丹参酮ⅡA磺酸钠治疗肺动脉高压的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】:
     肺动脉高压(pulmonary arterial hypertension,PAH)是以肺血管壁增厚、重建为主要特征的肺血管疾病,而慢性低氧被认为是引起肺动脉高压的主要因素。慢性低氧性肺动脉高压(CHPH)是大部分慢性阻塞性肺疾病(COPD)患者最终发展成为肺心病而死亡的主要原因。大量的研究证明,细胞内Ca~(2+)在血管平滑肌细胞的收缩和增生的复杂机制中起着至关重要的作用。目前研究发现低氧时SOCC(store-operated calcium channel)上调是引起平滑肌细胞内钙离子失衡的主要原因,SOCC主要由经典瞬时受体电位(canonical transient receptor potential,TRPC)蛋白家族成员组成,慢性低氧能选择性地引起TRPC1、6表达升高。
     同时,低氧可以使肺和肺周围血管中的各种促炎因子的表达显著增高,如TNF-α,IL-1β以及IL-6等。这些细胞因子的过度表达对血管壁细胞的表型,包括细胞增殖和基质蛋白的表达,以及对缩血管和舒血管物质反应的改变都起了重要的作用。特别是IL-6,直接参与了COPD以及肺动脉高压的疾病进程。
     丹参酮ⅡA磺酸钠(sodium tanshinone IIA sulfonate,STS)是丹参的有效成分丹参酮ⅡA经磺酸化而得到的水溶性产物,最近有研究发现,该药对低氧性肺动脉高压有保护作用,包括降低平均动脉压、能改善右心室肥厚和平滑肌增厚程度,但是其机制尚不清楚。
     【研究目的】:
     本实验建立了大鼠远端PASMCs (pulmonary arterial smooth muscle cells)原代培养模型及CHPH大鼠模型,观察TRPC通道在CHPH模型及低氧条件下培养的PASMCs中的表达;观察低氧和常氧状态下STS对TRPC1、6表达的影响以及对CHPH大鼠血清中和肺组织中IL-6表达的影响,探讨STS降低CHPH大鼠肺动脉压力的可能机制,为寻找有效的防治肺动脉高压的方法打下坚实的理论基础。
     【研究方法】:
     本研究采用原代细胞培养和动物实验相结合的方法:(1)胶原酶消化法培养PASMCs:分离正常大鼠远端肺动脉,用胶原酶消化培养大鼠肺动脉平滑肌细胞,通过细胞形态学观察及α-actin免疫荧光染色鉴定平滑肌细胞,应用real-time PCR和Western blot印迹法检测STS对慢性低氧PASMCs的TRPC1、6的mRNA和蛋白的表达,利用InCyte细胞内钙浓度检测系统,分别检测PASMCs的基础[Ca~(2+)]i和SOCE,从而明确STS对慢性低氧大鼠远端PASMCs的[Ca~(2+)]i的影响;(2)建立HPH的动物模型:首先,在慢性持续低氧(10%02)条件下饲养大鼠3周建立CHPH大鼠模型,分别测定右心室收缩压、右心室平均压、右心室肥厚指数;应用real-time PCR和Western blot印迹等分子生物学方法分别检测低氧肺动脉组织TRPC1、6通道mRNA和蛋白表达的变化;用酶联免疫法(ELISA)检测血清中的IL-6的含量;real-time PCR检测肺组织IL-6基因表达。
     【实验结果】:
     一、体外实验结果:
     1、成功建立了大鼠远端PASMCs原代培养模型,原代培养的大鼠远端PASMCs不仅表现出典型的血管平滑肌细胞的形态学和免疫学特征,而且具有完好的生理学功能。
     2、慢性低氧使大鼠远端PASMCs的[Ca~(2+)]i和SOCE显著升高,不仅如此,慢性低氧还能使TRPC1、6的mRNA和蛋白表达升高。
     3、STS可显著抑制慢性低氧诱导大鼠PASMCs TRPC1、6通道的上调,同时降低基础[Ca~(2+)]i和SOCE。
     二、体内实验结果:
     l、成功建立CHPH大鼠模型,慢性持续性低氧3周大鼠的MPAP、RVSP、RV/(LV+S)都明显增高,HE染色发现肺动脉血管壁明显增厚、管腔狭窄。
     2、CHPH大鼠远端肺动脉平滑肌的TRPC1、6较正常大鼠明显增高。
     3、STS可明显降低慢性低氧大鼠mPAP、RVSP、RV/ (LV+S)及肺内血管壁厚度,同时降低慢性低氧大鼠肺动脉组织匀浆中TRPC1、6的表达。
     4、慢性肺动脉高压大鼠血清及肺组织中IL-6的表达显著增高,而STS可抑制低氧诱导的IL-6的表达。
     【实验结论】:
     1、慢性低氧能够上调大鼠远端肺动脉平滑肌细胞中TRPC1、6的表达,增加细胞内钙离子浓度。
     2、STS通过抑制低氧对大鼠远端肺动脉平滑肌细胞膜上TRPC1、6通道表达的上调作用,减少SOCC介导的Ca~(2+)内流,从而降低细胞内钙离子浓度。
     3、STS能降低慢性低氧大鼠肺动脉组织中TRPC1、6通道表达,这为STS治疗慢性低氧性肺动脉高压提供了理论基础。
     4、STS可以改善低氧性肺动脉高压大鼠的心肺病理变化,其机制可能与抑制IL-6的表达有关。
【Background】
     Pulmonary arterial hypertension (PAH) is a disease of pulmonary vascular, which is characterized by proliferation and remodeling in the vascular wall. Chronic hypoxia is thought to be an important factor contributing to the development of PAH. Extensively researches showed that intracellular Ca2+ level plays an essential role in the process of distal pulmonary artery constriction and proliferation.What's more, we and other groups have previously found that CH elevated basal [Ca2+]i in PASMCs due in large part to enhanced store-operated Ca2+ entry (SOCE) through store-operated Ca2+ channels (SOCC). SOCC are thought to be composed of canonical transient receptor potential (TRPC) protein family of which TRPC1 and TRPC6 were found to be selectively upregulated by chronic hypoxia in both mRNA and protein level in our previous work.
     At the same time, hypoxia can increase expression of various pro- inflammatory cytokines around pulmonary vessel and lung, such as TNF-α、IL-1βand IL-6. Overexpression of these cytokines plays an important role in the phenotype of vascular wall cells, including cell proliferation and matrix protein expression, as well as response to vasoconstrictor and the vasodilator vascular changes. In particular, IL-6 is directly involved in the process of COPD and pulmonary hypertension.
     Recent studies showed that sodium tanshinoneⅡA sulfonate (STS), a water-soluble derivative of tanshinoneⅡA which is an active component of Danshen, had protective effects on chronic hypoxic pulmonary hypertension including lowering pulmonary artery pressure (PAP) and decreasing the extent of pulmonary artery thickness and right ventricular hypertrophy. However, the underlying mechanisms remain unclear.
     【Objective】
     Chronic hypoxic pulmonary hypertension model was established to: measure the expression of TRPC1、6 in PASMCs and pulmonary arteries from CHPH rat; study IL-6 gene expression in lung tissue and IL-6 concentration in blood serum ; estimate the effect of STS on basal [Ca~(2+)]i and SOCE induced by chronic hypoxia in PASMCs and to make sure whether STS has any regulating effect on TRPC1、6 and IL-6, aiming to obtain evidence for further discussion of the CHPH mechanism.
     【Methods】
     Rat distal PASMCs were isolated and cultured by collagenase digestion and characterized by morphological features and specific immunofluorescenceα-actin staining. Rat distal PASMCs [Ca~(2+)]i were measured using Incyte intracellular Ca~(2+) concentration system. PASMCs were treated by STS of several different concentrations. Both mRNA and protein levels of TRPC1、6 were detected. CHPH rats were obtained using a hypoxic (10%O2) chamber by keeping them in the chamber for 21 days.Animals were treated by STS (10 or 30 mg/kg body weight/day) or equal volume of normal saline intraperitoneal injection before exposed to hypoxia for 3 weeks. Normoxic control animals were put under room air condition and handled accordingly.
     Pulmonary hypertension parameters were assessed. Pathological and immunofluorescenceα-actin staining slices were observed under light microscope and fluorescence laser scanning confocal microscope separately. PASMCs were isolated from CHPH rats or normal rats. mRNA and protein levels of TRPC1、6 were detected by real-time PCR and western blot. IL-6 gene expression in lung tissue and IL-6 concentration in blood serum were measured by real-time PCR and ELISA.
     【Results】
     It was shown that hypoxia increased TRPC1、6 expression in both mRNA and protein levels, triggered Ca~(2+) release from SR and subsequently led to enhanced SOCE in PASMCs. STS inhibited the mRNA and protein upregulation of TRPC1、6 induced by hypoxia in PASMCs. In addition, PASMCs cultured under hypoxic conditions and treated with STS had a weakened response to restoration of extracellular [Ca~(2+)]i。
     MPAP、RVSP and RV/(LV+S) were all increased in rats exposed to chronic hypoxia. The pulmonary arteries isolated from CHPH rats were thicker than that from normal rats.On the contrary, the rats under normoxic condition treated with STS were not altered in mPAP、PVSP、RV/(LV+ S) and vascular appearences. Daily application of STS before exposed to hypoxia for 21 days significantly decreased mPAP、PVSP and RV/(LV+ S) compared with those of CHPH rats. Besides, hypoxia increased TRPC1 and TRPC6 mRNA expression in vivo. IL-6 gene expression in lung tissue and IL-6 concentration in blood serum also increased under chronic hypoxia. Treated with STS significantly suppressed these increasing in chronic hypoxic rats.
     【Conclusion】
     1. Chronic hypoxia increased mRNA and protein expression of TRPC1、6 in PASMCs and increased SOCE.
     2. STS has protective inhibiting effects on chronic hypoxia induced increasing in mRNA and protein levels of TRPC1、6 and SOCE in PASMCs.
     3. STS has protective inhibiting effects on chronic hypoxia induced increasing in mRNA and protein levels of TRPC1、6 and SOCE in distal pulmonary artery isolated from chronic hypoxic rats.
     4. STS inhibited hypoxia-induced increasing of IL-6 gene expression in lung tissue.
     5. All the above conclusion indicates that STS may have the potential to become a new effective and possible method for the clinical diagnosis and therapy of CHPH.
引文
[1]慢性阻塞性肺疾病防治全球倡仪,2006.
    [2]冉丕鑫.慢性阻塞性肺疾病的患病危险因素及其预防[J].中华结核和呼吸杂志,2007(2):141-143.
    [3]实用内科学(第11版),1449.
    [4]内科学(第6版),86.
    [5] Fishman AP. Clinical classification of pulmonary hypertension[J]. Clin Chest Med, 2001, 22(3): 385-391.
    [6] Mcgoon M D. The assessment of pulmonary hypertension[J]. Clin Chest Med, 2001, 22(3): 493-508.
    [7] Sullivan C C, Du L, Chu D, et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway[J]. Proc Natl Acad Sci U S A,2003,100(21):12331-12336.
    [8] Rudge J S, Thurston G, Yancopoulos G D. Angiopoietin-1 and pulmonary hypertension: cause or cure?[J]. Circ Res,2003,92(9):947-949.
    [9] Semenza G L. Oxygen-regulated transcription factors and their role in pulmonary disease[J]. Respir Res,2000,1(3):159-162.
    [10]Faller DV.Endothelial cell responses to hypoxic stress[J]. Clin Exp Pharmacol Physiol, 1999, 26(1):74-84.
    [11] Kirchengast M, Munter K. Endothelin-1 and endothelin receptor antagonists in cardiovascular remodeling[J]. Proc Soc Exp Biol Med,1999,221(4):312-325.
    [12] Mcdaniel S S, Platoshyn O, Wang J, et al. Capacitative Ca(~(2+)) entry in agonist-induced pulmonary vasoconstriction[J]. Am J Physiol Lung Cell Mol Physiol,2001,280(5):L870-L880.
    [13] Sweeney M, Yu Y, Platoshyn O, et al. Inhibition of endogenous TRP1 decreases capacitative Ca~(2+) entry and attenuates pulmonary artery smooth muscle cell proliferation[J]. Am J Physiol Lung Cell Mol Physiol,2002,283(1):L144-L155.
    [14] Nelson M T, Patlak J B, Worley J F, et al. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone[J]. Am J Physiol,1990,259(1 Pt 1):C3-C18.
    [15] Parekh A B, Penner R. Store depletion and calcium influx[J]. Physiol Rev,1997,77(4):901-930.
    [16] Ganitkevich V, Isenberg G. Membrane potential modulates inositol 1,4,5-trisphosphate-mediatedCa~(2+) transients in guinea-pig coronary myocytes[J]. J Physiol,1993,470:35-44.
    [17] Wang J, Shimoda L A, Sylvester J T. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle[J]. Am J Physiol Lung Cell Mol Physiol, 2004,286(4):L848-L858.
    [18] Michael J R, Kennedy T P, Buescher P, et al. Nitrendipine attenuates the pulmonary vascular remodeling and right ventricular hypertrophy caused by intermittent hypoxia in rats[J]. Am Rev Respir Dis,1986,133(3):375-379.
    [19] Fagan K A, Oka M, Bauer N R, et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase[J]. Am J Physiol Lung Cell Mol Physiol,2004,287(4):L656-L664.
    [20] Shimoda L A, Sham J S, Shimoda T H, et al. L-type Ca(~(2+)) channels, resting [Ca(~(2+))](i), and ET-1-induced responses in chronically hypoxic pulmonary myocytes[J]. Am J Physiol Lung Cell Mol Physiol,2000,279(5):L884-L894.
    [21] Yuan X J, Wang J, Juhaszova M, et al. Attenuated K+ channel gene transcription in primary pulmonary hypertension[J]. Lancet,1998,351(9104):726-727.
    [22] Golovina V A, Platoshyn O, Bailey C L, et al. Upregulated TRP and enhanced capacitative Ca(~(2+)) entry in human pulmonary artery myocytes during proliferation[J]. Am J Physiol Heart Circ Physiol, 2001,280(2):H746-H755.
    [23] Yu Y, Sweeney M, Zhang S, et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression[J]. Am J Physiol Cell Physiol, 2003, 284(2): C316-C330.
    [24] Lam S Y, Tipoe G L, Liong E C, et al. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body[J]. Histochem Cell Biol,2008,130(3):549-559.
    [25] Stenmark K R, Fagan K A, Frid M G. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms[J]. Circ Res,2006,99(7):675-691.
    [26] Steiner M K, Syrkina O L, Kolliputi N, et al. Interleukin-6 overexpression induces pulmonary hypertension[J]. Circ Res,2009,104(2):236-244, 28p-244p.
    [27] Pitsiou G, Kyriazis G, Hatzizisi O, et al. Tumor necrosis factor-alpha serum levels, weight loss and tissue oxygenation in chronic obstructive pulmonary disease[J]. Respir Med,2002,96(8):594-598.
    [28] Culpitt S V, Rogers D F, Shah P, et al. Impaired inhibition by dexamethasone of cytokine releaseby alveolar macrophages from patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2003,167(1):24-31.
    [29] Bucchioni E, Kharitonov S A, Allegra L, et al. High levels of interleukin-6 in the exhaled breath condensate of patients with COPD[J]. Respir Med,2003,97(12):1299-1302.
    [30] Nyamande K. Pulmonary hypertension: pathogenesis and management[J]. Cent Afr J Med, 2006, 52(1-2):20-24.
    [31]黄熙,臧益民.丹参酮ⅡA磺酸钠心血管药理[J].国外医学(中医中药分册),1995(1):9-12.
    [32] Fan G W, Gao X M, Wang H, et al. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS[J]. J Steroid Biochem Mol Biol,2009,113(3-5):275-280.
    [33] Xu M, Dong M Q, Cao F L, et al. Tanshinone IIA reduces lethality and acute lung injury in LPS-treated mice by inhibition of PLA2 activity[J]. Eur J Pharmacol,2009,607(1-3):194-200.
    [34]胡水秀.丹参酮ⅡA磺酸钠对肺心病急性加重期血栓前状态及肺动脉高压的影响[J].实用心脑肺血管病杂志,2006(9):697-698.
    [35]王立冬.丹参酮ⅡA磺酸钠对肺源性心脏病急性加重期血栓前状态及肺动脉高压的影响[J].临床医学,2008(5):32-33.
    [36] Yang Y, Cai F, Li P Y, et al. Activation of high conductance Ca(~(2+))-activated K(+) channels by sodium tanshinoneII-A sulfonate (DS-201) in porcine coronary artery smooth muscle cells[J]. Eur J Pharmacol,2008,598(1-3):9-15.
    [37] Huang Y F, Liu M L, Dong M Q, et al. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro[J]. J Ethnopharmacol,2009,125(3):436-443.
    [38]刘曼玲,李志超,董明清,等.丹参酮-ⅡA磺酸钠对慢性低氧性肺动脉高压大鼠的治疗作用[J].中国药理学通报,2008(6).
    [39] Cheng T O. Cardiovascular effects of Danshen[J]. Int J Cardiol,2007,121(1):9-22.
    [40] Jiang R W, Lau K M, Hon P M, et al. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza[J]. Curr Med Chem,2005,12(2):237-246.
    [41] Zhou L, Zuo Z, Chow M S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use[J]. J Clin Pharmacol,2005,45(12):1345-1359.
    [42] Lam F F, Seto S W, Kwan Y W, et al. Activation of the iberiotoxin-sensitive BKCa channels bysalvianolic acid B of the porcine coronary artery smooth muscle cells[J]. Eur J Pharmacol, 2006, 546(1-3):28-35.
    [43] Lam F F, Yeung J H, Chan K M, et al. Dihydrotanshinone, a lipophilic component of Salvia miltiorrhiza (danshen), relaxes rat coronary artery by inhibition of calcium channels[J]. J Ethnopharmacol,2008,119(2):318-321.
    [44] Lam F F, Yeung J H, Chan K M, et al. Mechanisms of the dilator action of cryptotanshinone on rat coronary artery[J]. Eur J Pharmacol,2008,578(2-3):253-260.
    [45] Lam F F, Yeung J H, Chan K M, et al. Relaxant effects of danshen aqueous extract and its constituent danshensu on rat coronary artery are mediated by inhibition of calcium channels[J]. Vascul Pharmacol,2007,46(4):271-277.
    [46] Lam F F, Yeung J H, Cheung J H. Mechanisms of the dilator action of Danshen (Salvia miltiorrhiza) on rat isolated femoral artery[J]. J Cardiovasc Pharmacol,2005,46(3):361-368.
    [47] Lam F F, Yeung J H, Cheung J H, et al. Pharmacological evidence for calcium channel inhibition by danshen (Salvia miltiorrhiza) on rat isolated femoral artery[J]. J Cardiovasc Pharmacol, 2006, 47(1):139-145.
    [48] Lam F F, Yeung J H, Kwan Y W, et al. Salvianolic acid B, an aqueous component of danshen (Salvia miltiorrhiza), relaxes rat coronary artery by inhibition of calcium channels[J]. Eur J Pharmacol, 2006,553(1-3):240-245.
    [49] Wan A K, Leung S W, Zhu D Y, et al. Vascular Effects of Different Lipophilic Components of "Danshen", a Traditional Chinese Medicine, in the Isolated Porcine Coronary Artery[J]. J Nat Prod,2008.
    [50] Wu G B, Zhou E X, Qing D X. Tanshinone II(A) elicited vasodilation in rat coronary arteriole: roles of nitric oxide and potassium channels[J]. Eur J Pharmacol,2009,617(1-3):102-107.
    [51] Berridge M J. Inositol trisphosphate and calcium signaling[J]. Ann N Y Acad Sci,1995,766:31-43.
    [52] Blaustein M P. Physiological effects of endogenous ouabain: control of intracellular Ca~(2+) stores and cell responsiveness[J]. Am J Physiol,1993,264(6 Pt 1):C1367-C1387.
    [53] Wu X, Babnigg G, Villereal M L. Functional significance of human trp1 and trp3 in store-operated Ca(~(2+)) entry in HEK-293 cells[J]. Am J Physiol Cell Physiol,2000,278(3):C526-C536.
    [54] Wu X, Zagranichnaya T K, Gurda G T, et al. A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells[J]. JBiol Chem,2004,279(42):43392-43402.
    [55] Fiorio P A, Maric D, Brazer S C, et al. Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca~(2+) entry and embryonic rat neural stem cell proliferation[J]. J Neurosci,2005,25(10):2687-2701.
    [56] Vaca L, Sampieri A. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels[J]. J Biol Chem,2002,277(44):42178-42187.
    [57] Zagranichnaya T K, Wu X, Villereal M L. Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells[J]. J Biol Chem, 2005, 280(33): 29559-29569.
    [58] Inoue R, Okada T, Onoue H, et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(~(2+))-permeable cation channel[J]. Circ Res,2001,88(3):325-332.
    [59] Jung S, Strotmann R, Schultz G, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells[J]. Am J Physiol Cell Physiol, 2002, 282(2): C347-C359.
    [60] Lin M J, Leung G P, Zhang W M, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca~(2+) channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension[J]. Circ Res,2004,95(5):496-505.
    [61] Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension[J]. FASEB J,2001,15(2):427-438.
    [62] Satoh K, Kagaya Y, Nakano M, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice[J]. Circulation,2006,113(11):1442-1450.
    [63] Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study[J]. Am J Physiol,1980,239(5):H692-H702.
    [64] Buermans H P, Redout E M, Schiel A E, et al. Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure[J]. Physiol Genomics,2005,21(3):314-323.
    [65] Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension[J]. Eur Respir J,2003,22(2):358-363.
    [66] Wright J L, Lawson L, Pare P D, et al. The structure and function of the pulmonary vasculature in mild chronic obstructive pulmonary disease. The effect of oxygen and exercise[J]. Am Rev Respir Dis,1983,128(4):702-707.
    [67] Kessler R, Faller M, Weitzenblum E, et al. "Natural history" of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease[J]. Am J Respir Crit Care Med, 2001, 164(2): 219-224.
    [68] Coppock E A, Martens J R, Tamkun M M. Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1):L1-L12.
    [69] Sweeney M, Yuan J X. Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels[J]. Respir Res,2000,1(1):40-48.
    [70] Hasunuma K, Yamaguchi T, Rodman D M, et al. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs[J]. Am J Physiol,1991,260(2 Pt 1):L97-L104.
    [71] Mcmurtry I F, Davidson A B, Reeves J T, et al. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs[J]. Circ Res,1976,38(2):99-104.
    [72] Cornfield D N, Stevens T, Mcmurtry I F, et al. Acute hypoxia causes membrane depolarization and calcium influx in fetal pulmonary artery smooth muscle cells[J]. Am J Physiol,1994,266(4 Pt 1):L469-L475.
    [73] Salvaterra C G, Goldman W F. Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes[J]. Am J Physiol,1993,264(3 Pt 1):L323-L328.
    [74] Jang S I, Jeong S I, Kim K J, et al. Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells[J]. Planta Med,2003,69(11):1057-1059.
    [1]柴瑞震.丹参的药理研究近况[J].中国中医药科技,2003(6):390-392.
    [2] Liang Q, Yang L, Wang Z, et al. Tanshinone IIA selectively enhances hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel instantaneous current[J]. J Pharmacol Sci, 2009, 110(3): 381-388.
    [3]余椿生,宋忠花.丹参[J].食品与药品,2005(12):72-74.
    [4]孙学刚,贾玉华,张丽华.丹参酮ⅡA对大鼠缺氧及正常心肌细胞内钙、膜电位和线粒体膜电位的影响[J].中国中医药信息杂志,2002(9):21-23.
    [5]杜秋明,李忠诚,王贵荣,等.丹参酮ⅡA磺酸钠对大鼠心肌缺血/再灌注心律失常的影响[J].中国中西医结合急救杂志,2008(3):183-184.
    [6] Zhou G Y, Zhao B L, Hou J W, et al. Protective effects of sodium tanshinone IIA sulphonate against adriamycin-induced lipid peroxidation in mice hearts in vivo and in vitro[J]. Pharmacol Res,1999,40(6):487-491.
    [7] Zhou G, Jiang W, Zhao Y, et al. Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria[J]. Biochem Pharmacol,2003,65(1):51-57.
    [8]张发艳,华声瑜,范英昌.丹酚酸B及丹参酮ⅡA对家兔动脉粥样硬化IL-8及VCAM-1的影响[J].山东中医药大学学报,2006(2):152-154.
    [9]吕炳强,范英昌,孙连胜.丹酚酸B、丹参酮ⅡA对动脉粥样硬化家兔血清一氧化氮及甘油三酯的影响[J].天津中医学院学报,2006(1):32-34.
    [10] Yang Y, Cai F, Li P Y, et al. Activation of high conductance Ca(~(2+))-activated K(+) channels by sodium tanshinoneII-A sulfonate (DS-201) in porcine coronary artery smooth muscle cells[J]. Eur J Pharmacol,2008,598(1-3):9-15.
    [11] Takahashi K, Ouyang X, Komatsu K, et al. Sodium tanshinone IIA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatalrat cardiac cells[J]. Biochem Pharmacol,2002,64(4):745-749.
    [12]孙联平,郑智.丹参酮ⅡA对肥厚心肌细胞核因子-κB的影响[J].实用老年医学,2004(1).
    [13]叶龙彬,奚涛,陈峰,等.丹参酮ⅡA对大鼠局灶性脑缺血再灌注损伤的保护作用[J].中国药科大学学报,2004(3):73-76.
    [14] Huang Y F, Liu M L, Dong M Q, et al. Effects of sodium tanshinone II A sulphonate on hypoxic pulmonary hypertension in rats in vivo and on Kv2.1 expression in pulmonary artery smooth muscle cells in vitro[J]. J Ethnopharmacol,2009,125(3):436-443.
    [15] Chan P, Liu I M, Li Y X, et al. Antihypertension Induced by Tanshinone IIA Isolated from the Roots of Salvia Miltiorrhiza[J]. Evid Based Complement Alternat Med,2009.
    [16]胡水秀.丹参酮ⅡA磺酸钠对肺心病急性加重期血栓前状态及肺动脉高压的影响[J].实用心脑肺血管病杂志,2006(9):697-698.
    [17]霍建民,陈晶莹,孔英君,等.慢性阻塞性肺疾病患者肺组织中血管内皮生长因子和诱生型一氧化氮合酶的表达及吸烟的影响[J].中华结核和呼吸杂志,2007(8).
    [18] Xu M, Dong M Q, Cao F L, et al. Tanshinone IIA reduces lethality and acute lung injury in LPS-treated mice by inhibition of PLA2 activity[J]. Eur J Pharmacol,2009,607(1-3):194-200.
    [19] Xu Y, Feng D, Wang Y, et al. Sodium tanshinone IIA sulfonate protects mice from ConA-induced hepatitis via inhibiting NF-kappaB and IFN-gamma/STAT1 pathways[J]. J Clin Immunol, 2008, 28(5): 512-519.
    [20]陈连剑,李婷,李成.丹参酮Ⅱ_A抗大鼠肝星状细胞氧应激脂质过氧化作用的研究[J].中药材,2003(7):504-507.
    [21] Kim S K, Jung K H, Lee B C. Protective effect of Tanshinone IIA on the early stage of experimental diabetic nephropathy[J]. Biol Pharm Bull,2009,32(2):220-224.
    [22] Wang X, Yuan S, Huang R, et al. [An observation of the effect of tanshinone on cancer cell proliferation by Brdu and PCNA labeling][J]. Hua Xi Yi Ke Da Xue Xue Bao,1996,27(4):388-391.
    [23] Tang Z, Tang Y, Fu L. Growth inhibition and apoptosis induction in human hepatoma cells by tanshinone II A[J]. J Huazhong Univ Sci Technolog Med Sci,2003,23(2):166-168, 172.
    [24] Tang Z Z, Tang Y, Fu L B. [Effect of tanshinone IIA on the growth behavior of human hepatoma cell line BEL-7402 in vitro and its mechanism][J]. Di Yi Jun Yi Da Xue Xue Bao,2003,23(6):595-597, 601.
    [25] Yuan S L, Wei Y Q, Wang X J, et al. Growth inhibition and apoptosis induction of tanshinoneⅡ-A on human hepatocellular carcinoma cells[J]. World J Gastroenterol,2004,10(14):2024-2028.
    [26] Sung H J, Choi S M, Yoon Y, et al. Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3[J]. Exp Mol Med,1999,31(4):174-178.
    [27] Yoon Y, Kim Y O, Jeon W K, et al. Tanshinone IIA isolated from Salvia miltiorrhiza BUNGE induced apoptosis in HL60 human premyelocytic leukemia cell line[J]. J Ethnopharmacol, 1999, 68(1-3):121-127.
    [28] Yuan S L, Wang X J, Wei Y Q. [Anticancer effect of tanshinone and its mechanisms][J]. Ai Zheng,2003,22(12):1363-1366.
    [29] Liang Y, Yang Y, Yuan S, et al. [Acute promyelocytic leukemia cell differentiation induced by tanshinone II A and its molecular mechanism][J]. Zhonghua Xue Ye Xue Za Zhi,2000,21(1):23-26.
    [30]朱嘉蓉,罗厚蔚.丹参酮ⅡA的抑菌活性研究[J].中国药科大学学报,2004(4):78-80.
    [31] Liang Y, Yang Y, Yuan S, et al. [Terminal differentiation of human acute promyelocytic leukemia (APL) cells induced by Tanshinone II A in primary culture][J]. Hua Xi Yi Ke Da Xue Xue Bao, 2000, 31(2):207-210.
    [32]潘雪莲,周青山,杜大萍.丹参酮ⅡA对糖尿病大鼠神经病理性疼痛的影响[J].中华麻醉学杂志,2006(8):692-695.
    [33] Choi H S, Kim K M. Tanshinones inhibit mast cell degranulation by interfering with IgE receptor-mediated tyrosine phosphorylation of PLCgamma2 and MAPK[J]. Planta Med, 2004, 70(2):178-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700