基于保护平面热源法的隔热材料热物性测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于航天材料及工艺研究所“防隔热材料高温热物性测量技术”研究课题;目的是开发一种适合于防隔热材料的高温高精度热物性测量方法、研制并建立一套防隔热材料高温热物性测量装置、完善防隔热材料高温热物性测量标准以及建立我国第一个防隔热材料高温热物性数据库,从而达到服务我国防隔热材料研制、服务热防护系统设计以及服务国防及航天发展的目标。
     本论文紧密围绕国防及航空、航天领域对防隔热材料高温热物性数据的巨大需求,通过调研大量热物性测量方法研究文献,确定了基于瞬态接触热源法测量原理来实现防隔热材料的高温热物性测量;通过对该类测量方法文献资料的综述,总结归纳了目前存在的不足及实现热物性高温高精度测量所面临的主要问题;而后针对这些不足及问题,从理论、方法及关键技术等多层面、多角度地进行了深入的研究,并首次提出了一种能够综合考虑探头热容、时间延迟以及接触热阻等关键性影响因素的保护平面热源法;通过搭建基于该方法的隔热材料高温热物性测量装置,进行了一系列中常温测量实验研究、标定实验研究以及高温段测量的预先试验研究;通过实验研究,了解并考察了该方法所涉及的关键技术,从而为进一步实现高温高精度热物性测量提供了理论基础、经验借鉴及设备支撑。具体来说,所完成的主要创新性研究工作有:
     1.针对目前防隔热材料高温热物性测量时测温上限不足、没有充分考虑探头热容、时间延迟以及接触热阻等重要影响因素对热物性测量准确度的影响以及实际应用于中高温测量时准确度较差等方面的不足及问题,着重对接触热阻的产生机理及测量原理进行了较为深入的研究;通过设计特定的传热过程,首次将热物性测量与接触热阻的同步估计结合在了一起,提出了一种适合于隔热材料高温段热物性测试的保护平面热源法。通过对该传热过程进行理论建模,得到了能够综合考虑探头热容、时间延迟以及接触热阻影响的探头温升响应模型;为进一步考察接触热阻对热物性测量的影响规律、进一步提高热物性测量准确度提供了可能,同时也进一步完善了瞬态接触热源法的测量理论。
     2.研制了一套基于保护平面热源法的隔热材料高温热物性测量装置。装置中有很多巧妙的结构设计,其核心部件高温探头,既是薄片热源、又是高精度温度传感器、还具有保护加热功能,能够确保小尺寸试样测量时依然满足一维传热的假设条件;并能够胜任常温至高温(1500℃)的热物性测量,大大改善了目前测量温度上限不足的现状;探头及试样夹持器创新的结构设计能够减小并弥补试样边界的散热损失,从而严格保证了所需要的绝热边界条件;所研制的高真空管式黑体加热炉,能够提供稳定的高温测量条件、有效防止试样侧边界的对流热损失以及高温测试时的试样氧化问题,还能够满足不同压力下的热物性测量;经测试,该测量装置具有很好的稳定性和复现性。论文利用该装置实现了对VespelTM SP1标准材料多热物性及接触热阻的同时测量,测量结果通过与标准数据的比对,验证了保护平面热源法的正确性及准确度、还考察了所采用的多参数辨识方法、处理算法的实际使用性能;中常温范围内,热导率及热扩散率相对误差均小于6%,高温测量最大相对误差不超过10%;通过试验还发现了接触热阻对热物性测量所产生的影响及规律,保护平面热源法由于能够对接触热阻信息进行同步估计,因而对热导率及热扩散率在不同测量条件下的测量稳定性好,体现了保护平面热源法理论模型的完善;最后,分析了该装置的测量不确定度,确保了量值传递的准确性和可比性。
     3.基于所研制的高温隔热材料热物性测量装置和VespelTM SP1国际标准化材料完成了保护平面热源法应用于0.1~0.5W/mK热导率范围内的热物性测量准确度和实验参数的标定实验研究;了解了测试过程中试验参数的不同选择对热物性测量准确度的实际影响规律,提出了利用保护平面热源法进行热物性测试时的试验参数选取方法和依据,揭示了接触热阻对热物性测量所产生的影响及规律;另外,通过标定实验研究,还更进一步考察了保护平面热源法及其测试装置的测量准确度。
This dissertation is a phasic research on“High temperature thermophysical properties measurement of thermal protective material”, which is suggested by Aerospace Research Institute of Materials and Processing Technology. The objective may be categorized as follows: (1) To develop a high precision thermal properties measuring technique and a practical measuring instrument used in high temperature; (2) To further improve the high-temperature thermal properties measuring standards; (3) To tentatively set up the first high-temperature thermophysical properties database; (4) To serve the development of new style thermal protective material; (5) To serve the design of thermal protective system and the development of national defence and spaceflight.
     Aim at the urgent demand of high-temperature thermal properties parameters of thermal protective material, the disseration focus on the contact transient plane source methods which are adopted extensively at present after a large amount of literature researching work. But untill now, there are still several weak points and subject problems existing which limit these methods applied to high-temperature and high-precision measurement. Based on such a situation, a new style, guarded plane source method for contemporary measuring thermal conductivity, thermal diffusivity and thermal contact resistance is presented through deep research work on measuring theory, method and key technology. In present work, the ambient temperature tests from room temperature up to 1200℃on two standardized material have been performed employing this method for the purpose of establishing the data processing procedure and recognizing the experimental troubles likely to be found. Particularly, the main creative research work are as follows:
     1. A new style method for high-temperature contact transient-measurements of thermal properties is presented, which is aiming at the present weak points and subject problems. Deep research work has been focused on the mechanism and transient measuring technique of contact thermal resistance, and the presented guarded plane source method can realize the contemporary thermal contact resistance estimation during the thermal conductivity and thermal diffusivity measurement through combining the transient measuring techniques of thermal properties and contact thermal resistance ingeniously. In comparison with other methods, the guarded plane source method can take into account thermal contact resistance in evaluating thermophysical properties which will greatly adds accuracy to the measuring results.
     2. A set of apparatus is designed and developed based on the principle of the new method. The high-temperature probe act both as film heater and high-accuracy temperature sensor, and can be applyed from room temperature to 1500℃. The employed structural design of the probe and the sample holder can reduce and remedy the side border heat loss of samples, and can guarantee the adiabatic conditions needed strictly. The developed high-vacuum and high-temperature tubular blackbody furnace can not only offer steady measuring condition, but also prevent the side border convection heat loss of samples and the oxidation problem while testing at high temperature. The simutaneous measurement of the contact thermal resistance and thermal properties is realized based on the the developed measuring apparatus and the standardized material VespelTM SP1. In the present work the experiment prove not only the exactness of the new method, but also recognize the data processing procedure and experimental troubles likely to be found. The results reported show a good capacity of determining both thermal properties and contact resistance, and the relationship between the measurement accuracy of thermal properties and the contact thermal resistance is revealed. It is possible to conclude that the method can give steady estimation results in different experimental conditions, which reflect the completion of the theory model. At last, a uncertainty analysis model is established, and the uncertanty evaluation can guarantee the accuracy and comparativity.
     3. The parameters standardization experiment of the new method is completed between thermal conductivity range of 0.1~0.5W/mK with the standardized material VespelTM SP1. It is confirmed experimentally that the relative error of thermal properties is sensitive to different choices of experimental parameters, and the standardization work is aiming at the improvement of measurement accuracy of thermal properties using the guarded plane source method. The effects analysis of different parameters selection on measuring-accuracy is investigated experimentally, and leads us to a conclusion of parameters choosing principle. At the same time, the measurement accuracy of the guarded plane source method is further investigated based on the standardiazation experiment.
引文
1 K. Cowart, J. Olds. TCAT-A Tool for Automated Thermal Protection System Design. AIAA Space 2000 Conference and Exposition, California, America, Sept. 2000: 431~437
    2 A. Tsukahara, H. Yamao, K. Miho. Advanced Thermal Protection systems For Reusable Launch Vehicle. AIAA 10th International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, April. 2001: 213~234
    3 C. C. Poteel, S. Y. Hsu. Preliminary Thermal-Mechanical Sizing of Metallic Tps: Process Development and Sensitivity Studies. AIAA 40th Aerospace Sciences Meeting & Exhibit Reno, America, Jan. 2002: 123~127
    4 R. W. Powell, M. K. Lockwood, S. A. Cook. The Road from the NASA Access-to-Space Study to a Reusable Launch Vehicle. AIAA 49th International Astronautical Congress, Melbourne, Australia, Sept. 1998: 761~772
    5褚桂柏.航天技术概论.中国宇航出版社, 2002: 91~93
    6刘德英,张友华,陈连忠.材料长时间隔热机理探索性实验研究.中国科协年会论文集(下册),中国北京, 2006: 154~157
    7王补宣.无机材料热物性学序言.上海科学技术出版社, 1981: 1
    8奚同庚.固体热物理性质导论.中国计量出版社, 1987: 18~62
    9何小瓦.航天材料热物理性能测试技术的发展现状.宇航计测技术, 2004, 24(4): 20~23
    10王补宣论文集编辑组.王补宣论文集.机械工业出版社, 2002: 3
    11奚同庚.无机材料热物性学.上海科学技术出版社, 1981: 171~199
    12褚载祥,孙毓星,陈守仁.材料发射率测量技术.红外研究. 1986, 5A: 231~239
    13 K. B. Ananda and V. M. Chakravarti. Accuracy of Thermal Conductivity Measurement of Low Conductivity Materials Using a Guarded Hot Plate. Heat Transfer 1998, Proceedings of 11th IHTC, kyongju, Korea, August 23-28, 1998, 4: 385~390
    14王补宣,任泽霈.利用“平板导热仪”测定热绝缘材料导温系数α的探讨.工程热物理学报. 1981, 2(3): 262~268
    15奚同庚,徐秀兰,倪鹤林等. 1200℃以下测定固体和液体的小平板热导仪的研究.工程热物理学报. 1981, 2(2): 181~184
    16杨惠林,徐骏华.高准确度防护热板法导热仪.同济大学学报. 1994, 22(2): 259~262
    17赫丽宏,林凌,李刚.一种改进的绝热材料导热率测控系统的设计.仪器仪表学报. 2003, 24(4): 181~183
    18 Salmon D. Thermal Conductivity of Insulations Using Guarded Hot Plates, Including Recent Developments and Sources of Reference Material. Measurement Science and Technology. 2001, 12(12): 89~98
    19 Stacey C. NPL Vacuum Guarded Hot-Plate for Measuring Thermal Conductivity and Total Hemispherical Emittance of Insulation Materials. Insulation Materials: Testingand Application, ASTM, STP 1426, 2002, 4
    20 W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32(9): 1679~1684
    21 D. L. Balageas. Thermal diffusivity measurement by pulsed methods. High temp.-high press. 1989, 21: 85~96
    22 L. Vozár. Flash Method of Measuring the Thermal Diffusivity– A Review. High Temp.-High Press. 2003/2004, 35/36: 253~264
    23 F. Cernuschi, P. G. Bison, A. Figari, et al. Thermal Diffusivity Measurements By Photothermal And Thermographic Techniques. Int. J. Thermo. 2004, 25(2): 439~457
    24 M. Akoshima, T. Baba. Thermal Diffusivity Measurements of Candidate Reference Materials by the Laser Flash Method. Int. J. Thermo. 2005, 26(1): 151~163
    25 J. Gembarovic, J. Gembarovic. Nonlinear Effects In Laser Flash Thermal Diffusivity Measurements. Int. J. Thermo. 2004, 25(4): 1253~1260
    26刘雄飞,薛健.激光加热法同时测定三个热物性参数的研究.计量技术. 1994, 18(2): 14~16
    27魏高升,张欣欣,于帆等.激光脉冲法测量硬硅钙石绝热材料热扩散率.北京科技大学学报. 2006, 28(8): 778~781
    28孙建平,刘建庆,邱萍等.激光闪光法测量材料热扩散率的漏热修正.计量技术. 2008, 19(1): 23~25
    29 J. J. Healy, J. De Groot, J. Kestin. The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity. Physica. 1976(82): 393~408
    30 X. Zhang, A. Degiovanni, D. Maillet. Hot-Wire Measurement of Thermal Conductivity of Solids. High Temp.-High Press. 1993(25): 577~584
    31 D. A. Van, F. T. M. Nieuwstadt. The Calibration of (Multi-) Hot-Wire Probes. 1. Temperature Calibration. Experiments in Fluids. 2004, 36(4): 540~549
    32 Ulf Hammerschmidt. Standards for Transient Hot Wire Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    33 P. Stalhane. Method for Bestamming av Varmeledings Coefficienter. Teknisk Tidskrift. 1931, 61: 389
    34 Van der Held, Van Druven. A Method of Measuring the Thermal Conductivity of Liquids. Physica. 1949, 15: 866
    35 G. Labudova, V. Vozarova. Uncertainty of the Thermal Conductivity Measurement Using the Transient Hot Wire Method. Journal of thermal analysis and calorimetry. 2002, 67(1): 257~265
    36李丽新,刘秋菊,刘圣春等.利用瞬态热线法测量固体导热系数.计量学报. 2006, 27(1): 39~42
    37 L. Sassi, F. Mzali, A. Jemni, S. B. Nasrallah. Hot-Wire Method for Measuring Effective Thermal Conductivity of Porous Media. Journal of Porous Media. 2005, 8(2): 97~113
    38孙国会,战东平,何毅等.冶金粉料导热系数的测定.黄金学报. 2001, 3(4): 23~30
    39 D. Santos, W. Nunes. Thermal Properties of Melt Polymers by the Hot Wire Technique. Polymer Testing. 2005, 24(7): 932~941
    40 S. P. Kulkarni, C. Vipulanandan. Hot Wire Method to Characterize the Thermal Conductivity of Particle-Filled Polymer Grouts Used in Pipe-In-Pipe Application. Journal of Testing and Evaluation. 2006, 34(3): 224~231
    41李强,宣益民.液体导热系数的双线式瞬态热线测试技术.仪器仪表学报. 2005, 26(7): 678~679
    42 M. Khayet, De Zárate, J. M. Ortiz. Application of the Multi-Current Transient Hot-Wire Technique for Absolute Measurements of the Thermal Conductivity of Glycols. International Journal of Thermophysics. 2005, 26(3): 637~646
    43 J. Bilek, J. K. Atkinson, W. A. Wakeham. Repeatability and Refinement of A Transient Hot-Wire Instrument for Measuring the Thermal Conductivity of High-Temperature Melts. International Journal of Thermophysics. 2006, 27(6): 1626-1637
    44 V. Giaretto, M. F. Torchio. Two-Wire Solution for Measurement of the Thermal Conductivity and Specific Heat Capacity of Liquids: Experimental design. International Journal of Thermophysics. 2004, 25(3): 679~699
    45 G. Gutierrez, R. Rodriguez. Conductivity Measurement of Ferrofluid Using Transient Hot Wire Method. ASME International Mechanical Engineering Congress and Exposition. 2008, 11(PART B): 1081-1086
    46董建平,隋成华,徐来定等.一种新型气体导热系数测定装置的研制.传感器技术. 2002, 21(10): 132~135
    47 Xie Huaqing, Gu Hua, Fujii Motoo, Zhang Xing. Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Measurement Science and Technology. 2006, 17(1): 208~214
    48 P. L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato. Determining Thermal Conductivity and Thermal Diffusivity of Low-Density Gases Using the Transient Short-Hot-Wire Method. International Journal of Thermophysics. 2008, 29(4): 1299-1320
    49 Yu Wenhua, U.S.Choi Stephen. Influence of Insulation Coating on Thermal Conductivity Measurement by Transient Hot-Wire Method. Review of Scientific Instruments. 2006, 77(7): 341~347
    50 D. Santos, N. Wilson. Advances on the Hot Wire Technique. Journal of the European Ceramic Society. 2008, 28(1): 15~20
    51张永忠.用双热丝法同时测定介质的导热系数和导温系数.工程热物理学报. 1991, 12(1): 50~53
    52王补宣,虞维平.热线法同时测定含湿多孔介质导热系数和导温系数的实验技术.工程热物理学报. 1986, 7(4): 381~386
    53于帆,张欣欣,高仲龙.热线法实验中半透明介质内部导热和辐射分析.北京科技大学学报. 1996, 19(2): 62~73
    54于帆,张欣欣,高光宁.热线法测量半透明固体材料的导热系数.计量学报. 1998, 19(2): 112~118
    55 J. J. Healy, J. De Groot, J. Kestin. The Theory of the Transient Hot-WireMethod for Measuring Thermal Conductivity. Physica. 1976, (82): 393~408
    56 X. Zhang, A. Degiovanni, D. Maillet. Hot-wire measurement of thermal conductivity of solids. High Temp.- High Press. 1993, (25): 577~584
    57于帆,张欣欣,何小瓦.材料热物理性能非稳态测量方法综述.宇航计测技术. 2006, 26(4): 23~30
    58 K. S. Kesav, S. Krishnamoorthy, S. V. Subba Rao. Thermophysical Properties Evaluation of High Temperature Resistant Materials by Hot Wire Method. 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings. 2006, 2: 915~924
    59 R. Coquard, D. Baillis, D. Quenard. Experimental and Theoretical Study of the Hot-Wire Method Applied To Low-Density Thermal Insulators. International Journal of Heat and Mass Transfer. 2006, 49(23-24): 4511~4524
    60于帆,张欣欣.交叉热线测量固体材料的热导率测温热电偶的影响.北京科技大学学报. 1998, 20(5): 479~483
    61李保春,董有尔.热线法在导热系数测量中的应用.物理测试. 2005, 23(4): 32~34
    62李丽新,刘秋菊,刘圣春等.利用瞬态热线法测量固体导热系数.计量学报. 2006, 27(1): 39~42
    63陈则韶,葛新石,顾毓沁.量热技术和热物性测定.中国科学技术大学出版社, 1990: 79~80
    64 Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure, American Society for Testing and Materials, 2000, D5334-00
    65 Standard test method for thermal conductivity of plastics by means of a transient line-source technique, American Society for Testing and Materials, 2001, D5930-01
    66 Izaak van Haneghem. Standards for Non-Steady State Probe Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    67谢华清,王锦昌,程曙霞等.热针法测量材料导热系数研究.应用科学学报. 2002, 20(1): 6~9
    68 E. Yamasue, M. Susa, H. Fukuyama, K. Nagata. Nonstationary Hot Wire Method with Silica-Coated Probe for Measuring Thermal Conductivities ofMethod for Measuring Thermal Conductivity. Physica. 1976, (82): 393~408
    56 X. Zhang, A. Degiovanni, D. Maillet. Hot-wire measurement of thermal conductivity of solids. High Temp.- High Press. 1993, (25): 577~584
    57于帆,张欣欣,何小瓦.材料热物理性能非稳态测量方法综述.宇航计测技术. 2006, 26(4): 23~30
    58 K. S. Kesav, S. Krishnamoorthy, S. V. Subba Rao. Thermophysical Properties Evaluation of High Temperature Resistant Materials by Hot Wire Method. 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings. 2006, 2: 915~924
    59 R. Coquard, D. Baillis, D. Quenard. Experimental and Theoretical Study of the Hot-Wire Method Applied To Low-Density Thermal Insulators. International Journal of Heat and Mass Transfer. 2006, 49(23-24): 4511~4524
    60于帆,张欣欣.交叉热线测量固体材料的热导率测温热电偶的影响.北京科技大学学报. 1998, 20(5): 479~483
    61李保春,董有尔.热线法在导热系数测量中的应用.物理测试. 2005, 23(4): 32~34
    62李丽新,刘秋菊,刘圣春等.利用瞬态热线法测量固体导热系数.计量学报. 2006, 27(1): 39~42
    63陈则韶,葛新石,顾毓沁.量热技术和热物性测定.中国科学技术大学出版社, 1990: 79~80
    64 Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure, American Society for Testing and Materials, 2000, D5334-00
    65 Standard test method for thermal conductivity of plastics by means of a transient line-source technique, American Society for Testing and Materials, 2001, D5930-01
    66 Izaak van Haneghem. Standards for Non-Steady State Probe Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    67谢华清,王锦昌,程曙霞等.热针法测量材料导热系数研究.应用科学学报. 2002, 20(1): 6~9
    68 E. Yamasue, M. Susa, H. Fukuyama, K. Nagata. Nonstationary Hot Wire Method with Silica-Coated Probe for Measuring Thermal Conductivities of
    83 S. E. Gustafsson, E. Karawacki, M. N. Kahn. Transient Hot-Stripe Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids And Fluids. J Phys. D: Appl. Phys. 1979(12):1411~1421
    84 S. E. Gustafsson, E. Karawacki, M. A. Chohan. Thermal Transport Studies of Electrically Conducting Materials Using the Transient Hot-Stripe Technique. J Phys. D: Appl. Phys. 1986(19): 727~735
    85 S. E. Gustafsson, E. Karawacki, M. A. Chohan. Circuit Design for Transient Measurements of Electrical Properties of Thin Metal Films and Thermal Properties of Insulating Solids or Liquids. Review of Science Instruments. 1984, 55(4): 610~613
    86 T. Log. Thermal Conductivity Measurements Using a Short Transient Hot-strip Method. Rev. Sci. Instrum. 1992, 63(8): 3966~3971
    87 Ulf Hammerschmidt. Standards for Transient Hot Strip Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    88 T. Log. Transient Hot-Strip Method for Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Refractory Materials. J. Am. Geram. Soc. 1991, 74(3): 650~653
    89 S. Singh, N. S. Saxena, D. R. Chaudhary. Simultaneous Measurement of Thermal Conductivity and Thermal Diffusivity of Some Building Materials Using The Transient Hot-Strip Method. J. Appl. Phys. 1985, 18: 1~8
    90 K. Bala, P. R. Pradhan, N. S. Saxena, M. P. Aaxena. Effective Thermal Conductivity of Copper Powders. J. Appl. Phys. 1989, 22: 1068~1172
    91 N. S. Saxena, M. A. Chohan, S. E. Gustafsson. Interstitial Air Pressure Dependence of Effective Thermal Conductivity and Diffusivity of Rajasthan Desert Sand Using Transient Hot-Strip Method. Jap. Journal. Appl. Phys. 1987, 26(1): 51~54
    92 S. E. Gustafsson. Transient Transport Studies of Electrically Conducting Materials Using the Transient Hot-Strip Technique. J. Appl. Phys. 1986, 19: 727~735
    93 GobbéClaire, Iserna Sébastien, Ladevie Bruno. Hot Strip Method: Application to Thermal Characterisation of Orthotropic Media. International Journal of Thermal Sciences. 2004, 43(10): 951~958
    94 T. Log. Transient Hot-Strip Method for Measuring Thermal Conductivity of Thermally Insulating Materials. Fire and Materials. 1993, 62(3): 797~804
    95陈奎.硬硅钙石多孔绝热材料的导热系数及测量.北京科技大学硕士学位论文. 2004: 49~59
    96于帆,张欣欣.热带法测量材料导热系数的实验研究.计量学报. 2005, 26(1): 27~29
    97 L. Kubicar. Pulse method of measuring basic thermophysical parameters, in Comprehensive Analytical Chemistry. Thermal Analysis. Vol. XII, Part E, (Ed. Svehla G., Amsterdam, Oxford, New York, Tokyo: Elsevier), 1990: 350
    98 L. Kubicar, V. Bohac. Review of Several Dynamic Methods of Measuring Thermophysical Parameters. 24th Int. Conf on Thermal Conductivity / 12th Int. Thermal Expansion Symposium, October 26~29 1997. Eds Gaal P S and Apostolescu D E, Lancaster: Technomic Publishing Company, 1998:135~149
    99 Ludovit Kubicar. Standards for Transient Pulse and Stepwise Plane Source Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    100于帆,张欣欣,何小瓦.非稳态平面热源法同时测量材料的导热系数和热扩散率.宇航计测技术. 2006, 26(6): 13~21
    101陈昭栋.平面热源法瞬态测量材料热物性的研究.电子科技大学学报. 2004, 33(5): 551~554
    102陈昭栋,陈芬,陈涛.材料热物理性质的自动检测.西南科技大学学报. 2003, 18(2): 44~48
    103詹士昌.不良导体热导率的阶跃函数式加热法测量研究.科技通报. 2000, 16(4): 284~286
    104王补宣,韩礼钟,方肇洪.常功率平面热源法加热器热容量的影响.工程热物理学报. 1983, 4(1): 38~45
    105王补宣,韩礼钟,王维城等.同时测定绝热材料a和λ的常功率平面热源法.工程热物理学报. 1980, 1(1): 80~87
    106高光宁,张欣欣,于帆等.平面热源法测量均质固体材料的蓄热系数.计量学报. 2001, 22(2): 106~110
    107禹国强,刘安伟,张国君等.恒功率平面热源法智能热物理参数测试系统.仪器仪表学报. 2000, 21(1): 98~103
    108崔萍,方肇洪,改进的常功率平面热源法.山东建筑工程学院学报. 2001,6(2): 48~52
    109周孑民,向锡炎,陈晓玲等.保温材料热物性测试的实验及数值研究.热科学与技术. 2007, 6(4): 368~372
    110 S. E. Gustafsson. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurement of Solid Materials. Rev. Sci. Instrum. 1991, 62(3): 797~804
    111 T. Log, S. E. Gustafsson. Transient Plane Source Technique for Measuring Thermal Transport Properties of Building Materials. Fire and Materials. 1994, 19(1): 43~49
    112 S. E. Gustafsson. Standards for Transient Plane Source Technique. NPL Standards for Contact Transient-Measurements of Thermal Properties. 2005: 1~5
    113 S. E. Gustafsson. International Patent Application. No. PCT/SE89/00137
    114胡亚才,范利武,黄君丽等.瞬态法测量木材热物性的理论与实验研究.浙江大学学报(工学版). 2005, 39(11): 1793~1796
    115徐慧,杨杰.瞬态热带法和瞬态平面热源法测量材料热传导系数.测控技术. 2004, 23(11): 71~73
    116 S. E. Gustafsson. Transient Hot-strip Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids and Fluids. J. Appl. Phys. 1979, 12: 1411~1421
    117 M. Gustavsson, S. E. Gustafsson. Thermal Conductivity as an Indicator of Fat Content in Milk. Thermochimica Acta. 2006, 442: 1~5
    118陈川涓,王如竹,夏再忠,胡金强.瞬态平面热源法测量硅胶混合吸附剂导热系数.工程热物理学报. 2008, 29(5): 811~814
    119黄犊子,樊栓狮.采用HOTDISK测量材料导热系数的实验研究.化工学报. 2003, 54(增刊)
    120彭浩,樊栓狮,黄犊子.瞬变平面热源法测定常压下四氢呋喃水合物的导热系数.化学通报. 2005, 12: 923~927
    121何小瓦,黄丽萍.瞬态平面热源法热物理性能测量准确度和适用范围的标定——常温下标准Pyroceram9606热物理性能测量.宇航计测技术. 2006, 26(4): 31~42
    122何小瓦,黄丽萍.瞬态平面热源法热物理性能测量准确度和适用范围的标定——常温下标准VespelTMSP1的热物理性能对比测试.宇航计测技术.2007, 27(4): 25~29
    123何小瓦.瞬态平面热源法热物理性能测量准确度和适用范围的标定——常温下标准材料奥氏体不锈钢的热物理性能对比测试.宇航计测技术. 2007, 27(6): 95~98
    124 M. A. Abdelrahman, S. M. Said, A. Ahmad, M. Inam, H. Abul-Hamayel. Thermal Conductivity of Some Major Building Materials in Saudi Arabia. Journal of Building Physics. 1990, 13: 294~300
    125 N. Hideaki, M. Mikito, C. Martin, O. Takeshi. Effect of Thermal Convection on the Measurement of Thermal Conductivity of Molten Bi and Sn by the Hot-Disk Method. Sixth Japan/China Workshop on Microgravity Sciences, Takeo Onsen,Saga,Japan, 2005: 132~137
    126 N. Hideaki. Thermal Conductivity Measurement of Moltensilicon by a Hot-Disk Method in Short-Duration Microgravity Environments. Jpn. J. Appl. Phys. 2000, 39: 1405~1408
    127 A. Bouguerra, A. Ait-Mokhtar, O. Amiri, et. al. Measurement of thermal conductivity, thermal difusivity and heat capacity of highly porous building materials using transient plane source technique. Int. Comm. Heat Mass Transfer, 2001, 28(8):1065-1078
    128 S. A. Al-Ajlan. Measurements of Thermal Properties of Insulation Materials by Using Transient Plane Source Technique. Applied Thermal Engineering. 2006, 26(17): 2184~2191
    129 J. J. Edmonds, A. M. Jones, S. D. Probert. Thermal Contact Resistance for Hard Machined Surfaces Pressed Against Relatively Soft Optical-Plats. Applied Energy. 1980, 6(7): 405~427
    130 B. Garnier, D. Pierrat, F. Dannes. Distribution of Size and Shape of Asperities Effect on Thermal Act Resistance. Revuede Metallurgie-Cahirs Deformations Techniques. 2000, 97(2): 263~269
    131 E. G. Wolff, D. A. Schneder. Prediction of Thermal Contact Resistance between Polished Surfaces. Informational journal of heat and mass transfer. 1998, 41(11): 3469~3482
    132黄明辉,张云湘,胡仕诚.载荷对接触热导的影响的实验研究.有色矿冶. 2003, 19(6): 34~36
    133 E. E. Marotta, L. S. Fletcher. Thermal Contact Conductance for Aluminum andStailess-Steel Contacts. J. Thermophysics and Heat Transfer. 1998, 12(3): 374~380
    134 A. Williams. Directional Effect of Heat Flow across Metallic Joints. Mech. Eng. Trans. 1976: 1~5
    135 Y. Z. Li, C. V. Madhusudana, E. Leonardi. On the Enhancement of the Thermal Contact Conductance: Effect of Loading History. Heat Transfer ASME. 2000, 122(1): 46~49
    136 T. R. Thomas, S. D. Probert. Thermal Contact Resistance: Directional Effect and Other Problems. International Journal Heat and Mass Transfer. 1970, 13(7): 789~807
    137 D. J. Mckinzie. Experimental Confirmation of Cyclic Thermal Joint Conductance Progress in Astronautics and Aeronautice. Heat Transfer and Spacecraft Thermal Control. 1971, 24(7): 289~309
    138赵兰萍,徐烈,李兆慧.反复加载情况下低温固体界面间接触导热的研究.低温与超导. 2000, 28(1): 51~54
    139 M. R. Sridhar, M. M. Yovanovich. Critical Review of Elastic and Plastic Thermal Contact Conductance Models and Comparison with Experiment. AIAA, 1993: 2776
    140 P. F. Steveson, O. P. Peterson. Thermal Rectification in Similar and Dissimilar Metal Contacts. ASME Journal of Heat Transfer. 1991, 113: 30~36
    141 F. R. Al-Astrbadi, A. M. Jones, S. D. Probert, P. W. O’Callaghan. Effect of Surface Distortion on the Thermal Resistance of Pressed Contacts. Journal of Mechanical Engineering Science. 1979, 21(7): 317~322
    142 P. W. O’Callaghan, B. Snaith, S. D. Prober, F. R. Al-Astrabadi. Prediction of Inter-Facial Filter Thickness for Minimum Thermal Contact Resistance. AIAA. 1983, 21(9): 1325~1330
    143 V. A. Mal’kov. An Investigation of Temperature Dependence of Thermal Contact Resistance. Heat Transfer-Soviet Research. 1974, 6(5): 92~100
    144顾慰兰,杨燕生.温度对接触热阻的影响.南京航空航天大学学报. 1994, 26(3): 342~350
    145 M. N. Mian, F. R. Al-Astrabadi, P. W. O’Callaghan, S. D. Probert. Thermal Resistance of Pressed Contact Between Steel Surfaces: Influence of OXIDE FILMS. Journal of Mechanical Engineering Science. 1979, 21(3): 159~163
    146 T. K. Kang, G. P. Peterson, L. S. Fletcher. Enhancing the Thermal Contact Conductance Through the Use of Thin Metallic Coatings. ASME. 1990, 112: 864~871
    147 V. W. Antonetti, M. M. Yovanovich. Using Metallic Coatings to Enhance Thermal Contact Conductance Electronic Packages. ASME Heat Transfer Division-Heat Transfer in Electronic Equipments. 1983, 28: 71~79
    148 A. K. Das, S. S. Sadhal. Analytical Solution for Constriction Resistance with Interfacial Fluid in the Gap. Heat and Mass Transfer. 1998, 34(6): 111~119
    149 S. Song, M. M. Yovanovich. Thermal Gap Conductance Effect of Gas Pressure and Mechanical Load. Thermophysics Heat Transfer. 1992, 6(1): 46~49
    150 A. Willimams. Heat Transfer Through Single Spots of Metallic Contacts of Simple Shapes. AIAA. 1974, 7: 74~692
    151 A. Willimams, S. Major. The Solution of a Steady State Conduction Heat Transfer Problem Using and Electrolitic Tank Analogue. Mechanical Engineering Transactions, Institution of Engineering. 1977: 7~11
    152 R. D. Gibson. The Contact Resistance for a Semi-infinite Cylinder in Vacuum. Applied Energy. 1976, 2: 57-65
    153 H. Fenech, W. M. Rohsenow. Prediction of Thermal Conductance of Metallic Surfaces in Contact. Transactions of ASME Journal of Heat Transfer. 1963, 85:
    15~24
    154 M. G. Cooper, B. B. Mikic, M. M. Yvanovich. Thermal Contact Conductance. Heat Mass Transfer. 1969, 12: 279
    155 J. A. Greenwood, J. B. Williamson. Contact of nominally flat Surfaces. Proc R. Society London. 1996, 295: 300~319
    156 P. R. Nayak. Some Aspects of Surface Roughness Measurement. Wear. 1973, 26:165~174
    157 P. R. Nayak. Randomprocess Model of Rough in Plastic Contact. Wear. 1973, 26: 305~33
    158 B. B. Mikic. Thermal Contact Conductance: Theoretical Consideration. International Journal of Heat and Mass Transfer. 1974, 17: 205~214
    159 M. Sridhar, M. Yovanovich. Critical Review of Elastic and Plastic Thermal Contact Conductance Models and Comparison with Experiment. AIAA. 1976, 9: 3~16
    160 M. G. Cooper, B. B. Mikic, M. M. Yovanovich. Thermal Contact Conductance. Jnt. J. Heat Mass Transfer. 1969, 12: 279~300
    161 A. Majumdar, C. L. Tien. Fractal Network Model for Contact Conductance. J. Heat Transfer. 1991, 113: 516~525
    162 A. Majumdar, B. Bhushan. Fractal Model of Elastic-Plastic Contact Between Rough Surfaces. J. Tribol (ASME). 1991, 113: 1~11
    163应济,贾昱,陈子辰,高承煜.粗糙表面接触热阻的理论和实验研究.浙江大学学报(自然科学版). 1997, 31(1): 104~109
    164皇甫哲.金属接触面传热热阻的研究二.西安交通大学博士学位论文. 1989: 20~79
    165赵兰萍,徐烈.固体界面间接触导热的机理和应用研究.低温工程. 2002, (4): 9-34
    166赵宏林,黄玉美.常用结合面接触热阻特性的实验研究.西安理工大学学报. 1999, 15(3): 6-29
    167湛利华,李小谦,胡世成.界面接触热阻影响因素的实验研究.轻合金加工技术. 2002, 30(9): 40-43
    168韩玉阁,宣益民,汤瑞锋.摩擦接触界面传热研究.南京理工大学学报. 1998, 22(3): 263
    169 C. W. Nan. X. P. Li, R. Birringer. Inverse Problem for Composites with Imperfect Interface: Determination of Interfacial Thermal Resistance, Thermal Conductivity of Constituents, and Microstructure Parameters. J. Am. Ceram. Soc. 2000, 83(4): 848~854
    170 S. P. Mehrotra, A. Chakravarty, P. Singh. Determination of the Interfacial Heat Transfer Coefficient in a Metal-Metal System Solving the Inverse Heat Conduction Problem. Steel Research. 1997, 68(5): 201~208
    171 J. V. Beck. Combined Parameter and Function Estimation in Heat Transfer with Application to Contact Conductance. ASME J. Heat Transfer. 1988, 110(4B): 1046~1058
    172 J. V. Beck. Transient Sensitivity Coefficients for the Thermal Contact Conductance. Int J. Heat Mass Transfer. 1967, 10(11): 1615~1617
    173 L. Dumont, C. Moyne, A. Degionnni. Thermal Contact Resistance-Experiment Versus Theory. International Journal of Thermalphysics. 1998, 9(6): 1681~1690
    174赵宏林,黄玉美,盛伯浩.接触热阻理论计算模型的探讨.制造技术与机床. 1999, (9): 23-24
    175张涛.低温真空下Cu-Cu界面间接触热阻的实验研究.低温工程. 1999, 2: 19~25
    176应济,贾昱,陈子辰,高承煜.粗糙表面接触热阻的理论和实验研究.浙江大学学报(自然科学版). 1997, 31(1): 104~109
    177 K. Mizuhara, N. Ozawa. Estimation of Thermal Contact Resistance Based on Electric Contact Resistance Measurements. International Journal of the Japan Society for Precision Engineering. 1999, 33(1): 59~61
    178 W. Hohenauer, L. Vozar. An Estimation of Thermophysical Properties of Layered Materials by the Laser-Flashed Method. High Temperatures-High Pressures. 1976, 33(1): 17~25
    179殷晓静, A. Degiovanni.闪光法测试同心圆柱套筒间接触热阻的研究.计量学报. 1996, 17(5): 120~124
    180 J. L. Wolf, C. Kostenko. Ultrasonic Measurement of Thermal Conductance of Joints in a Vacuum. Proc. 7th Conference on Thermal Conductivity. NBS Special Publication. 1968, 302: 769~775
    181 C. D. Coulbert, C. Lin. Thermal Resistance of Aircraft Structral Joints. WADC Thermal Note. 1953, 6: 53~50
    182 D. A. Schaver, W. H. Giedt. Contact Conductance Measurements during Transient Heating. Proc. 3rd Int. Heat Transfer Conference Vol. 4. AICHE. 1966
    183胡汉平.光-声光-应力波及热传导的若干理论和应用研究.中国科技大学博士学位论文. 1999: 13~68
    184 Hu Hanping, Wang Xinwei, Xu xiangfang. Generalized Theory of the Photoacoutic Effect Multiplayer Material. Journal of Applied Physics. 1999, 86(7): 78~85
    185 J. V. Beck, K. J. Arnold. Parameter Estimation in Engineering and Science. New York: John Wiley, 1977
    186贾力,方肇洪,钱兴华.高等传热学.北京:高等教育出版社. 2003: 65~75
    187 Yi He. Rapid Thermal Conductivity Measurement with a Hot Disk Sensor. Thermochimica Acta. 2005, 436: 122~129
    188 M. A. Lambert, L. S. Fletcher. Thermal Contact Conductance of SphericalRough Metals. Journal of Heat Transfer. 1997, 119(11): 80~690
    189杨世铭.传热学.第三版.高等教育出版社, 2002: 30~32
    190 M. J. Edmonds, A. M. Jones, S. D. Probert. TCR for Hard Machined Surfaces Pressed Against Relatively Soft Optical Flats. Applied Energy. 1980, 6(6): 405~427.
    191 P. E. Phelan. Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors. Journal of Heat Transfer. 1998, 120(6): 37~43
    192湛利华,李晓谦,胡仕成.界面接触热阻影响因素的实验研究.轻合金加工技术. 2002, 30(9): 40~43
    193 M. Hubert. Some Extensions of the Flash Method of Measuring Thermal Diffusivity. J Appl Phys. 1980, 51(9): 4666~4672.
    194黄光远,刘小军.数学物理反问题.山东科学技术出版社. 1993: 2~63
    195张世梅.二维片微分方程反问题的遗传算法研究.西安理工大学硕士学位论文. 2005: 1~34
    196王小平,曹立明.遗传算法——理论、应用与软件实现.西安交通大学出版社. 2002: 23~76
    197肖庭延,于慎根,王彦飞.反问题的数值解法.科学出版社. 2003: 2~54
    198 H. S. Carlslaw, J. C. Jaeger. Conduction of Heat in Solids. 2nd Edition. Oxford Clarendon Press, 1986: 50~89
    199 S. E. Gustafsson. Transient Hot-Strip Method for Measuring Thermal Conductivity and Specific Heat of Non-Conducting Solids and Liquids. J. V. Sengers. Proc. Eighth Symp. Termophys. Prop. New York, The Amer. Soc. Mechanical Engineers, 1982, 11: 110~114
    200郑少华,姜奉华.实验设计与数据处理.第一版.中国建材工业出版社. 2004: 127~163
    201付强,赵小勇.投影寻踪模型原理及应用.科学出版社. 2006: 159~169
    202 M. M. Mejias, H. R. B. Orlande, M. N. Ozisik. A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids. Proceeding of the 3rd Int. Conference on Inverse Problems in Engineering, Port Ludlow, 1999
    203 K. Levenberg. A method for the solution of certain problems in least squares. Quarterly of Applied Mathematics. 1944, 2: 164~168
    204 D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on A pplied Mathematics. 1963, 11: 431~441
    205杨晨, U. Gross.基于热传导逆问题方法预测材料热物性参数.化工学报. 2005, 56(12): 2415~2420
    206 H. P. Tan, Y. Shuai, X. L. Xia, H. C. Zhang. Reliability of Stray Light Calculation Code by the Monte-Carlo Method. Optical Engineering. 2005, 44(2): Art. No. 023001
    207 B. Sawaf, M. N. zisik, Y. Jarny. An inverse analysis to estimate linearly temperature dependent thermal conductivity components and heat capacity of ort hotropic medium. Int. J. Heat Mass Transfer. 1995, 38(16): 3005~3010
    208 K. Dowding, B. Balckwell. Joint Experimental/Computational Techniques to Measure Thermal Properties of Solids. Meas. Sci. Technol. 1998, 9: 877~887
    209张宏.大口径面黑体辐射源及其辐射特性的理论与实验研究.哈尔滨工业大学博士学位论文. 2006, 10: 1~84
    210王新北.基于傅立叶红外光谱仪的材料光谱发射率测量技术的研究.哈尔滨工业大学博士学位论文. 2007, 12: 32~35
    211卢静华,刘刚,杜海辉.大口径标准黑体辐射源.计测技术. 2008, 28(增刊): 49~51
    212王勇.非线性PID控制的研究.南京理工大学硕士学位论文. 2000: 46~50
    213 S. Shao. Fuzzy Self-organizing Controller and its Application for Dynamic Processes. FuzzySets and Systems. 1988, 26: 151~164
    214 J. Moody, C. Darken. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation. 1989, 1(2): 281~294
    215 K. S. Narendra, K. Parthasarathy. Identification and Control for Dynamic Systems Using Neural Networks. IEEE Trans. on Neural Networks. 1990, 1(1): 4~27
    216 C. C. Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller, part II. IEEE Trans, SMC. 1990, 20(2): 419~433
    217 Q. Zhang, P. E. Feng. Application of PID Control Technique Based on Parameter Fuzzy Self-Modify in Dozer Control System, Control Theory and Applications. 1997, 14(2): 287-291
    218 K. J. ?str?m, T. Hagglund. PID Controlers. 2nd Edition. Research Triangle Park, North Carolina: Instrument Society of America, 1995: 23~73
    219王少愚.参数自整定PID控制器的研究.武汉理工大学硕士学位论文. 2002: 5~6
    220杨启伟,陈以.常用温度控制法的对比.兵工自动化. 2005, 24(6): 86~87
    221 L. A. Zadeh. Fuzzy Set. Information and Control. 1965, 8: 338~353
    222 D. Driankov, H. Hellendoom, M. Reinfrank. An Introduction to Fuzzy control. Springer-Verlag. 2nd Edition. New York. 1996: 12~35
    223 B. G. Hu, K. I. Mann, R. G. Gosine. New Methodology for Analytical and Optimal Design of Fuzzy PID Controllers. IEEE Transactions on Fuzzy Systems. 1999, 7: 521~539
    224 K. I. Mann, B. G. Hu, R. G. Gosine. Analysis of direct Action Fuzzy PID Controller Structures. IEEE Trans. On Systems, Man, and Cybernetics-part B: Cybernetics. 1999, 29(3): 371~388
    225 J. X. Xu, C. C. Hang, C. Liu. Parallel Structure and Tuning of a Fuzzy PID Controller. Automatica. 2000, 36: 673~684
    226陶永华.新型PID控制及其应用.机械工业出版社. 2002: 101~146
    227王魁汉.温度测量实用技术.第一版.机械工业出版社, 2007: 34~81
    228 R. Fedore, D. Stroe. Thermophysical properties of vespelTM SP1. Proceedings of the 27th International Thermal Conductivity Conference and the 15th International Thermal Expansion Symposium, Knoxville, USA, 2003: 813~816
    229 G. Bovesecchi, P. Coppa. High temperature (till 1500℃) contemporary thermal conductivity and thermal diffusivity measurements with step flat heat source. Jiubin Tan, Xianfang Wen. Fifth International Symposium on Instrumentation Science and Technology, Shenyang, China, 2008. Bellingham WA, United States, Proc SPIE Int Soc Opt Eng, 2009, 7133: 848~857

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700