Tb_(0.27)Dy_(0.73)Fe_2薄膜超快光学与电子动力学特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光的超短脉冲宽度、超高峰值功率和电场强度等独特性质决定了其在很多领域都具有广泛的应用。人们能够利用飞秒激光技术研究光与不同物质相互作用过程中的超快现象,特别是发生在皮秒和飞秒时域内的超快过程。例如用于制作超高速存储和读写以及应用于微机电系统中的超磁致伸缩材料的磁化与退磁过程。磁性薄膜瞬态反射率与电子动力学过程是飞秒超快探测技术研究热点,这些研究可以为各种超高速磁存储设备和高频化磁微器件提供充足的设计依据。
     利用磁控溅射方法制备了不同参数的TbDvFe薄膜,在不同的实验条件下进行了退火处理。利用SEM(扫描电镜)、XRD(X射线衍射)和AFM(原子力显微镜)等手段对薄膜样品进行了成份、形貌和结晶度的表征,并利用Scherrer公式对薄膜表面晶粒直径D进行计算,与SEM观测到的结果有较好的符合。
     利用实验室飞秒激光泵浦探测装置对TbDyFe薄膜进行瞬态反射率测试,研究了薄膜厚度、泵浦光功率和退火处理对样品反射率变化曲线的影响,由试验装置的时间分辨率得知反射率突变至极值的时间为100±33fs。结合菲涅耳反射公式和K-K变换,从薄膜反射率变化曲线计算出其介电常数的实部与虚部在时间零点前后的变化曲线,发现薄膜表面对光束反射作用增强的同时,其内部对激光脉冲的吸收也在增大,在大约1ps后样品介电常数实部与虚部的变化稳定在相对于初始状态较低的范围,薄膜对光束的反射和损耗作用恢复至稳定状态。
     结合双温模型与三温模型对TbDyFe薄膜受激光激发后的电子动力学过程进行了描述,并利用三温模型公式求解出薄膜内部电子、自旋与晶格系统的温度变化曲线。反射率突变至极值的时间比之前对Ni薄膜的研究结果要短,可以归结为掺杂在TbDyFe薄膜中稀土离子局域4f电子的作用和激光脉宽的缩短。试验中发现了薄膜中的回波效应,薄膜厚度的增加影响了回波出现的位置,使回波强度减弱并出现不规则变化。最后将实验结果与课题组内对GaAs样品的研究结果进行比较,分析了造成结果差异的原因。
Femtosecond laser unique characters such as ultrashort pulse width, ultrahigh peak power and the electric field intensity has decided it will having broad application in many fields. Femtosecond laser technology was used to investigate ultrafast phenomenon in the interaction process between laser and different material, especially the ultrafast process occurred in picosecond and femtosecond time domain. Such as the magnetization and demagnetization process of ultrahigh speed memory and read-write system and the giant magnetostrictive material applying to the micro-electromechanical systems (MEMS). Transient reflectivity and electron dynamics of magnetic thin film is the key issue in femtosecond ultrafast measurement domain and it will provide various magnetic storage devices and high frequency micro-magnetic systems with more design basis.
     TbDyFe thin films with different thickness were prepared by magnetron sputter and they were annealed under different temperature and atmospheres (vacuum, nitrogen). The component、surface topography and crystallinity property of TbDyFe thin films were investigated by scanning electronic microscope (SEM)、X-ray diffraction (XRD) and atom force microscope (AFM) methods. The surface crystal gain diameters D of thin film were calculated by Scherrer formula and it has a good agreement with SEM observation result.
     Optical transient reflectivity change of TbDyFe thin films were measured by femtosecond laser pump-probe measurement technique in our laboratory in order to investigate the influence of thin film thickness、pump power and annealing process. Combine with Fresnel reflect formula and K-K transformation, real and imaginary part of the complex dielectric constant was derived from reflectivity relative change curves. It reveals that the film surface properties have rapid change after laser irradiation, at the same time, inside of thin film have more absorption to laser pulses. After 1ps, the thin film surface properties become steady but imaginary part of dielectric constant increasing gradually and the reflection and absorption of laser pulses in film recover to initial state.
     We described the electron dynamics process in TbDyFe thin film after femtosecond laser excitation combine with two-temperature and three-temperature model and use the three-temperature model equation to obtain the electron、spin and lattice system temperature variation curves. Extremum time of reflectivity shorter than former research results and we may ascribe this phenomenon to the local 4f electrons in rare earth ions that doping in thin film and improvement of the temporal resolution. The wavelike phenomenons are observed in equilibration process of the reflectivity change, particularly in 400nm and 600nm thin film. Thickness of the thin film determines the echo time and echo wave in 800 nm thin film is not obvious and regular. Last, experiment results were compared with GaAs crystal and the cause bring about difference was analyzed.
引文
[1] Maiman T. H, Stimulated optical radiation in ruby masers[J]. Nature, 1960, 187(4736):493-494
    [2] 邹英华,孙騊亨.激光物理学[M].北京:北京大学出版社,1991
    [3] M. D. Perry and G. Mourou, Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(3): 917-924
    [4] U. Keller, Ultrafast all solid state laser technology[J]. Appl. Phys.B, 1994, B58:347-363
    [5] 张志刚,许敏.飞秒激光脉冲技术的发展和应用[J].激光杂志,1999,20(5):7-11
    [6] Fork R. L, Greene B.I and Shank C.V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Appl.Phys.Lett, 1981, 38(9):671-2
    [7] D. E Spence, P. N. Kean, W. Sibbett et al. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser[J].Opt.Lett. 1991, 16(1):42-47
    [8] I. D. Jung, F. X. Kartner, N. Matuschek, D. Sutter, F. Moiler Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch and T. Tschudi. Self-starting 6.5fs from a KLM Ti: sapphire laser[J]. Opt.Lett, 1997, 22:1009-1011
    [9] 马国宏,郭立俊,钱士雄.飞秒物理、飞秒化学和飞秒生物学[J].物理.2001,6(30):349-355
    [10] Zhou X. O, van Driel H.M, Ruhle W.W, Gogolak Z, Ploog K. Femtosecond carrier kinetics in low-temperature-grown GaAs[J]. Appl. Phys. Lett. 1992, 61(25):3020-2
    [11] Knox W.H, Doran G. E, Asom M et al, Low-temperature-grown GaAs quantum wells: femtosecond nonlinear optical and parallel-field transport studies[J]. Appl. Phys. Lett. 1991, 59(12):1491-3
    [12] D. Nishiwaki, Y. Hamanaka, Y. Nonogaki et al, Hot cartier relaxation dynamics in InGaAs studied by fs pump-probe spectroscopy[J]. Journal of Luminescence, 1999,83:49-53
    [13] A. Plech, V. Kotaidis, M. Lorenc et al, Thermal dynamics in laser excited metal nanoparticles[J]. Chemical physics letter, 2005,401:565~569
    [14] Qian W, Lin L, Deng Y J, Femtosecond studies of coherent acoustic phonons in gold nanoparticles embedded in TiO_2 thin fdms[J]. Journal of Applied Physics,2000,87 (1):612~614
    [15] Pontius N, Neeb M, Eberhardt Wet al, Ultrafast relaxation dynamics of optically excited electrons in Ni_3[J]. Physical Review B. 2003,67(3):35425-1~5
    [16] Oppeneer P.M, Liebsch A, Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions[J]. Journal of Physics: Condensed Matter, 2004, 16(30):5519-30
    [17] A.H Zewail, Laser Femtochemistry[J]. Science, 1988, 242(4886):1645-1653
    [18] M Gruebele, AH Zewail, Femtosecond wave packet spectroscopy: Coherences, the potential, and structural determination[J]. Journal of Chemical Physics, 1993,98(2):883-902
    [19] A Douhal, S. K Kim, A.H Zewail, Femtosecond molecular dynamics of tautomerization in model base pairs[J]. Nature, 1995,378(6554):260-263
    [20] J.C Williamson, J Cao, H Ihee, H Frey, A.H Zewail, Clocking transient chemical changes by ultrafast electron diffraction[J]. Nature, 1997,386(6621):159-162
    [21] James T. Hynes, Monique M. Martin, Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science[M].Elsevier, 2004
    [22] Chaitanya Saxena, Aziz Sancar and Dongping Zhong, Femtosecond Dynamics of DNA Photolyase: Energy Transfer of Antenna Initiation and Electron Transfer of Cofactor Reduction[J]. J. Phys. Chem. B, 2004,108(46):18026-33
    [23] Shen Y R, The principle of Nonlinear Optics[M]. John Wiley & Sons Inc, 1984
    [24] M.R. Freeman, R. R. Ruf, R. J. Gambino, Picosecond pulsed magnetic fields for studies of ultrafast magnetic phenomena[J], IEEE Trans. Magn. 1991,27(6):4840-4842
    [25] Li C Y, Wang L, Fu P M et al. Carder dynamics in low temperature grown ALGaAs/GaAs multiple quantum wells[J]. Physical Review B, 2003, 67(13):134304-1~4
    [26] R.C. O'handley, Modern magnetic material principle and application[M], John Wiley&Sons, Inc. 2000
    [27] 董学智.高技术磁性材料的现状与展望[J],金属功能材料,1996,3(4):121-129
    [28] 田民波.磁性材料[M].北京:清华大学出版社,2000
    [29] E. Beaurepaire, J. C. Merle, A. Daunois et al, Ultrafast spin dynamics in ferromagnetic Nickel[J], Phys.Rev.Lett. 1996, 76(22):4250-4253
    [30] J. Hohlfeld, J. Gudde, U. Conrad et al, Ultrafast magnetization dynamics of Nickel[J], Applied physics B, 1999,68:505-510
    [31] Oppeneer P.M, Liebsch A, Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions[J], Journal of Physics: Condensed Matter, 2004, 16(30):5519~30
    [32] Pontius N, Neeb M, Eberhardt W et al, Ultrafast relaxation dynamics of optically excited electrons in Ni_3[J], Physical Review B. 2003,67(3):35425-1~5
    [33] Alberto Comin, Massimiliano Rossi, Cristian Mozzati et al, Femtosecond dynamics of Co thin films on Si support[J], Solid state communication, 2004,129(4):227~231
    [34] E. Beaurepairea, G M. Turner, S. M. Harrel et al, Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses[J], Applied physics letter, 2004, 84(18):3465~3468
    [35] J. Wu, N. D. Hughes, J. R. Moore et al, Excitation and damping of spin excitations in ferromagnetic thin films[J], Journal of magnetism and magnetic materials, 2002, 241:96-109
    [36] Ju GP, Nurmikko A.V, Farrow R.F.C, Marks R.F et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system, Phys.Rev.Lett. 2001, 82 (18):3705-3708
    [37] Choi B.C, Belov M, Hiebert W.K, et al, Ultrafast magnetization reversal dynamics investigated by time domain imaging[J], Phys.Rev.Lett. 2001, 86(4):728-731
    [38] T.h. Gerrits, H. A. M. van den Berg, J. Hohlfeld et al, Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping[J], Nature, 2002,418(6897):509-512
    [39] A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, Th. Rasing, Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3[J], Nature, 2004,429(6994):850-853
    [40] B. Koopmans, J. J. M. Ruigrok, Dalla Longa and W. J. M. de Jonge. Unifying Ultrafast Magnetization Dynamics[J], Phys.Rev.Lett. 2005, 95:267207-1-4
    [41] J. Chovan, E. G Kavousanaki, and I. E. Perakis, Ultrafast Light-Induced Magnetization Dynamics of Ferromagnetic Semiconductors[J], Phys.Rev.Lett. 2006, 96:057402-1-4
    [42] W. K. Hiebert, L. Lagae, and J. De Boeck, Spatially inhomogeneous ultrafast precessional magnetization reversal[J], Phys.Rev B, 2003,68:020402-1-4
    [43] Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G Donohoe, Dynamics of ultrafast magnetization reversal in submicron elliptical Permalloy thin film elements[J], Phys.Rev B, 2006,73:104425-1-4
    [44] R.B. da Silvaa, A.D.C. Viegasa, M.A. Correaa, A.M.H. de Andradea, R.L. Sommer, Complex high-frequency magnetization dynamics and magnetoimpedance in thin films[J], Physica B, 2006,384:172-174
    [45] Joule J.P, On a new class of magnetic forces[J], Ann. Electr. Magn. Chem, 1842, 8:219-224
    [46] Clark A.E, Belson H, Giant room-temperature magnetostrictions in TbFe_2 and DyFe_2[J]. Phys.Rev.B, 1972, 5:3642-3648
    [47] Clark A.E, Magnetostrictive rare earth-Fe_2 compounds. In: Wohlfarth E.P, Ferromagnetic material, Vol. I. Amsterdam: North-Holland Publishing Company, 1980:531-567
    [48] Shatz F, Hirscher M, Schnell M. Magnetic anisotropy and giant magnetostriction of amorphous TbDyFe films[J]. J Appl Phys, 1994, 76 (9): 5380-5384.
    [49] Lim S H, Choi, Y S, Han S H et al. Prototype microactuators driven by magnetostrictive thin films [J]. IEEE Trans Magn, 1998, 34(4): 2042-2044.
    [50] Honda T, Arai K I, Yamagichi J. Fabrication of magnetostriction actuators using rare-earth (Tb, Sm) Fe thin fdm[J]. J Appl Phys, 1994, 76 (10): 6994-6999.
    [51] Duc N H, Mackay K, Betz J, et al. Magnetic and magnetostrictive properties in amorphous (Tb_(0.27)Dy_(0.73))(Fe_(1-x)Cox)_2 films[J]. J Phys: Condens Matter, 2000, 12:7957-7968
    [52] 许峰,张虎,蒋成保,徐惠彬.超磁致伸缩材料做动器的研制及特性分析[J],航空学报,2002,23(6):552-555
    [53] 王传礼,丁凡,张凯军.超磁致伸缩薄膜转换器及其在微流体元件中的应用[J],矿冶工程,2003,23(6):72-75
    [54] 贾振元,杨兴,武丹.超磁致伸缩执行器及其在流体控制元件中的应用[J].机床与液压,2002.2:3-4
    [55] 郭东明,杨兴,贾振元.超磁致伸缩微执行器在机电工程中的应用研究现状[J].中国机械工程,2001,12(6):724-727
    [56] 万红,李再轲,邱轶等.TbDyFe超磁致伸缩薄膜的低场磁敏特性[J].中国有色金属学报,2004,14(1):37-41
    [57] 万红,邱轶,斯永敏.热处理及Smco磁性层对TbDyFe薄膜磁致伸缩性能的影响[J].稀有金属材料与工程,2004,33(7):759-763
    [58] 李言荣,恽正中.电子材料导论[M].北京:清华大学出版社,2000
    [59] 王博文,超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003
    [60] 李再柯,TbDyFe/Fe多层膜磁致伸缩及其与压电衬底的磁电转换性能研究[M].国防科学技术大学硕士学位论文,2002
    [61] 唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,1998
    [62] 杨传铮.薄膜、多层膜和一维超点阵材料的X射线分析新进展[J],物理学进展.1999,19(2):184-216
    [63] 张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001:147-148
    [64] 黄雄飞,SRO薄膜的直流溅射生长[M].电子科技大学硕士学位论文,2005
    [65] 叶海,TiO2薄膜的制备及特征表征[M].暨南大学硕士学位论文,2003
    [66] 林洁.时间、空间分辨泵浦—探测飞秒光谱的原理与技术[M].中山大学硕士学位论文,2003
    [67] 于杰.利用飞秒泵浦—探测光电子能谱研究双原子分子的波包动力学过程[M].大连理工大学硕士论文,2005
    [68] A. J. Sabbah and D. M. Rifle, Femtosecond pump-probe reflectivity study of silicon cartier dynamics[J]. Physical Review B, 2002, 66:165217-1-11
    [69] 王维江,桑海宁.时间分辨飞秒相干光谱技术的发展与展望[J].光电子激光,2002,13(1):106-110
    [70] 刘红平,尹淑慧,张建阳等.飞秒泵浦探测试验数据分析[J].化学物理学报,2002,3:231-234
    [71] 尹淑慧,刘建勇,楼南泉.飞秒时间分辨试验中相关系数和时间零点的确定[J].原子与分子物理学报,2006,23(1):49-52
    [72] M Born, E Wolf. Principles of optics, 5third edition(Chinese edition), Science press,1978:pp 60-90
    [73] J. L. Pankove, Optical Processes in Semiconductors and Metals .Dover, New York, 1971, Chap. 4.
    [74] 吴利斌,傅朝金.广义积分与柯西主值的关系[J].高等函授学报,1999,3:17-20
    [75] K. H. Bennemann, Ultrafast dynamics in solids[J]. J.Phys: Condense. Matter, 2004, 16: 995-1056
    [76] J.Y. Bigot. Femtosecond magneto-optical processes in metals[J]. Comptes Rendus de 1'Academie des Sciences, Serie Ⅳ (Physique, Astrophysique), 2001, 2:1483
    [77] E. Beaurepaire, M. Maret, V. Haltiae, J.C. Merle, A. Daunois, and J.-Y. Bigot. Spin dynamics in CoPt_3 alloy films: A magnetic phase transition in the femtosecond time scale[J]. Phys. Rev. B, 1998,58:12134-137
    [78] H. Regensburger, R. Vollmer, and J. Kirschner. Time-resolved magnetization induced second-harmonic generation from the Ni(110) surface[J]. Phys. Rev. B, 2000, 6:14716-720
    [79] J. Hohlfeld, T. Gerrits, M. Bilderbeek, T. Rasing, H. Awano, and N. Ohta. Fast magnetization reversal of Gd/Fe/Co induced by femtosecond laser pulses[J]. Phys. Rev. B, 2001, 65:12413-416
    [80] A. Melnikov, J. Gigudde, and E. Matthias. Demagnetization following optical excitation in nickel and Permalloy films[J]. Applied Physics B, 2002, 74:735-738
    [81] T. Kampfrath, R. Ulbrich, F. Leuenberger, M. Misunzenberg, B. Sass, and W. Felsch. Ultrafast magneto-optical response of iron thin films[J]. Phys. Rev. B, 2002, 65:104429-432
    [82] L. Guidoni, E. Beaurepaire and J. Y. Bigot. Magneto-optics in the ultrafast regime: thermalization of spin populations in ferromagnetic films[J]. Phys. Rev.Let., 2002, 90:17401-405
    [83] M. vanKampen, J TKohlhepp, WJ M de Jonge et al. Sub-picosecond electron and phonon dynamics in nickel[J] Journal of physics: Condensed Matter,2005,17(43): 6823-6834
    [84] Kaganov MI, Lifshitz IM and Tanatarov MV, Relaxation between electrons and crystalline lattices[J], Soviet Physics JETP, 1957,4:173-178
    [85] A.Melikyan, H.Minassian, A.Guerra, W.Wu. On the theory of relaxation of electrons excited by femtosecond laser pulses in thin metallic films[J]. Applied physics B, 1999, 68:411-414
    [86] Maarten van Kampen, Ultrafast spin dynamics[M]. Ph.D. Thesis, Technology University Eindhoven, 2003
    [87] C. Thomsen, H. T. Grahn, H. J. Maris and J. Tauc. Surface generation and detection of phonons by picosecond light pulses [J]. Phys. Rev. B, 1986, 34(6):4129-4138
    [88] Guidoni L, Beaurepaire E and Bigot J Y. Magneto-optics in the Ultrafast Regime: Thermalization of Spin Populations in Ferromagnetic Films[J].Phys. Rev. Lett,2002,89 (1): 17401-405
    [89] G. Tas, HJ.Maris. Electron diffusion in metals studied by picosecond ultrasonics[J]. Phys. Rev. B,1994,49(21):15046-15054
    [90] C. Suarez,W. E. Bron, and T. Juhasz. Dynamics and Transport of Electronic Carriers in Thin Gold Films[J]. Phys. Rev. Lett, 1995,75(24):4536-4539
    [91] S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E.P.Ippen,M.S.Dresselhaus, G.Dresselhaus. Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors[J]. Phys. Rev. Lett. 1990, 64(18): 2172-2175
    [92] R. H. M. Groeneveld, R. Sprik, A. Lagendijk. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals[J]. Phys. Rev. B. 1992,45(9): 5079-5082
    [93] 周明,刘立鹏,戴起勋,蔡兰.飞秒超快动力学过程及飞秒检测[J].激光与光电子学进展.2004,41(8):6-12
    [94] 袁冬青,周明,戴起勋,刘立鹏.GaAs载流子的超快动力学特性[J].激光与光电子进展.2006,43(1):36-40
    [95] Benjamin S D, Loka H S, Othonos A, et al. Ultrafast dynamics of nonlinear absorption in low- temperature-grown GaAs[J].Applied Physics Letters.1996,68(18):2544-2546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700