蒸发与凝结现象的分子动力学研究及实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸发与凝结是一类在工程与技术领域有着广泛而重要应用的相变现象,但由于其复杂性,现有理论仍难以准确预测蒸发与凝结流率。本文采用分子动力学模拟、理论分析和实验研究相结合的方法,对蒸发与凝结过程进行了从微观机理到宏观规律的系统研究,以求为工程应用中更好地预测蒸发/凝结流率提供改进的方法和建议。主要研究成果归纳如下:
    对汽液界面进行了分子动力学研究,揭示出宏观尺度的平界面在分子尺度上是随时间起伏涨落的曲分界面,分界面的涨落区域就是汽液界面的厚度,相应的激光散斑实验也定性地证明了界面涨落区的存在;研究还发现在汽液平衡体系中,界面附近存在局域热非平衡区域,并指出了其可能的原因及影响。
    对蒸发与凝结过程进行了分子动力学研究,提出了统计凝结系数的新方法--特征时间法,该方法通过统计获得有效区分反射过程和凝结再蒸发过程的特征时间,从而使求得的凝结系数近似程度更好。模拟获得的Lennard-Jones流体和水在平衡条件下的凝结系数表明:水和氩的凝结系数为温度的减函数;水的凝结系数略高于氩的凝结系数;虽然在水的模拟中考虑了分子的极性、旋转等因素,但模拟获得的水与氩的凝结系数之间的差距并不显著,具体原因仍有待于进一步的探讨。论文还采用瞬态法研究了非平衡条件下氩的蒸发系数,模拟研究的初步结果显示,非平衡分子动力学方法获得的蒸发系数与平衡分子动力学方法获得的凝结系数之间差距并不显著,由于可比数据少,上述结果还有待于更多的模拟验证。
    考虑界面的涨落结构和相间输运过程的动力学特征,将分子运动方向的影响引入过渡态分子的自由容积计算中,修正了平衡条件下蒸发/凝结系数的过渡态理论统计表达式。对于氩的凝结系数,该修正式获得的凝结系数能与本文及其他作者的模拟结果相吻合,计算准确度可望优于现有的其它凝结系数统计理论计算方法。
    采用准稳态方法对水的蒸发过程进行了实验研究。研究表明,使用界面温度获得的蒸发系数实验结果与分子模拟获得的凝结系数差距不大,但采用主流区温度获得的蒸发系数与模拟计算结果相差可达4~5个量级。由于界面处存在明显的温度跳跃,界面温度的准确实验测量难度较大,这很可能是文献报道的蒸发/凝结系数的实验研究结果数据分散程度较大的主要原因。本文则提供了一种能获得准稳态蒸发/凝结过程的界面温度分布的热分析方法。
Evaporation and condensation phenomenon has been studied actively for decades because of its extensive and significant applications in various fields of technology and engineering. However, because of the complexity of the liquid-vapor phase transition, until now, we still have difficulty in accurately predicting the evaporation or condensation flux. The present dissertation mainly focuses on MD study as well as statistical theoretical and experimental investigations of evaporation and condensation phenomenon. According to these studies, some suggestions and method for the calculation of the evaporation or condensation flux are provided. The results can be summarized into the following aspects:
    Molecular dynamics study of liquid-vapor interface shows that the planar liquid-vapor interface at macroscopic level is in fact a wavy surface fluctuating with time, and the length scale of the fluctuating region of the wavy surface is the thickness of the liquid-vapor interface. With speckle laser visualized experiment, the fluctuation of the interface can be verified qualitatively. Moreover, MD simulations indicate that in the liquid-vapor equilibrium system, there exists a local non-equilibrium region near the interface. We analyzed the reason of the local non-equilibrium region existence and its possible effect on the calculation of the liquid-vapor phase change flux.
    With MD method, we studied evaporation and condensation process. By statistically analyzing the behavior of the colliding molecules with the interface, we presented a novel method, namely, the characteristic time method, to calculate the evaporation/condensation coefficient. In this method, the condensed then re-evaporated process is considered. The condensed then re-evaporated molecules are successfully distinguished from the reflected molecules with their different characteristic time, which make this method more reasonable to calculate condensation coefficient than the previous MD statistical methods. With the characteristic time method, we also studied the condensation coefficients of water and argon in liquid-vapor equilibrium system. The simulated condensation coefficient decreases with the increase of temperature for both argon and water, and the condensation coefficient of water is larger than that of argon. Though the polarity and the rotation are considered in the simulation of water, the difference between the condensation coefficients of water and argon is not remarkable. Further study is in demand. Moreover, with a transient simulation, we calculated evaporation coefficients of argon under non-equilibrium conditions. The rudimental MD results indicate that there is no notable difference between the evaporation coefficients from the non-equilibrium simulation and the condensation coefficients from the equilibrium simulation.
    Based on the fluctuation of the liquid-vapor interface and the thermodynamic characteristic of the liquid-vapor interphase, we modified the transition state theoretical calculation of the condensation coefficient by taking into account the effect of molecular moving orientation in the free volume calculation for the activated complex. The calculated condensation coefficients of argon from the modified theoretical formula agree well with the MD simulation results from different authors.
    Quasi-stable evaporation process of water is experimentally investigated. The experimental results of the condensation coefficient obtained from the liquid and vapor temperatures near the interface and the results from MD simulations are in the same order, but those obtained from the bulk liquid and bulk vapor temperatures are four to five orders lower than the results from MD simulations. From the vapor phase to the liquid phase, the temperature jumps near the interface. Therefore, it is difficult to accurately measure the temperatures near the interface. This may be the main reason of the large difference between the evaporation/condensation coefficients obtained from different experiments. A method for calculating the temperature
引文
[1] Blander M and Katz J L. Bubble nucleaion in Liquids. AICHE J. 1975, 21(5): 833-848.
    [2] Collier J G. Convective Boiling and Condensation. New York: McGraw-Hill (2nd), 1981.
    [3] Wayner P C. Intermolecular and surface forces with applications in change-of-phase heat transfer, Boiling Heat Transfer: Modern Developments and Advances, ed. Lahey R T. New York: Elevier Science, 1992.
    [4] 施明恒,甘永平,马重芳. 沸腾和凝结 北京:高等教育出版社, 1995, pp3-4.
    [5] Harvie D J E and Fletcher D F. A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Int. J. Heat and Mass Transfer. 2001, 44: 39-53.
    [6] Mo Y, Okawa Y, and Tajima M et al. Micro-machined gas sensor array based on metal film micro-heater, Sensors and Actuators B. 2001, 79: 175-181.
    [7] Semaltianos N G. Thermally evaporated aluminium thin films, App. Sur. Sci. 2001, 183: 223-229.
    [8] Lida T, Murakami M, and Shimazaki T et al. Visualization study on the thermo-hydrodymic phenomena induced by pulsative heating in He II by the use of a laser holographic interferometer, Cryogenics. 1996, 36(11): 943-949.
    [9] Chuu D S, Chang Y C and Hsieh C Y. Growth of CdMnS films by pulsed laser evaporation, Thin Solid Film. 1997, 304:28-35.
    [10] Cammenga H K. Evaporation mechanisms of liquids. Kaldis E(Eds.), Current Topics in Materials Science, Amsterdam: North-Hoilard, 1980, 5: 335-446.
    [11] Eames I W, Marr N J and Sabir H. The evaporation coefficient of water: a review, Int. J. Heat and Mass Transfer 1997, 4(12): 2963-2973.
    [12] Labuntsov D A. An analysis of intensive evaporation and condensation, High Temperature (Engl. Transl.). 1967, 5: 579-647.
    [13] Ytrehus T and Qstmo S. Kinetic theory approach to interphase processes, Int. J. Multiphase Flow. 1996, 22(1): 133-155.
    [14] Ytrehus T. Molecular-flow effects in evaporation and condensation at interfaces, Multiphase Science and Technology 1997, 9(3): 205-325.
    [15] Rose J W. Interphase matter transfer, the condensation coefficient and dropwise condensation, Proceedings of the 11th International Heat Transfer Conference Kyongju, Korea, 1998, vol.1, pp89-104.
    [16] Hinshelwood C N. On the theory of unimolecular reactions, J. Phys. Chem. 1927, 113A: 230-233.
    [17] Fowler R H and Rideal E K. On the rate of Maximum activation by collision for complex molecules with applications to velocities of gas reactions, Proc. Roy. Soc. London 1927, 113A: 570-584.
    [18] Rice O K and Ramsperger H C. Theories of unimolecular gas reactions at low pressures, J. Am. Chem. Soc. 1928, 50: 617-620.
    [19] Gershinowitz H and Rice O K. On the activation energy of unimolecular reactions, J. Chem. Phys. 1934, 2: 273-282.
    [20] Eyring H. The activated complex in chemical reactions, J. Chem. Phys. 1935, 3: 107-116.
    [21] Kincaid J F and Eyring H. Free volumes and free angle ratios of molecules in liquids, J. Chem. Phys. 1938, 6: 620-629.
    [22] Hildebrand J H. Liquid structure and entropy of vaporization, J. Chem. Phys. 1939, 15:133-235.
    [23] Hirschfelder J O. Discussion of the absolute reaction rate of unimolecular decompositions, J. Chem. Phys. 1948, 16: 22-25.
    [24] Penner S S. Melting and evaporation as rate processes, J. Phys. Colloid Chem., 1948, 52: 949-954.
    [25] Penner S S. Additions to the article "Melting and evaporation as rate processes", J. Phys. Colloid Chem. 1948, 52: 1262-1263.
    [26] Bradley R S and Shellard A D. The rate of evaporation of droplets. III. Vapour pressures and rates of evaporation of straight-chain paraffin hydrocarbons, Proc. Roy. Soc. London 1949, A198: 239-251.
    [27] Wyllie G. Evaporation and surface structure of liquids, Proc. Royal Soc. London A197: 1949, 383-395.
    [28] Bradley R S and Waghorn G C S. The rate of evaporation of droplets. V. Evaporation characteristics of some branched-chain hydrocarbons and a straight-chain fluorocarbon, Proc. Roy. Soc. London. 1951, A206: 65-72.
    [29] Penner S S. On the kinetics of evaporation, J. Phys. Chem. 1952, 56:475-479.
    [30] Eyring H, Ree T and Hirai N. Significant structures in the liquid state. Proc. Natl. Acad. Sci. 1958, 44: 683-688.
    [31] Mortensen E M and Eyring H. Transmission coefficients for evaporation and condensation, J. Phys. Chem. 1960, 64: 846-849.
    [32] Fujikawa S and Maerefat M. A study of the molecular mechanism of vapour condensation,m JSME Int. J. 1990, 33(4): 634-641.
    [33] Delaney L J, Houston R W and Eagleton L C. The rate of vaporization of water and ice, Chem. Eng. Sci. 1964, 19:105-114.
    [34] Tsuruta T and Nagayama G. A molecular dynammics approach to interphase mass transfer between liquid and vapor, edited by G. P. Celata, Heat Transfer and Transport Phenomena in Microscale. Proceedings of the international conference on heat transfer and transport phenomena in microscale held at the Banff Centre for Conferences Banff, Canada. 2000, October 15-20 pp432-439.
    [35] Marek R and Straub J. Analysis of the evaporation coefficient and the condensation coefficient of water, Int. J. Heat and Mass Transfer. 2001, 4: 39-53.
    [36] Fujikawa S, Okuda M, and Akamatsu T et al. Non-equilibrium vapour condensation on a shock-tube endwall behind a reflected shock wave, J. Fluid mech. 1987, 183: 293-324.
    [37] Maerefat M, Fujikawa S, and Akamatsu T et al. An experimental study of non-equilibrium vapour condensation in a shock-tube, Experiments in Fluids. 1989, 7: 513-520.
    [38] Heideger W J and Boudart M. Interfacial resistance to evaporation, Chem. Eng. Sci. 1962, 17: 1-10.
    [39] Mendelson H and Yerazunis S. Mass transfer at high mass fluxes, Part I: evaporation at the stagnation point of a cylinder, AIChE J. 1965, 11(5): 834-840.
    [40] Johnstone R K M and Smith W. Rate of condensation or evaporation during short exposures of a quiescent liquid, Proceedings of the 3rd International Heat Transfer Conference, Chicago. 1966, Vol. 2, pp.348-353.
    [41] Maa J R. Evaporation coefficient of lqiuids, Ind. Eng. Chem. Fund. 1967, 6(4): 504-518.
    [42] Klinge H. Ph. D thesis, Techn. Univ. Braunschweig, 1968.
    [43] Maa J R. Rates of evaporation and condensation between pure liquids and their own vapors, Ind. Eng. Chem. Fund. 1970, 9(2): 283-287.
    [44] Tamir A and Hasson D. Evaporation and condensation coefficient of water, Chem. Eng. J. 1971, 2:200-211.
    [45] Duguid H A and Stampfer Jr J F. The evaporation rates of small, freely falling water drops, J. The Atmospheric Sciences 1971, 28:1233-1243.
    [46] Levine N E. Experimental determination of the condensation coefficient of water, J. Geophys. Res. 1973, 78(27): 6266-6271.
    [47] Kochurova N N, Geineman V R and Rusanov A I. Temperature dependence of the condensationcoefficient of water, Russ. J. Phys. Chem. 1975,49(1): 12-13.
    [48] Davies E J, Chang R and Pethica B D. Interfacial temperatures and evaporation coefficients with jet tensimetry, Ind. Eng. Chem. Fund. 1975, 14(1): 27-33.
    [49] Narusawa U and Springer G S. Measurements of evaporation rates of water, J. Coll. Interf. Sci. 1975, 50(2): 392-395.
    [50] Bonacci J C, Myers A L and Nongbri G et al. The evaporation and condenation coefficient of water, ice and carbon tetrachloride, Chem. Eng. Sc. 1976, 31: 609-617.
    [51] Barnes G T. Insoluble monolayers and the evaporation coefficient of water, J. Coll. Interf. Sci. 1978, 65(3): 566-572.
    [52] Cukanov V I, Kostromin I L and Kuligin A I. Kinetika isparenija peregretoj vody I n-pentana (Kinetics of evaporation of superheated water and n-pentane), Teplofizika Vysokich Temperatur 1987, 25(6): 1242-1244.
    [53] Hagen D E, Schmitt J, and Trueblood M et al. Condensation coefficient measurement in the UMR cloud simulation chamber, J. Atmospheric Sci. 1989, 46(6): 803-816.
    [54] Fang G, and Ward C A. Temperature measured close to the interface of an evaporating liquid. Phys. Rev. E 1999, 59(1): 417-428.
    [55] Fang G, and Ward C A. Examination of the statistical rate theory expression for liquid evaporation rates. Phys. Rev. E 1999, 59(1): 441-453.
    [56] Bedeaux D and Kjelstrup S. Transfer coefficients for evaporation. Phys. A. 1999, 270: 413-426.
    [57] Wakeshima H and Takata K. Growth of droplets and condensation coefficients of some liquids, Jap. J. Appl. Phys. 1963, 2(12): 792-797.
    [58] Nabavian K and Bromley L A. Condensation coefficient of water, Chem. Eng. Sci. 1963, 18: 651-660.
    [59] Goldstein R. Study of water condensationon shock-tube walls, J. Chem. Phys. 1964, 40(10): 2793-2799.
    [60] Tanner D W, Potter C J, and Pope D et al. heat transfer in dropwise condensation - Part I: the effects of heat flux, steam velocity and non-condensable gas concentration, Int. J. Heat Mass Transfer 1965, 8: 419-426.
    [61] Jamieson D T. The condensation coefficient of water, Proceedings of the 3rd Symposium on Thermophysical Properties, Lafayette, Indiana, ASME, 1965, pp. 230-236.
    [62] Mills A F and Seban R A. The condensation coefficient of water, Int. J. Heat Mass Transfer 1967, 10: 1815-1827.
    [63] Tanner D W, Potter C J, Pope D et al. Heat transfer in dropwise condensation at low steam pressures in the absence and presence of non-condensable gas, Int. J. Heat Mass Transfer 1968, 11: 181-190.
    [64] Maa J R. Condensation sudies with the jet stream tensimeter, Ind. Eng. Chem. Fund. 1969, 8(3): 564-570.
    [65] Wenzel H. On the condensation coefficient of water estimated from heat-transfer measurement during dropwise condensation, Int. J. Heat Mass Trsnfer 1969, 12: 125-126.
    [66] Magal B S. Hertz-Knudsen equation and filmwise condensation of low density steam, J. Scient. Ind. Res. 1971, 30: 63-67.
    [67] Vietti M A and Schuster B G. Laser scattering measurements of droplet growth in binary mixtures. I. H2O and air, J. Chem. Phys. 1973, 58(2): 434-441.
    [68] Chodes N, Warner J and Gagin A. A determination of the condensation coefficient of water from the growth rate of small cloud droplets, J. The Atospheric Sci. 1974, 31:1351-1357.
    [69] Gollub J P, Chabay I and Flygare W H. Laser heterodyne study of water droplet growth, J. Chem. Phys. 1974, 61(5): 2139-2144.
    [70] Sinnarwalla A M, Alofs D J and Carstens J C. Measurement of growth rate to determine condensation coefficients for water drops grown on natral cloud nuclei, J. Atmospheric Sci. 1975, 32:592-599.
    [71] Vietti M A and Fastook J L. Water droplet growth in an expansion cloud chamber operationg at small supersaturations, J. De Recherches Atmoshériques 1975, 9(4): 181-195.
    [72] Finkelstein Y and Tamir A. Interfacial heat transfer coefficients of various vapors in direct contact condensation, Chem. Eng. J. 1976, 12:199-209.
    [73] Vietti M A and Fastook J L. Water droplet growth in a carbon dioxide atmosphere: a case for small sticking coefficient , J. Chem. Phys. 1976, 65(1): 174-178.
    [74] Hatamiya S and Tanaka H. Drop-size distributions and heat transfer in dropwise condensation-condensation coefficient of water at low pressures, Proceedings of the 8th International Heat Transfer Conference, San Francisco, USA, 1986, vol.4, pp. 1671-1676.
    [75] Garnier J P, Ehrhard Ph and Mirabel Ph. Water droplet growth study in a continuous flow diffusion cloud chamber, Atmosph. Res. 1987, 21: 41-51.
    [76] Niknejad J and Rose J W. Interphase masster transfer: an experimental study of condensation of mercury, Proc. R. Soc. Lond. 1981 , A378:305-327.
    [77] Yasuoka K, Matsumoto M and Kataoka Y. Evaporation and condensation as a unimolecular chemical reaction: Does the potential barrier exist at a molecular liquid surface. Bull. Chem. Soc. Jpn. 1994, 67: 859-862.
    [78] Yasuoka K and Matsumoto M. Evaporation and condensation at a liquid surface. I. Argon. J. Chem. Phys. 1994, 101(9): 7904-7911.
    [79] Yasuoka K and Matsumoto M. Evaporation and condensation at a liquid surface. II. Methanol. J. Chem. Phys. 1994, 101(9): 7912-7917.
    [80] Matsumoto M, Yasuoka K and Kataoka Y. Molecular mechanism of evaporation and condensation, Thermal Science & Engineering 1995, 3(3): 27-31.
    [81] Matsumoto M, Yasuoka K and Kataoka Y. Molecular simulation of evaporation and condensation, Fluid Phase Equilibria 1995, 104: 431-439.
    [82] Matsumoto M, Yasuoka K and Kataoka Y. Molecular dynamics of fluid phase change, Fluid Phase Equilibria 1998, 144: 307-314.
    [83] Tsuruta T, Tanaka H and Masuoka T. Condensation process at liquid-vapor interface and condensation coefficient, Thermal Science & Engineering 1995, 3(3): 85-90.
    [84] Tsuruta T, Tanaka H and Masuoka T. Condenstion/evaporation coefficient and velocity distributions at liquid-vapor interface, Thermal Science & Engineering 1999, 3(3): 85-90.
    [85] 罗森诺 W M. 传热学基础手册(下),北京:科技出版社,1992, pp.207-209.
    [86] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987.
    [87] Haile J M. Molecular Dynamics Simulation-Elementary Methods, New York: Wiley-Interscience, John Wiley & Sons Inc, 1992.
    [88] Rapaport D C. The Art of Molecular Dynamics Simulation, Cambridge: Cambridge University Press, 1995.
    [89] Ciccotti G, Frenkel D and McDonald (Eds.) I R. Simulation of Liquds and Solids: Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics, Amsterdam: North-Holland, 1987.
    [90] Maruyama S. Molecular dynamics method for microscale heat transfer. Minkowycz W J and Sparrow E M (Eds). Advances in Numerical Heat Transfer, New York: Taylor & Francis. 2000, vol.2: 189-226.
    [91] Nijmeijer M J P, Bakker A F, and Bruin C. A molecular dynamics simulation of the Lennard-Jones liquid-vapor interface. J. Chem. Phys. 1988, 89(6):3789.
    [92] Holcomb C D, Clancy P and Zollweg J A. A Critical Study of the Simulation of the Liquid-Vapour Interface of a Lennard-Jones Fluid. Mol Phys, 1993, 78(2): 437-459.
    [93] Dunikov D O, Malyshenko S P and Zhakhovskii V V. Corresponding states law and molecular dynamics simulations of the Lennard-Jones fluid. J. Chem. Phys. 2001, 115: 6623-6631.
    [94] Adamson A W. Physical Chemistry of Surfaces. New York: John Wiley & Sons, 1982.
    [95] 赵凯华,罗蔚茵(eds.).新概念物理教程:热学,北京:高等教育出版社,1998, pp51-58.
    [96] 熊大曦. 某些热现象的分子动力学研究,清华大学博士学位论文,1998, pp.63-69.
    [97] Yasuoka K and Matsumoto M. Molecular mechanism of homogeneous nucleation in the vapor phase. Proceedings of International Centre for Heat and Mass Transfer symposium on Molecular and Microscale Heat Transfer in Materials Processing and Other Applications, Yokohama, Japan, 1996, vol.1, pp222-230.
    [98] Zhang W, Song Y Z. Noise Reduction Method in the Flow Visualization Using DSPI. Journal of Flow Visualization & Image Processing 1999, 12(3):54-59.
    [99] Song Y Z and Zhang W. Digital Speckle Technique Applied to Flow Visualization. Tsinghua Science and Technology 2000, 5(1): 89-95.
    [100] Jiang S, Rhykerd C L and Gubbins K E. Layering, freezing transitions, capillary condensation and diffusion of methane in slit carbon pores. Mol. Phys. 1993, 79(2): 373-391.
    [101] Cook G A. (ed.) Argon, Heium, and The Rare Gases, Vol.1. New York, London: Interscience Publishers Inc., 1961.
    [102] Vargaftik N B. (ed.) Tables on the Thermophysical Properties of Liquids and Gases, United States: Hmisphere, 1975.
    [103] Storn R and Price K. Differential evolution ? a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 1997, 11: 341-359.
    [104] Steinfeld J I, Francisco J S and Hase W L. Chemical Kinetics and Dynamics, New Jersey: Prentice-Hall, 1989, pp308-339.
    [105] Vorholz J, Harismiadis V I, and Rumpf B et al. Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water+ carbon dioxide, from molecular simulation, Fluid Phase Equilibriua 2000, 170: 203-234.
    [106] Richard J S. Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, Amsterdam: Elsevier Press, 1999.
    [107] David J A, Eveline M A and Graham J H. The computer simulation of polar liquids, Mol. Phys. 1979, 38(2): 387-400.
    [108] Steinhauser O. Reaction field simulation of water, Mol. Phys. 1982, 45(245):335-348.
    [109] Goldstein H. Classica mechanics (2nd edn). Reading, MA: Addison-Wesley, 1980.
    [110] Lide D R. CRC Handbook of Chemistry and Physics, 79th ed., New York: CRC Press, 1998-1999.
    [111] Kiyohara K, Gubbins K E and Panagiotopoulos A Z. Phase coexistence properties of polarizable water models, Mol. Phys. 1998, 94(5): 803-808.
    [112] Cracknell R F, Nicholson D, and Parsonage N G et al. Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water, Mol. Phy. 1990, 93: 7355-7381.
    [113] de Pablo J J, and Prausnitz J M. Phase equilibria for fluid mixtures from Monte Carlo simulation, Fluid Phase Equilibria 1989, 53: 177-190.
    [114] Hoover W G. Computational Statistical Mechanics, Amsterdam: Elsevier Press, 1991.
    [115] 郭英奎.快速瞬态导热的研究,清华大学博士学位论文,2000, pp.59-75.
    [116] Ward C A, and Fang G. Expression for predicting liquid evaporation flux: Statistical rate theory approach. Phys. Rev. E 1999, 59(1): 429-440.
    [117] Butkovskii A V. Effect of the condensation coefficient on the rapid evaportion of superheated drops, High Temp. 1991, 29(4): 582-586.
    [118] Korneev V V. Possibility of determining the coefficient of condensation of water from experiments involving laser vaporization, High Temp 1990, 28(3): 406-410.
    [119] Rubel G O and Gentry J W. Measurement of the kinetics of solution droplets in the presende of adsorbed mono-layers: determination of water accommodation coefficients, J. Phys. Chem. 1984, 88(14): 3142-3148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700