Hohmand A. Rosenfeld Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications,2012,24(4):042006.
    [26]Claytor K, Khatua S, Guerrero J M, Tcherniak A, Tour J M, Link S. Accurately Determining Single Molecule Trajectories of Molecular Motion on Surfaces[J]. J. Chem. Phys.,2009,130: 164710-164719.
    [27]Leon J Radziemski. From laser to LIBS, the path of technology development[J]. Spectrochim Acta, Part B,2002,57:1109-1113.
    [28]Arkaprabha Konar, Jay D. Shah, Vadim V. Lozovoy. and Marcos Dantus. Optical response of fluorescent molecules studied by synthetic femtosecond laser pulses[J]. J. Phys. Chem. Lett.,2012,3 (10):1329-1335.
    [29]Sharp P F, Manivannan A, Xu H, Forrester J V. The scanning laser ophthalmoscope:a review of its role in bioscience and medicine[J]. Phys. in Med. Biol.,2004,49:1085-1086.
    [30]S. Fiedler, R. Irsig, M. Gieseke, M. Vehse, V. Senz, A. W. Oniszczuk, J. Tiggesbaumker, C. Schuster, A. V. Svanidze, N. Rothe, S. Kaierle, M. Hustedt, H. Haferkamp, K. Sternberg4, K.-P.Schmitz, H. Seitz, S. Lochbrun-ner, K.-H. Meiwes-Broer. Recurrent Herpes Simplex Keratitis Adjacent to femtosecond laser arcuate keratotomies ophthalmic images[J]. Biomed Tech.,2012,57:603-605.
    [31]Wang Q Q, Wu D, Jin M X, Liu F C, Hu F F, Cheng H X, Liu H, Hu Z, Ding D J, Mineo H, Dyakov Y A, Mebel A M, Chao S D, Lin S H. Ionization and dissociation processes of pyrrolidine in intense femtosecond laser field[J]. J. Phys. Chem. C,2009,113:11805-11515.
    [32]Zhang X, Zhang D D, Liu H, Xu H F, Jin M X, Ding D J. Angular distributions of fragment ions in dissociative ionization of CH2I2 molecules in intense laser fields[J]. J. Phys. B,2010, 43:025102-025108.
    [33]MalinanT.H, Stimulated optical radiation in ruby masers[J]. Nature,1960,187(4736):493-494.
    [34]张山彪,王文军,毕军,李丽华.超短激光脉冲技术及其研究进展[J],激光杂志,2003,4(24):11-13.
    [35]物理所,神奇的飞秒激光[R]. http://wenku.baidu.com/view/158fe428915f804d2b16c14b. html.
    [36]刘立鹏,飞秒激光双光子三维微细加工和超快检测技术的研究[D].江苏大学硕士论文2005,5-10.
    [37]D Nishiwaki, Y Hamanaka, Y Nonogaki, Y Fujiwarac,Y Takedac, A Nakamura. Hot carrier relaxation dynamics in In0.53Ga0.47As studied by femtosecond pump-probe spectroscopy[J]. Journal of Luminescence,1999,83(84):49-53.
    [38]V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev and Th. Rasing. Room-temperature ultrafast carrier and spin dynamics in GaAs probed by the photoinduced magneto-optical Kerr effect[J]. Physical Review B,2001,63(23):235201-8.
    [39]C Hess, S Funk, M Bonn. Femtosecond dynamics of chemical reactions at surfaces[J]. Appl. Phys. A,2000,71:477-483.
    [40]W.Wurth. Femtosecond dynamics of adsorbate charge transfer processes[J]. Appl.Phys. A, 1997,65:597-601.
    [41]N P Lockyer, J C Vickerman. Multiphoton ionization mass spectrometry of small biomo lecules with nanosecond and femtosecond laser pulses [J]. International Journal of Mass Spectrometry,1998,176:77-86.
    [42]Lozovo V, Antipin S A, Gostev F E. Experimental demonstration of the coherent control of the molecular iodine vibrational dynamics by chirped femtosecond light pulses[J]. Chemical Physics Letters,1998,284:221-229.
    [43]Folmer D E, Poth L, Wisniewski E S, A.W Castleman Jr.Arresting intermediate states in a chemical reaction on a femtosecond time scale:proton transfer in model base pairs[J]. Chemical Physics Letters,1998,287:1-7.
    [44]Shen Y R, The principle of Nonlinear Optics[M]. John Wiley & Sons Inc,1984.
    [45]S. K. Sundaram, E. Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials,2002,1:217-224.
    [46]Yakir Siegal. Time-resolved studies of laser-induced phase transitions in GaAs[D] Ph.D. Thesis, Harvard University, Cambridge, Massachusetts,1994.
    [47]Paul Callan. Ultrafast Dynamics and Phase Changes in Solids Excited by Femtosecond Laser Pulses[D]. Ph.D. Thesis, Harvard University,2000.
    [48]Tien, An-Chun; Backus, Sterling; Kapteyn, Henry; Murnane, Margaret; Mourou, Gerard.Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration[J]. Phys. Rev.Lett.1999,82,3883-3886
    [49]Oudar, J. L.; Hulin, D.; Migus, A.; Antonetti, A.; Alexandra, F.. Subpicosecond Spectral Hole Burning Due to Nonthermalized Photoexcited Carriers in GaAs[J]. Phys. Rev. Lett 1985,24:2074-2080.
    [50]Thomas Elsaesser, Jagdeep Shah, Lucio Rota.and Paolo Lugli. Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy[J]. Phys. Rev. Lett.1990,66:1757-1760.
    [51]Lin W Z, Schoenlein R W, Fujimoto J G Femtosecond absorption saturation studies of hot carriers in GaAs and AlGaAs[J]. IEEE J. Quant.Elect.,1988,24:267-275.
    [52]Alfred Leitenstorfer, Cornelius Furst, Alfred Laubereau, Wolfgang Kaiser,Gunther Trankle and Gunter Weimann. Femtosecond Carrier Dynamics in GaAs Far from Equilibrium[J]. Phys. Rev. Lett.1996,76:1545-1548.
    [53]J. A. Kash, J. C. Tsang, and J. M. Hvam. Subpicosecond Time-Resolved Raman Spectroscopy of LO Phonons in GaAs[J]. Phys. Rev. Lett.1985,54:2151-2154.
    [54]U. Strauss, W. W. Ruhle, K. Kohler. Auger recombination in intrinsic GaAs[J]. Applied Physics Letters,1993,62(1):55-57.
    [55]Ellen J. Yoffa. Dynamics of dense laser-induced plasmas[J]. Phys. Rev. B,1980, 21:2415-2425.
    [56]Seeger, K. Semiconductor Physics:An Introduction[M]. Springer-Verlag, Berlin.1991
    [57]Henry M Driel. Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-μm picosecond laser pulses[J]. Phys. Rev. B,1987,35:8166-8176.
    [58]D. Linde, K. S.Tinten, J. Bialkowski. Laser-solid interaction in the femtosecond time regime. Applied Surface Science[J],1997,109/110:1-10.
    [59]E. N. Glezer, Y. Siegal, L. Huang and E. Mazur. Laser-induced bandgap collapse in GaAs[J]. Phys. Rev. B,51,6959-6970.
    [60]P. Saeta, J. Wang, Y. Siegal, N. Bloembergen and E. Mazur. Ultrafast Electronic Disordering During Femtosecond Laser Melting of GaAs[J]. Phys. Rev. Lett.,1991,67:1023-1026.
    [61]S. K. Sundaram, E. Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature,2002, 1(4):217-223.
    [62]李强龙,超快泵浦-探测技术中的光谱实时校正技术[D].西北大学硕十论文,2012,4-6.
    [63]曹宁,傅盘铭,张治国.飞秒时间分辨光抽运探测技术及进展[J].物理,2007,36(5):395-398.
    [64]Eesley, GL., observation of Nonequilibrium Electron Heating in Copper. Physical Review Letters,1983.51(23):2140-2143.
    [65]Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, Anisimov S I.Timescales in the response of materials to femtosecond laser excitation[J]. Appl. Phys. A,2004,79: 767-769.
    [66]Baerbel Rethfeld.nTheory of Ultrafast Laser-Matter Interactions. Ultrafast Modification of Materials[J]. CLEO:Science and Innovations.2012, CM4K.1.
    [67]Ilya Mingareev, Tobias Bonhoff, Ashraf F. El-Sherif, Wilhelm Meiners, Ingomar Kelbassa, Tim Biermann and Martin Richardson. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing[J]. J. Laser Appl.2013, 25:052009.
    [68]Seung Yeon Kang, K. Vora, S. Shukla, Eric Mazur. Femtosecond Laser Nanofabrication of Metal Structures Through Multiphoton Photoreduction[J].NATO Science for Peace and Security Series B:Physics and Biophysics,2013,411-412.
    [69]Ki Hyun Kim, Kazuo Watanabe, Daniel Mulugeta, Hans-Joachim Freund, and Dietrich Menzel. Enhanced Photoinduced Desorption from Metal Nanoparticles by Photoexcitation of Confined Hot Electrons Using Femtosecond Laser Pulses[J]. Phys. Rev. Lett.,2011,107:047401-4.
    [70]Ibrah Im W M G. Study of non-equilibrium electron dynamics in metals [D]. Norfolk:Old Dominion University,.2002,94.
    [71]Zhixiang Huang, Th. Koschny and C. M. Soukoulis. Theory of Pump-Probe Experiments of Metallic Metamaterials Coupled to a Gain Medium[J]. Phys. Rev. Lett. 2012,108:187402-5.
    [72]Lin Ma, Keke Zhang, Christian Kloc, Handong Sun, Maria E. Michel-Beyerlea and Gagik G. Gurzadyan Singlet fission in rubrene single crystal:direct observation by femtosecond pump-probe spectroscopy[J]. Phys. Chem. Chem. Phys.,2012, 14:8307-8312.
    [73]Byungmoon Cho, Vivek Tiwari, Robert J. Hill, William K. Peters, Trevor L. Courtney, Austin P. Spencer, and David M. Jonas. Absolute Measurement of Femtosecond Pump-Probe Signal Strength[J]. J. Phys. Chem. A,2013,117 (29):6332-6345.
    [74]B. G. Perkins Jr., H. Y. Hwang, N. K. Grady, L. Yan, D. Trugman, Q. Jia, H. T. Chen, A. J. Taylor and K. A. Nelson. Nonlinear ultrafast dynamics of high temperature YBa2Cu3O7-δ superconductors probed with THz pump/THz probe spectroscopy[C], XVIIIth International Conference on Ultrafast Phenomena,2013,41:03010-3.
    [75]Haining Wang, Changjian Zhang, and Farhan Rana.Ultrafast carrier dynamics in single and few layer MoS2 studied by optical pump probe technique[J]. CLEO: ELS_Fundamental Science,2013,7:9-14.
    [76]Christensen B H, Vestentoft K, Balling P. Short-pulse ablation rates and the two-temperature model[J]. Appl. Surf. Sci.,2007,253:6347-6352.
    [77]Chen G, Nano scale Energy Transport and Conversion:A parallel treatment of eletrons, molecules, Phonons, and Photons. Oxford University Press,2005.
    [78]Hostetler, John Louis. Investigation of femtosecond transient thermoreflectance technique applied to characterization of microscale heat transfer properties in thin films[D]. Thesis (PhD). University of Virginia,2001,316.
    [79]Qiu, T.Q. and C.L. Tien. Femtosecond laser heating of multi-layer metals-I. analysis[J]. Int. J. Heat Mass Transfer,1994,37(17):2789-2797.
    [80]Kaganov, M.I., I.M. Lifshitz, and L.V Tanatarov. Relaxation between electrons and cry stalline lattices[J]. Sov. phys. JETP,1957,4(2):173-178.
    [81]Norris P M, Caffrey A P, Stevens R J, Klopf J M, McLeskey J T. Femtosecond pump-probe nondestructive examination of materials[J]. Rev. Sci. Instrum.,2003,74(1):400-406.
    [82]Carpene E, Mancini E, Dallera C, Brenna M, Puppin E, and Silvestri S D. Dynamics of electron-magnon interaction and ultrafast demagnetization in thin iron films[J]. Phys. Rev. B, 2008,78(17):174422-6.
    [83]Fourier, J B. Theorie analytique de la Chaleur, Paris,1822[J], English translation by A. Freeman, Dover publications, Inc., New York,1959.
    [84]Cattaneo C. A form of heat conduction which eliminates the paradox of instantaneous propagation[J]. C. R. Acad. Sci.,1958,247:431-433.
    [85]Vernotte P. Les Paradoxes de la Theorie Continue de equation de la Chaleur[J]. C. R. Acad. Sci.,1958,246:3154-3155.
    [86]Vernotte P. Some possible complication in the phenomena of thermal conduction[J]. C. R. Acad. Sci.,1961,252:2190-2191.
    [87]Luikov A V. Application of irreversible thermodynamics methods to investigation of heat and mass transfer[J]. Int. J. Heat Mass Transfer,1966,9:139-152.
    [88]Taitel Y. On the parabolic, hypetholic and diserete formulation of the heat conduction equation[J]. Int. J. Heat Mass Transfer,1972,15:369-371.
    [89]Sieniutyez S. The variational principle of classical type for non-stationary irreversible transport processes with convective motional relaxation[J]. Int. J. Heat Mass Transfer,1977, 20:1221-1231.
    [90]Beaurepaire E, Merle J.-C, Daunois A, Bigot J.-Y. Ultrafast spin dynamics in ferromagnetic nickel[J]. Physical Review Letters,1996,76 (22):4250-4253.
    [91]Chaitanya Saxena, Aziz Sancar and Dongping Zhong. Femtosecond dynamics of DNA photolyase:energy transfer of antenna initiation and electron transfer of cofactor reduction[J]. J. Phys. Chem. B,2004,108(46):18026-18033.
    [92]Scholl A, Baumgarten L, Jacquemin R, Eberhardt W. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission[J]. Physical Review Letters,1997,79(25):5146-5149.
    [93]S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman. Electron emission from metal surfaces exposed to ultrashort laser pulse[J]. Zhurnal Eksperimental'noi I Teoreticheskoi Fiziki,1974, 66:776-781.
    [94]Tang J. Nanoscale heat transfer in a thin aluminum film and femtosecond time-resolved electron diffraction[J]. Appl. Phys. Lett.,2008,92:11901-11904.
    [95]Li X, Jiang L, Tsai H L. Phase change mechanisms during femtosecond laser pulse train ablation of nickel thin films[J]. J. Appl. Phys.,2009,106:064906-064912.
    [96]Koopmans B, Van Kampen M, De Jonge W. J. M. Experimental access to femtosecond spin dynamics[J]. Journal of Physics Condensed Matter,2003,15(5):S723-S736.
    [97]Rethfeld B, Kaiser A, Vicanek M, Simon G. Ultrafast Dynamics of Nonequilibrium Electrons in Metals under Femtosecond Laser Irradiation[J]. Phys. Rev. B,2002,65:214303-14313.
    [98]Daniel Werner, Akihiro Furube, Toshihiro Okamoto, and Shuichi Hashimoto. Femtosecond laser-induced size reduction of aqueous gold nanoparticles:in situ and pump-Probe spectroscopy investigations revealing coulomb explosion[J]. J. Phys. Chem. C,2011, 115:8503-8512.
    [99]Muneaki Hase, Kunie Ishioka, Jure Demsar, Kiminori Ushida, Masahiro Kitajima. Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals[J]. Phys. Rev. B,2005,71(18):184301-9.
    [100]Xu H Y, Zhang Y C, Song Y Q, and Chen D Y. Thermalization time of thin metal film heated by short pulse laser[J]. Chin. Phys.,2004,13(10):1758-8.
    [101]Al-Nimr M A, and Arpaci V S. Picosecond thermal pulses in thin metal films[J]. J. Appl. Phys.,1999,85(5):2517-2521.
    [102]Novotny M, Fitl P, Sytchkova A K, Bulir J, Lancok J, Pokorny P, Najdek D, Bocan J. Pulsed laser treatment of gold and black gold thin films fabricated by thermal evaporationfj]. Cent. Eur. J. Phys.,2009,7:327-331.
    [103]Lin Z, and Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations:Molecular dynamics study[J]. Phys. Rev. B,2006,73(18):184113-184132.
    [104]陈安民.飞秒激光辐照金属超快动力学过程研究[D].吉林大学博士论文,2012,22-23.
    [105]Maarten van Kampen, Ultrafast spin dynamics[M]. Ph.D. Thesis, Technology University Eindhoven,2003.
    [106]E. Beaurepaire, J.C. Merle, A. Daunois et al, Ultrafast spin dynamics in ferromagnetic Nickel[J], Phys.Rev.Lett.1996,76(22):4250-4253.
    [107]C. Thomsen, H. T. Grahn, H. J. Maris and J. Tauc. Surface generation and detection of phonons by picosecond light pulses [J]. Phys. Rev. B,1986,34(6):4129-4138.
    [108]Guidoni L, Beaurepaire E and Bigot J Y. Magneto-optics in the Ultrafast Regime: Thermalization of Spin Populations in Ferromagnetic Films[J]. Phys. Rev. Lett,2002,89 (1):17401-405.
    [109]A.Melikyan, H.Minassian, A.Guerra, W.Wu. On the theory of relaxation of electrons excited by femtosecond laser pulses in thin metallic films[J]. Applied physics B,1999,68:411-414.
    [110]G. Tas, H.J.Maris. Electron diffusion in metals studied by picosecond ultrasonics[J]. Phys. Rev. B,1994,49(21):15046-15054.
    [111]C. Suarez, W. E. Bron, and T. Juhasz. Dynamics and transport of electronic carriers in thin gold films[J]. Phys. Rev. Lett,1995,75(24):4536-4539.
    [112]顾佳方.飞秒激光作用下铜薄膜的超快动力学研究[D].江苏大学硕士论文,2010,16-17.
    [113]Pavel Mardilovich, Denise M. Krol, Subhash H. Risbud, Micron size optically altered regions and nanocrystal formation in femtosecond laser processed CdSxSe1-x doped silicate glass[J]. Optical Materials,2012,34:1767-1770.
    [114]Yang Liao, Jiangxin Song, En Li,Yong Luo, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugiokad and Katsumi Midorikawad, Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip,2012,12:746-749.
    [115]Reza Karimi, Eric Bisson, B. Wales, Samuel Beaulieu, Mathieu Giguere, ZiJian Long, Wing-Ki Liu, Jean-Claude Kieffer, Francois Legar6, and Joseph Sanderson. N2O ionization and dissociation dynamics in intense femtosecond laser radiation, probed by systematic pulse length variation from 7 to 500 fs[J] J. Chem. Phys.,2013,138:204311-8.
    [116]Wang X Y, Riffe D M, Lee Y S, Downer M C. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission[J]. Phys. Rev. B,1994,50:8016-8019.
    [117]Ekici O, Harrison R K, Durr N J, Eversole D S, Lee M, Ben-Yakar A. Thermal analysis of gold nanorods heated with femtosecond laser pulses[J]. J. Phys. D,2008,41:185501-185512.
    [118]Zhang Y W, Chen J K. Ultrafast melting and resolidification of gold particle irradiated by pico-to femtosecond lasers[J]. J. Appl. Phys.,2008,104:054910-054919.
    [.119]Huang J, Zhang Y W, Chen J K. Ultrafast solid-liquid-vapor phase change of a gold film induced by pico-to femtosecond lasers[J]. Appl. Phys. A,2009,95:643-653.
    [120]Ibrah Im W M G. Study of non-equilibrium electron dynamics in metals [D]. Norfolk:Old Dominion University,2002,94.
    [121]]卫云鸽,曹全喜,雷梦碧等.全固体Ag/AgCl电极的制备工艺研究[J].功能材料,2010,41:441-443.
    [122]Ludan Wua, Meng Lia, Meng Zhanga, Mei Yana, Shenguang Geb, Jinghua Yua. Ultrasensitive electrochemiluminescence immunosensor for tumor marker detection based on nanoporous sliver@carbon dots as labels[J]. Sensors and Actuators B:Chemical,2013, 186:761-767.
    [123]Theodore Erler. The identity string field and the sliver frame level expansion[J]. Journal of High Energy Physics,2012,2012:150-12.
    [124]Mihai G. Burzo, Pavel L. Komarov, Peter E. Raad. Influence of the metallic absorption layer on the quality of thermal conductivity measurements by the transient thermo-reflectance method[J]. Mieroelectronics Journal,2002,33:697-703.
    [125]Yang Zhiqiang, Chen Lei, Weng Mengchao. Ultrafast reflectivity and electron dynamic properties of Tb0.27Dy0.73Fe2 thin films[J]. Physica B,2008,403:4228-4231.
    [126]Arimoto, Y.Imai, S.Nakanishi, H. Itoh. Transient reflectivity changes of (3-ZnP2 exciton bands by pump-probe spectroscopy using a femtosecond laser[J]. Journal of Luminescence, 2004,108:201-204.
    [127]Lysenko S, Rua AJ, Vikhnin V, F. Fernandez, H. Liu. Light-induced ultrafast phase transitions in VO2 thin film[J]. Applied Surface Science,2006,252:5512-5515.
    [128]Wang Haifeng, Zhou Zhongxiang, Tian Hao. Effect of light intensity on reflectance and transmittance of a laser beam incident on a gold film[J]. Optical and Laser in Engineering, 2010,48:703-706.
    [129]H C Shih, L Y Chen, C W Luo, K H Wu, J-Y Lin, J Y Juang, T M Uen, J M Lee, J M Chen and T Kobayashi. Ultrafast thermoelastic dynamics of HoMnO3 single crystals derived from femtosecond optical pump-probe spectroscopy [J]. New Journal of Physics,2011,1:053003.
    [130]陈安民 飞秒激光辐照金属超快动力学过程研究吉林大学博十论文[D].2012,65-87.
    [131]Eesley G. L. Generation of non-equilibrium electron and lattice temperatures in copper by picosecond laser pulses[J]. Phys. Rev. B,1986,33:2144-2151.
    [132]Kruglyak V V, Hicken R J, Matousek P, and Towrie M. Spectroscopic study of optically induced ultrafast electron dynamics in gold[J]. Phys. Rev. B,2007,75(3):035410-6.
    [133]Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, and Anisimov S I. Timescales in the response of materials to femtosecond laser excitation [J]. Appl. Phys. A,2004,79(4):767-769.
    [134]Christensen B H, Vestentoft K, and Balling P. Short-pulse ablation rates and the two-temperature model[J]. Appl. Surf. Sci.,2007,253(15):6347-3652.
    [135]Brorson S D, Kazeroonian A, Moodera J S, Face D W, Cheng T K, Ippen E P, Dresselhaus M S, and Dresselhaus G, Femtosecond room-temperature measurement of the electron-phonon coupling constant y in metallic superconductors[J]. Phys. Rev. Lett.,1990,64(18): 2172-2175.
    [136]Hopkins P E, Kassebaum J L, and Norris P M. Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films[J]. J. Appl. Phys., 2009,105(2):023710-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700