氯化镧对大鼠学习记忆以及海马Ca~(2+)/CaM-CaMKIV-CREB信号转导通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     稀土元素(rare earth elements,REEs)是一组化学性质相近的镧系元素:镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥以及与镧系元素性质相近的钪和钇。近十几年来,稀土技术在我国迅速推广和应用,涉及农业、畜牧业、水产养殖、工业和医药等多个领域,特别是稀土微肥、微饲被广泛应用于农业、畜牧业生产。随着应用的日益广泛,越来越多的REEs进入环境,并通过食物链的作用进入人体,REEs的环境残留、蓄积及其对人体健康的影响成为不容忽视的卫生学问题,因此REEs的环境影响和健康效应值得深入研究。
     研究表明,REEs对机体具有Hormesis效应,低剂量时对生物体具有促进作用,高剂量时则影响机体的脑、肝、肾、心脏等多个组织和系统。人群调查显示,稀土矿区的儿章在智商均数、学习记忆等认知能力方面均较对照区儿童明显低下。动物实验表明,REEs可以造成受试动物的神经行为、学习记忆明显受损。REEs对中枢神经系统的影响日益受到重视。镧属于轻REEs,化学性质极为活泼,几乎能与所有的元素和组织成分发生反应。镧也是自然界中含量较多的REEs,且在脑中的蓄积性较强,常作为REEs神经毒性研究的代表物质。目前镧乃至REEs损害学习记忆的机制尚不明确。海马是与学习记忆有关的关键脑区,Ca~(2+)/CaM-CaMKIV-CREB通路在学习记忆的信号传导中发挥重要作用,但其在镧的作用下有无变化尚未见报道。
     本研究通过对大鼠在出生至断乳后一个月期间进行氯化镧(lanthanumchloride,LaCl_3)染毒,建立亚慢性LaCl_3暴露致学习记忆能力受损的动物模型,运用神经行为学、生物化学、分子生物学和免疫组织化学等多种技术手段,明确镧对Ca2+/CaM-CaMKIV-CREB通路的影响及该通路各主要成分的变化与镧致突触可塑性、神经行为学改变之间的关系,从分子水平探讨镧损害学习记忆能力的信号转导机制,为深入阐明镧乃至REEs的神经毒作用机制、有效干预镧乃至REEs所致智力损害和认知功能缺陷提供基础资料与科学参考。
     方法
     由中国医科大学实验动物中心提供的实验用Wistar大鼠60只,体重260±10g,雌雄比例2:1。实验动物室温度17~23℃,相应湿度45~55%,动物饲料由实验动物中心提供。随机将雌鼠分为对照组和低、中、高剂量LaCl_3组,然后将雌雄大鼠按2:1同笼进行交配,次日晨发现阴栓或阴道分泌物镜检有精子者定为受孕,记为妊娠第0天。对照组孕鼠在产仔后饮用蒸馏水,低、中、高剂量LaCl_3组孕鼠在产仔后分别饮用0.25%、0.5%、1.0%LaCl_3蒸馏水溶液。各染镧组仔鼠在断乳前经由吸吮母乳染镧,断乳后则通过自行饮用0.25%、0.5%和1.0%LaCl_3蒸馏水溶液染镧,至断乳后1个月结束,然后进行各项指标测定。采用电感耦合等离子体质谱法测定仔鼠海马组织镧含量,采用水迷宫、穿梭箱和跳台试验三种神经行为学测试方法测定仔鼠的学习记忆能力,采用尼氏染色观察仔鼠海马神经细胞中尼氏体表达情况,应用透射电子显微镜技术观察仔鼠海马神经元和神经突触超微结构,采用邻苯二醛柱前衍生高效液相色谱法检测仔鼠海马兴奋性氨基酸(谷氨酸和天冬氨酸)含量,采用Fura-2荧光探针法检测仔鼠海马细胞内Ca~(2+)浓度,采用磷酸二酯酶法测定仔鼠海马CaM活性,采用Western blot测定仔鼠海马p-CaMKIV和p-CREB的蛋白表达水平,采用RT-PCR法测定仔鼠海马c-fos和BDNF mRNA表达水平,采用免疫组织化学法测定仔鼠海马c-fos蛋白表达水平。
     结果
     1、氯化镧对大鼠学习记忆能力和海马超微结构的影响
     LaCl_3组仔鼠海马中镧含量显著高于对照组。随着染镧剂量的增加,镧在仔鼠海马中的蓄积量随之增加。水迷宫测试时,低、中剂量LaCl_3组仔鼠错误次数和潜伏期显著高于对照组,高剂量LaCl_3组仔鼠错误次数和潜伏期显著高于对照组和低剂量LaCl_3组。穿梭箱测试时,中剂量LaCl_3组仔鼠电击次数、电击时间和主动逃避潜伏时间显著多于对照组,高剂量LaCl_3组仔鼠电击次数、电击时间和主动逃避潜伏时间显著多于对照组和低剂量LaCl_3组。跳台测试时,低剂量LaCl_3组仔鼠潜伏期显著少于对照组;中剂量LaCl_3组仔鼠错误次数显著多于对照组,潜伏期显著少于对照组和低剂量LaCl_3组;高剂量LaCl_3组仔鼠错误次数显著多于对照组和低剂量LaCl_3组,潜伏期显著少于对照组和低、中剂量LaCl_3组。尼氏染色显示,LaCl_3染毒组仔鼠海马CA1、CA3和DG区神经细胞中尼氏体表达水平显著低于对照水平,而且随着LaCl_3暴露水平的增加,仔鼠海马CA1、CA3和DG区神经细胞中尼氏体表达进一步减弱,高剂量LaCl_3组部分细胞中尼氏体消失,出现空泡变性。此外,电子显微镜观察显示,LaCl_3染毒组仔鼠海马神经元超微结构受到损害,而且神经突触超微结构发生改变,突触活性带较短、突触后致密物较薄以及突触界面曲率减小。
     2、氯化镧对大鼠海马兴奋性氨基酸、Ca~(2+)/CaM和CaMKIV的影响
     低剂量LaCl_3组仔鼠海马谷氨酸含量、细胞内Ca~(2+)浓度显著高于对照组,而CaM活性、p-CaMKⅣ蛋白表达水平显著低于对照组;中剂量LaCl_3组仔鼠海马谷氨酸含量、细胞内Ca~(2+)浓度显著高于对照组,而CaM活性显著低于对照组、p-CaMKⅣ蛋白表达水平显著低于对照组和低剂量LaCl_3组;高剂量LaCl_3组仔鼠海马谷氨酸含量、细胞内Ca~(2+)浓度显著高于对照组和低、中剂量LaCl_3组,天冬氨酸含量显著高于对照组和低剂量LaCl_3组,而CaM活性显著低于对照组和低剂量LaCl_3组、p-CaMKⅣ蛋白表达水平显著低于对照组和低、中剂量LaCl_3组。
     3、氯化镧对大鼠海马CREB、BDNF和c-fos表达的影响
     低、中剂量LaCl_3组仔鼠海马p-CREB蛋白、c-fos mRNA和c-Fos蛋白表达水平显著低于对照组,高剂量LaCl_3组仔鼠海马p-CREB蛋白、c-fos mRNA和DG区c-Fos蛋白表达水平显著低于对照组和低、中剂量LaCl_3组,CA1和CA3区c-Fos蛋白表达水平显著低于对照组和低剂量LaCl_3组。低剂量LaCl_3组仔鼠海马BDNFmRNA表达水平与对照组无显著性差异,中、高剂量LaCl_3组海马BDNF mRNA表达水平显著低于对照组和低剂量LaCl_3组。
     结论
     1、亚慢性LaCl_3暴露造成大鼠的学习记忆能力低下,海马神经元和神经突触的超微结构受到损害。
     2、亚慢性LaCl_3暴露引起大鼠海马兴奋性氨基酸含量异常、钙稳态失衡、CaM活性和CaMKIV磷酸化水平降低。
     3、亚慢性LaCl_3暴露导致大鼠海马CREB磷酸化水平降低,BDNF和c-fos的表达水平下降。
     4、亚慢性LaCl_3暴露损害大鼠的学习记忆能力,其机制可能与海马内兴奋性氨基酸含量异常、钙稳态失衡、CaM活性下降以及随后的CaMKIV-CREB信号转导途径表达下调有关。
Objective
     Rare earth elements(REEs) include lanthanum(La),cerium,praseodymium, neodymium,promethium,samarium,europium,gadolinium,terbium,dysprosium, holmium,erbium,thulium,ytterbium,lutetium,scandium and yttrium in the periodic table of elements.In recent years,rare-earth techniques have been applicated widely in many fields such as agriculture,farming,aquaculture,industry and medicine in China. In particular,trace fertilizer and feedstuff containing REEs are used widespread in agriculture and farming.With widespread applications,more and more rare-earth REEs enter into the environment and accumulate in human body by food chain.Residue, accumulation of REEs in the environment and their effects on human health should not be ignored.Therefore,the effects of REEs on the environment and human health deserve further investigation.
     It is shown that REEs have hormesis effects.That means that low-level REEs can promote the growth of organisms,but high-level REEs have adverse effects on many tissues and organs such as brain,liver,kidney,heart and so on.Surveys on population have reported that average intelligence quotients,cognitive functions such as learning and memory of children living in the REEs-high regions were significantly lower than those of control children.Experimental studies have also shown REEs could significantly impair neurological behavior,learning and memory of animals.Nowadays, effects of REEs on central nervous system have been paid more attention.La is a light REE with active chemical properties,and it can react with almost all elements and components of tissues.Among REEs,La is also abundant in the environment. Furthermore,there is more accumulation of La in the brain.Therefore,La is often used as a representative to probe into the neurological adverse effects of REEs.Nowadays, mechanism underlying the learning and memory impairments induced by La is still not clear.Hippocampus is the key brain region related with learning and memory. Ca2+/CaM-CaMKIV-CREB pathway plays an important role in signal transduction associated with learning and memory.However,there is no reports that whether there are changes in this signal pathway induced by La or not.
     Animal model of learning and memory impairment was made in this study by subchronic administration of lanthanum chloride(LaCl_3) to rats from birth to weaning for one month.By neuroethological,biochemical,molecular biological and immunohistochemical methods and techniques,the effects of La on Ca2+/CaM-CaMKIV-CREB signal pathway were investigated,and the relationship between main components in signal pathway and changes in synaptic plasticity and neuroethological performances were discussed.The investigation of signal transduction mechanism underlying learning and memory impairments induced by La from molecular level could provide basic data and scientific reference for further elucidation of neurotoxic mechanism of La and even REEs.Based on these data,intelligence impairment and cognition deficiency caused by La and even REEs could also be prevented effectively.
     Methods
     Sixty Wistar rats weighing(260±10)g were obtained from the Center for Experimental Animals of China Medical University.The ratio of female to male is 2. Rats were housed at the standard laboratory condition with environmental temperature of(17~23)℃and humidity of 45~55%.The food was provided by Center for Experimental Animals of China Medical University.Animals were observed for 7 days before mating.Female rats were divided randomly into four groups:control,low-, middle- and high-dose LaCl_3 groups.Female and male rats were mated(female:male= 2:1).Occurrence of copulatory plug or sperm in the vaginal discharge in the second day after mating was used to indicate successful mating and day 0 of pregnancy.During the period of lactation(3 weeks),the control lactational rats drinked distilled water,and lactational rats in low-,middle- and high-dose LaCl_3 groups were exposed to LaCl_3 (99.9%,China) in distilled drinking water under one of three doses(0.25%,0.5%,and 1.0%).The pups were firstly exposed to LaCl_3 by parental lactation for postnatal 3 weeks and then orally administrated with 0.25%,0.5%,and 1.0%LaCl_3 in distilled drinking water for 1 month,respectively.La contents in the hippocampus of pups were determined by inductively coupled plasma mass spectrometry.Learning and memory of pups were measured by neuroethological tests including water maze,shuttle box and jumping stand tests.The expression of Nissl body in the hippocampus of pups was observed by Nissl staining.The ultra-structural features of neurons,synapses in the hippocampus of pups were observed with a transmission electron microscope.The contents of excitatory amino acid such as glutamic acid and aspartic acid in the hippocampus of pups were determined by o-phthalaldehyde precolumn derivatization with high performance liquid chromatography.The concentrations of intracellular calcium ions in the hippocampus of pups were detected by Fura-2 fluorescent probe. The activities of calmodulin(CAM) in the hippocampus of pups were determined by phosphodiesterase(PDE).The phosphorylated levels of calmodulin dependent protein kinaseⅣ(CaMKIV) and cAMP response element binding protein(CREB) in the hippocampus of pups were determined by western blot.The mRNA expression levels of c-fos and BDNF in the hippocampus of pups were determined by reverse transcription polymerase chain reaction(RT-PCR).The protein expression levels of c-Fos in the hippocampus of pups were measured by immunohistochemistry.
     Results
     1、Effects of LaCl_3 on learning,memory and ultra-structure in the hippocampus of rats
     La contents in the hippocampus of LaCl_3-administrated pups were significantly higher than those of control group.With LaCl_3-administrated dose increasing,La accumulation in the hippocampus of pups increased.In the water maze test,wrong number and latency of low- and middle-dose LaCl_3 groups were significantly higher than that of control group,and wrong number and latency of high-dose LaCl_3 groups were significantly increased as compared with than that of control and low-dose LaCl_3 groups.In the shuttle box test,shock number,time and latency of active avoidance in shock stimulation of middle-dose LaCl_3 groups were significantly higher than that of control group,and these parameters of high-dose LaCl_3 groups were significantly increased as compared with than that of control and low-dose LaCl_3 groups.In the jumping stand test,latency of low-dose LaCl_3 group was significantly lower than that of control group.As to middle-dose LaCl_3 group,wrong number was significantly increased as compared with than that of control group,but latency was significantly lower than that of control and low-dose LaCl_3 groups.As to high-dose LaCl_3 group, wrong number was significantly increased as compared with than that of control and low-dose LaCl_3 groups,but latency was significantly lower than that of control,low-and middle-dose LaCl_3 groups.The expression of Nissl body in CA1、CA3 and DG area of neurons in the hippocampus of LaCl_3 groups were lower significantly than those of control group.The expression of Nissl body in CA1、CA3 and DG area of neurons in the hippocampus of pups decreased further with administrated-dose increasing. Furthermore,Nissl body in CA1、CA3 and DG area of some neurons in the hippocampus of high-dose LaCl_3 group disappeared,and there was vacuolar degeneration. Besides,it was shown in this study that there were damages in the ultra-structures of neurons in the hippocampus of LaCl_3-administrated groups.Besides,there were ultra-structure changes in the synapses of hippocampus in LaCl_3-administrated pups. These ultra-structure changes included short active zone,small synaptic curvature and thin post-synaptic density.
     2、Effects of LaCl_3 on excitatory amino acids,Ca~(2+)/CaM and CaMKIV in the hippocampus of rats
     The contents of glutamic acid and concentration of intracellular calcium ions in the hippocampus of low-dose LaCl_3 group were significantly higher than those of control group,but the activities of CaM and expression levels of p-CaMKIV were significantly decreased as compared with those of control group.The contents of glutamic acid and concentration of intracellular calcium ions in the hippocampus of middle-dose LaCl_3 group were significantly higher than those of control group,but the activities of CaM were significantly decreased as compared with those of control group, and the expression levels of p-CaMKⅣwere significantly lower than those of control and low-dose LaCl_3 groups.As to high-dose LaCl_3 group,the contents of glutamic acid and concentration of intracellular calcium ions in the hippocampus were significantly higher than those of control,low- and middle-dose LaCl_3 groups,and the contents of aspartic acid in the hippocampus were significantly increased as compared with control and low-dose LaCl_3 groups.However,the activities of CaM of high-dose LaCl_3 group were significantly lower than those of control and low-dose LaCl_3 groups,and the expression levels of p-CaMKIV were significantly lower than those of control,low-and middle-dose LaCl_3 groups.
     3、Effects of LaCl_3 on CREB,BDNF and c-fos expression in the hippocampus of rats
     The expression levels of p-CREB,c-fos mRNA and c-Fos in the hippocampus of low- and middle-dose LaCl_3 group were significantly lower than those of control group. The expression levels of p-CREB,c-fos mRNA of the hippocampus and c-Fos in DG area of the hippocampus in high-dose LaCl_3 group were significantly lower than those of control,low- and middle- dose LaCl_3 groups.The expression levels of c-Fos protein in CA1,CA3 area of the hippocampus in high-dose LaCl_3 group were significantly lower than those of control and low-dose LaCl_3 groups.As to the expression levels of BDNF mRNA of the hippocampus,there were no differences between control and low-dose LaCl_3 group.The expression levels of BDNF mRNA in the hippocampus of middle-,and high-dose LaCl_3 group were significantly lower than those of control and low-dose LaCl_3 groups.
     Conclusion
     1、Subchronic exposure to LaCl_3 could lead to learning and memory impairment and damages in ultra-structures of neurons and synapses in the hippocampus of rats.
     2、Subchronic exposure to LaCl_3 could induce change in the contents of excitatory amino acids and disturbance of calcium homeostasis,decrease the activities of CaM and the phosphorylated levels of CaMKIV in the hippocampus of rats.
     3、Subchronic exposure to LaCl_3 could cause lower levels of phosphorylated CREB,decrease the expression level of c-fos and BDNF in the hippocampus of rats.
     4、Subchronic exposure to LaCl_3 did harm to learning and memory of rats,which is possibly related to change in the contents of excitatory amino acids,disturbance of calcium homeostasis,decrease in the activities of CaM and consequent down-regulation of CaMKⅣ-CREB signal transduction pathway in the hippocampus of rats.
引文
1 彭安,朱建国.稀土元素的环境化学及生态效应.北京:中国环境科学出版社,2003.
    2 王洋,聂留旺,陈启龙.稀土元素的生物安全性探讨.生物学杂志.2004;21(2):4-6.
    3 陈祖义.稀土的hormesis效应及其农业应用对农业生态环境的潜在影响.农村生态环境.2004;20(4):1-5.
    4 朱为方,徐素琴,张辉,等.稀土区儿童智商调查研究-赣南稀土区生物效应研究.科学通报.1996;41(10):914-916.
    5 曹睿,周青.稀土细胞毒理效应研究进展.中国生态农业学报.2007;15(4):180-184.
    6 蔡原.稀土元素在环境中的分布及其生物学效应.中国公共卫生.2006;22(增):59-64.
    7 Xu HE.The progress of resource,environment and health in China.Beijing:Peking University Medical Press,2004:43-64.
    8 范广勤,袁兆康,郑辉列,等.儿童稀土暴露的健康效应研究.卫生研究.2004;33(1):23-28.
    9 彭瑞铃,潘小川,解清,等.江西省婴幼儿稀土暴露与智能发育的相关性研究.中华预防医学杂志.2000;12(34增刊):55-57.
    10 Zhu WF,Xu SQ,Shao PP,et al.Bioelectrical activity of central nervous system among populations in a rare earth element area.Biol Trace Elem Res.1997;57(1):71-77.
    11 陈祖义.稀土元素的脑部蓄积性、毒性及其对人群健康的潜在危害.农村生态环境.2005;21(4):72-73,80.
    12 Feng LX,Xiao HQ,He X,et al.Long-term effects of lanthanum intake on the neurobehavioral development of the rat.Neurotoxicol Teratol.2006;28(1):119-124.
    13 Briner W,Rycek RF,Moellenberndt A,et al.Neurodevelopmental effects of lanthanum in mice.Neurotoxicol Teratol.2000;22(4):573-581.
    14 Feng LX,Xiao HQ,He X,et al.Neurotoxicological consequence of long-term exposure to lanthanum.Toxicol Lett.2006;165(2):112-120.
    15 Hirano S,Suzuki KT.Exposure,metabolism,and toxicity of rare earths and related compounds.Environ Health Perspect.1996;104(Suppl.1):85-95.
    16 Abramczuk JW.The effects of lanthanum chloride on pregnancy in mice and on preimplantation mouse embryos in vitro.Toxicology.1985;34(4):315-320.
    17 D'Agostino RB,Lown BA,Morganti JB,et al.Effects of in utero or suckling exposure to cerium(citrate) on the postnatal development of the mouse.Toxicol Environ Health.1982;10(3):449-458.
    18 Kostial K,Kargacin B,Lendeka M.Reduction of 141Ce absorption in suckling rats.Int J Radiat Biol Relat Stud Phys Chem Med.1987;51(1):139-145.
    19 Kostial K,Kargacin B,Landeka M.Gut retention of metals in rats.Biol Trace Elem Res.1989;21:213-218.
    20 Eisele R,Mraz FR,Woody MC.Gastrointestinal uptake of 144Ce in the neonatal mouse,rat and pig.Health Phys.1980;39(2):185-192.
    21 Calabrese EJ,Baldwin LA.Defining hormesis.Hum Exp Toxicol.2002;21(2):91-97.
    22 Guo BS,Zhu WM,Xiong BK,et al.Rare Earths in Agriculture.Beijing:China Agricultural Science and Technology Press,1990.
    23 陈祖义,刘玉,王元兴.稀土元素铈(141Ce)在小鼠体内的分布与蓄积动态.南京农业大学学报.2000;23(3):101-103.
    24 刘玉,陈祖义,王元兴.钕在小鼠体内的分布与蓄积及对孕酮分泌的影响.中国稀土学报.2001;19(5):447-449.
    25 彭瑞玲,潘小川,解清.稀土矿区婴幼儿与其母亲头发中稀土含量的研究.中华预防医学杂志.2003;37(1):20-22.
    26 彭瑞玲,潘小川,卢国,等.稀土矿区婴幼儿头发中稀土元素的分布特征.中华预防医学杂志.2002;19(1):39-41.
    27 Xiao HQ,Li FL,Zhang ZY,et al.Distribution of ytterbium-169 in rat brain after intravenous injection.Toxicol Lett.2005;155(2):247-252.
    28 Briner W,Rycek RF,Moellenberndt A,et al.Neurodevelopmental effects of lanthanum in mice.Neurotoxicol Teratol.2000;22(4):573-581.
    29 刘虎生,解清,王晓燕,等.电感耦合等离子体质谱法测定海马中超痕量稀土元素.中华预防医学杂志.2000;34(增刊):60-61.
    30 任丽宝,王小燕,解清.大鼠脑组织中轻稀土元素含量相关性研究.分析试验室.2007;26(7):108-111.
    31 李秀琹,杨磊,刘猛,等.硝酸镧对大鼠神经行为功能及海马皮质神经元形态学的影响.中华预防医学杂志.2000;34(增刊):13-17.
    32 He X,Zhang Z,Zhang H,et al.Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats.Toxicol Sci.2008;103(2):354-361.
    33 温二生,王凤珍,胡志苹.海马与学习记忆的研究进展.赣南医学院学报.2006;4:651-652.
    34 韩太燕,吴馥梅.学习与记忆的神经生物学.北京:北京医科学大学中国协和医科大学联合出版社,1998:162-176.
    35 罗焕敏.海马结构-从形态、功能到可塑性、衰老性变化.神经解剖学杂志.1996;12(2):177-184.
    36 杜元灏,翟娜,李谈,等.针刺对脑梗塞模型脑大鼠传导纤维及尼氏体的影响.针炙临床杂志.1998;14(2):43-44.
    37 Clsen GM,Schecl-Kruger J,Moller A,et al.Relation of spatial learning of rats in the Morris water maze test to the number of viable CA1 neurons following four-vessel occlusion.Behav Neurosci.1994;108(4):681-690.
    38 姜杰,蔡原,周平.孕哺期镧暴露对大鼠子代海马神经元细胞内钙稳态及超微结构影响.预防医学论坛.2008;14(9):779-781.
    39 Remondes M,Schuman EM.Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA I synapse.Learn Mem.2003;10(4):247-252
    40 Jouvenceau A,Billard JM,Haditsch U,et al.Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area.EurJ Neurosci.2003;18(5):1279-1285.
    41 王雪笠,吕佩源.与学习、记忆有关的突触形态学研究新进展.河北医科大学学报.2006;27(5):479-482.
    42 许绍芬.神经生物学.第2版.上海:复旦大学出版社,1999:389.
    43 吴建清.学习、记忆的神经细胞学基础.湖北民族学院学报·医学版.2006;23(4):52-54.
    44 吕佩源,尹显,马洪峻,等.血管性痴呆小鼠海马神经元超微病理特征研究.电子显微学报.2004;23(5):536-539.
    45 Stanley EF.Presynaptic calcium channels and the depletion of synaptic cleft calcium ions.Neurophysiology.2000;83(1):477-482.
    46 吴馥梅,杜红燕,章子贵,等.突触界面曲率及其生理意义.神经解剖学杂志.1994;10(1):89-92.
    47 Yamauchi T.Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density.Mass Spectrom Rev.2002;21(4):266-286.
    48 章子贵,陆汉新,李振武,等.小鼠记忆保持能力与海马CA3区突触界面结构的相关性.中华神经科学.1995;2(3):136-140.
    49 Summers MJ,Crowe SF,Ng KT.Memory retrieval in the day-old chick:a psychobiological approach.Neurosci Biobehav Rev.2003;27(3):219-231.
    50 Liu HX,Yuan L,Yang XD,et al.La(3+),Gd(3+) and Yb(3+) induced changes in mitochondrial structure,membrane permeability,cytochrome C release and intracellular ROS level.Chem Biol Interact.2003;146(1):27-37.
    51 王瑜,赵晓宁,杨思军,等.镧对小鼠皮层细胞内游离钙和代謝活力的影响.中华劳动卫生职业病杂志.1999;17(2):85-87.
    52 张智勇,肖海清,柴之芳,等.核磁共振氢谱研究氯化镧对大鼠脑中代謝物的影响.中国稀土学报.2006;24(supp1):171-173.
    53 Lopatina LP,Vasim TV,Fedorovich SV,et al.Lanthanides induce neurotransmitter release from the vesicular pool in rat brain synaptosomes.Biofizika.2005;50(6):1120-1124.
    54 杜会枝,杨频.镧对大鼠海马锥形细胞钾电流的影响.山西大学学报(自然科学版).2006;29(2):175-178.
    55 Boldyreva AA.Lanthanum potentiates GABA-activated currents in rat pyramidal neurons of CA1 hippocampal field.Bull Exp Biol Med.2005;140(4):403-405.
    56 胡亚卓,吕佩源.谷氨酸受体在学习、记忆中的作用及其与血管性痴呆的关系.国际脑血管病杂志.2006;14(8):623-626.
    57 许绍芬.神经生物学.第2版.上海:复旦大学出版社,1999,66-67.
    58 Kang H,Sun LD,Atkins CM,et al.An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory.Cell.2001;106(6):771-783.
    59 Miyamoto E.Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus.J Pharmaeol Sci.2006;100(5):433-442.
    60 Hu J,Yang XD,Wang K.La3+ stimulates the activity of calcineurin in two different ways.Biol Inorg Chem.2005;10(6):704-711.
    61 胡健.镧对钙调蛋白及钙调蛋白-靶肽/蛋白间分子识别的影响及其作用机制:[博士论文].北京大学,2002.
    62 杨秦,刘会雪,李勤.核磁共振法研究大肠杆菌细胞内La3+与钙调蛋白的相互作用.中国稀土学报.2007;25(3):344-348.
    63 Ye Y,Lee HW,Yang W,et al.Probing site-specific calmodulin calcium and lanthanide affinity by grafting.Am Chem Soc.2005;127(11):3743-3750.
    64 Hu J,Jia X,Li Q,et al.Binding of La3+ to calmodulin and its effects on the interaction between calmodulin and catmodulin binding peptide,polistes mastoparan.Biochemistry.2004;43(10):2688-2698.
    65 Lepsik M,Field MJ.Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations.Phys Chem.2007;111(33):10012-10022.
    66 Ye Y,Shealy S,Lee HW,et al.A grafting approach to obtain site-specific metal-binding properties of EF-hand proteins.Protein Eng.2003;16(6):429-434.
    67 李伟国,祁超,杜丽,等.稀土离子对钙调蛋白与单克隆抗体分子识别的影响.高等学校化学学报.2003;24(8):1346-1350.
    68 Yang Q,Hu J,Yang XD,et al.Mastoparan/Mastoparan X altered binding behavior of La3+ to calmodulin in ternary complexes.J Inorg Biochem.2008;102(2):278-284.
    69 李伟国.稀土离子对钙调蛋白及其靶酶结构与功能的影响:[博士论文].中国科学院长春应用化学研究所,2002.
    70 樊敬峰,王伟斌,吕佩源.谷氨酸受体通路及其功能研究进展.疑难病杂志.2005;4(5):313-315.
    71 Basu A,Chaktabarty K,Halder S,et al.The effects of lanthanum chloride administration in newborn chicks on glutamate uptake and release by brain synaptasomes.Toxicol Lett.1984;20(3):303-308.
    72 姜杰,蔡原.孕哺期镧暴露对仔鼠中枢神经系统谷氨酸含量的影响.中国公共卫生.2006;22(增):109.
    73 张智勇,肖海清,柴之芳,等.核磁共振氢谱研究氯化镧对大鼠脑中代谢物的影响.中国稀土学报.2006;24(suppl):171-173.
    74 Raymond CR,Ireland DR,Abraham WC.NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus.Brain Res.2003;968(2):263-272.
    75 吕佩源,李文斌.钙信号系统与学习和记忆.国外医学神经病学神经外科学分册.2004;31(2):141-143.
    76 Snedden WA,Fromm H.Calmodulin as a versatile calcium signal transducer in plants[J].New Phytol.2001;151:35-36
    77 Caeeres A,Bender P,Snavely,et al.Distribution and subcellular localization of calmodulin in adult and developing brain tissue.J Neurosci.1983;10(2):449-461.
    78 Lee HW,Yang W,Ye Y,et al.Isolated EF-loop Ⅲ of calmodulin in a scaffold protein remains unpaired in solution using pulsed-field-gradient NMR spectroscopy.Biochimica et Biophysica Acta.2002;1598(1-2):80-87
    79 李伟国,祁超,杜丽,等.稀土离子诱导钙调蛋白构象变化后的单克隆抗体制备.高等学校化学学报.2002;23(4):526-529.
    80 许绍芬.神经生物学.第2版.上海:复旦大学出版社,1999,70.
    81 Wei F,Xia XM,Tang J,et al.Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses:a microelectroporation study in adult rodents.J Neurosci.2003;23(23):8402-8409.
    82 黄号栋,杨静,龚明.用磷酸二酯酶定量检测植物钙调素方法的改进.植物生理学通讯.2003;39(2):156-160.
    83 Nguyen PV,Wool NH.Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases[J].Prog Neurobiol.2003;71(6):401-437.
    84 Davis S,Laroche S.Mitogen-activated protein kinase/extracellular regulated kinase signalling and memory stabilization:A review.Genes Brain Behav.2006;5(Supp1.2):61-72.
    85 Bito H,Deisseroth K,Tsien RW.CREB phosphorylation and dephosphorylation:a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression.Cell.1996;87(7):1203-1214.
    86 Kasahara J,Fukunaga K,Miyamoto E.Differential effects of a calcineurin inhibitor on glutamate-induced phosphorylation of Ca2+/calmodulin-dependent protein kinases in cultured rat hippocampal neurons. Biol Chem. 1999; 274(13): 9061-9067.
    87 Kasahara J , Fukunaga K , Miyamoto E. Activation of CA(2+)/calmodulin-dependent protein kinase IV in cultured rat hippocampal neurons. J Neurosci Res. 2000; 59(5): 594-600.
    88 Kang H , Sun LD , Atkins CM , et al. An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell. 2001; 106(6): 771-783.
    89 Tardito D , Tiraboschi E , Kasahara J , et al. Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus. Int J Neuropsychopharmacol. 2007; 10(4): 491-496.
    90 Ribar TJ , Rodriguiz RM , Khiroug L , et al. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci. 2000; 20(22): 107.
    91 Wayman GA , Kaech S , Grant WF , et al. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci. 2004; 24(15): 3786-3794.
    92 Peters M , Mizuno K , Ris L , et al. Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus-dependent long-term memory. J Neurosci. 2003; 23(30): 9752-9760.
    93 Wei F , Qiu CS , Liauw J , et al. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci. 2002; 5(6): 573-579.
    94 Ho N , Liauw JA , Blaeser F , et al. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci. 2000; 20(17): 6459-6472.
    95 Silva AJ , Kogan JH , Frankland PW, et al. CREB and memory. Annu Rev Neurosci. 1998; 21: 127-148.
    
    96 Yin JC , Wallach JS , Del Vecchio M , et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 1994; 79(1): 49-58.
    97 Barco A, Alarcon JM , Kandel ER. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002; 108(5): 689-703.
    98 Corcoran EE , Means AR. Defining Ca2+/calmodulin-dependent protein kinase cascades in transcriptional regulation. Biol Chem. 2001; 276(5): 2975-2978.
    99 Impey S , Obrietan K , Wong ST, et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 1998; 21(4): 869-883.
    100 Huang YY , Martin KC , Kandel ER. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecuiar synthesis-dependent late phase of long-term potentiation. J Neurosci. 2000; 20(17): 6317-6325.
    101 Sun P , Enslen H , Myung PS , et al. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity.Genes Dev.1994;8(21):2527-2539
    102 Ho N,Liauw JA,Blaeser F,et al.Impaired synaptic plasticity and cAMP response elementbinding protein activation in Ca2+/calmodulin-dependent protein kinase type Ⅳ/Gr-deficient mice.J Neurosci.2000;20(17):6459-6472.
    103 Bramham CR,Messaoudi E.BDNF function in adult synaptic plasticity:the synaptic consolidation hypothesis.Prog Neurobiol.2005;76(2):99-125.
    104 Yamada K,Mizuno M,Nabeshima T.Role for brain-derived neurotrophic factor in learning and memory.Life Sci.2002;70(7):735-744.
    105 Hinoi E,Balcar VJ,Kuramoto N,et al.Nuclear transcription factors in the hippocampus.Prog Neurobiol.2002;68(2):145-165.
    106 许绍芬.神经生物学.第2版.上海:复旦大学出版社,1999:73-79.
    107 江刚,舒斯云,包新民.中枢学习记忆功能与环磷酸腺苷反应单元结合蛋白的关系.中国临床康复.2004;8(1):124-126.
    108 Shaywitz AJ,Greenberg ME.CREB:A stimulus-induced transcription factor activated by a diverse array of extracellular signals.Annu Rev Biochem.1999;68:821-861.
    109 Mizuno M,Yamada K,Maekawa N,et al.CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning.Behav Brain Res.2002;133(2):135-141.
    110 Pham TA,Impey S,Storm DR,et al.CRE-mediated gene transcription in neo-cortical neuronal plasticity during the development critical period.Neuron.1999;22(1):63-72.
    111 Taubenfeld SM,Wiig KA,Monti B,et al.Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein[bata]and[delta]co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation.J Neurosci.2001;21(10):84-91.
    112 Taubenfeld SM,Wiig KA,Bear MF,et al.A molecular correlate of memory and amnesia in the hippocampus.Nat Neurosci.1999;2(4):9-10.
    113 蒋建军,尚兰琴,杨晓华,等.硝酸镧对小鼠学习记忆低剂量兴奋效应及其机制研究.现代预防医学.2007;34(22):4225-4227.
    114 Lu Y,Christian K,Lu B.BDNF:A key regulator for protein synthesis-dependent LTP and long-term memory.Neurobiol Learn Mem.2008;89(3):312-323
    115 李玉娟,彭书崚,万朝权,等.慢性疼痛对幼鼠学习记忆行为及海马Bcl-2mRNA、脑源性生长因子mRNA的影响.中华儿科杂志.2005;43(6):444-448.
    116 Lu B.BDNF and activity-dependent synaptic modulation.Learn and Mem.2003;10(2):86-98.
    117 Lee JL,Evritt BJ,Thomas KL.Independent cellular processes for hippocampal mempry consolidation and reconsolidation.J Science.2004;304(5672):839-843.
    118 Pang PT,Lu B.Regulation of late-phase LTP and long-term memory in normal and aging hippocampus:Role of secreted proteins tPA and BDNF.Ageing Res Rev.2004;3(4):407-430.
    119 Kang H,Welcher AA,Shelton D,et al.Neurotrophins and time:Different roles for TrkB signaling inhippocampal long-term potentiation.Neuron.1997;19(3):653-664.
    120 卢静,戴体俊,曾因明.c-fos基因表达的相关机制和意义.国外医学.麻醉学与复苏分册.2004;25(5):273-275.
    121 Freeman FM,Rose SP.Expression of fos and Jun proteins following passive avoidance training in the day-old chick.Learn Mem.1999;6(4):389-397.
    122 陈宜张.分子神经生物学.北京:人民军医出版社,1995:43-44.
    123 Paylor R,Johnson RS,Papaioannou V,et al.Behavioral assessment of c-fos mutant mice.Brain Res.1994;651(1-2):275-282.
    1 彭安,朱建国.稀土元素的环境化学及生态效应.北京:中国环境科学出版社,2003.
    2 王洋,聂留旺,陈启龙.稀土元素的生物安全性探讨.生物学杂志.2004;21(2):4-6.
    3 陈祖义.稀土的hormesis效应及其农业应用对农业生态环境的潜在影响.农村生态环境.2004;20(4):1-5.
    4 曹睿,周青.稀土细胞毒理效应研究进展.中国生态农业学报.2007;15(4):180-184.
    5 蔡原.稀土元素在环境中的分布及其生物学效应.中国公共卫生.2006;22(增):59-64.
    6 Xu HE.The progress of resource,environment and health in China.Beijing:Peking University Medical Press,2004:43-64.
    7 于彤.长期低剂量摄入氯化斓对大鼠神经系统的影响及机制探讨:[博士论文].中国医科大学,2006.
    8 陈祖义,刘玉,王元兴.稀土元素铈(141Ce)在小鼠体内的分布与蓄积动态.南京农业大学学报.2000;23(3):101-103.
    9 刘玉,陈祖义,王元兴.钕在小鼠体内的分布与蓄积及对孕酮分泌的影响.中国稀土学报.2001;19(5):447-449.
    10 彭瑞玲,潘小川,解清.稀土矿区婴幼儿与其母亲头发中稀土含量的研究.中华预防医学杂志.2003;37(1):20-22.
    11 彭瑞玲,潘小川,卢国,等.稀土矿区婴幼儿头发中稀土元素的分布特征.中华预防医学杂志.2002;19(1):39-41.
    12 Xiao HQ,Li FL,Zhang ZY,et al.Distribution of ytterbium-169 in rat brain after intravenous injection.Toxicol Lett.2005;155(2):247-252.
    13 Briner W,Rycek RF,Moellenberndt A,et al.Neurodevelopmental effects of lanthanum in mice.Neurotoxicol Teratol.2000;22(4):573-581.
    14 刘虎生,解清,王晓燕,等.电感耦合等离子体质谱法测定海马中超痕量稀土元素.中华预防医学杂志.2000;34(增刊):60-61.
    15 陈祖义.稀土元素的脑部蓄积性、毒性及其对人群健康的潜在危害.农村生态环境.2005;21(4):72-73,80.
    16.Feng LX,Xiao HQ,He X,et al.Neurotoxicological consequence of long-term exposure to lanthanum.Toxicol Lett.2006;165(2):112-120.
    17 任丽宝,王小燕,解清.大鼠脑组织中轻稀土元素含量相关性研究.分析试验室.2007;26(7):108-111.
    18 彭瑞玲,潘小川,解清.稀土矿区婴幼儿与其母亲头发中稀土含量的研究.中华预防医学杂志.2003;37(1):20-22.
    19 朱为方,徐素琴,张辉,等.稀土区儿童智商调查研究-赣南稀土区生物效应研究.科学通报.1996;41(10):914-916.
    20 范广勤,袁兆康,郑辉列,等.儿童稀土暴露的健康效应研究.卫生研究.2004;33(1):23-28.
    21 彭瑞铃,潘小川,解清,等.江西省婴幼儿稀土暴露与智能发育的相关性研究.中华预防医学杂志.2000;12(34增刊):55-57.
    22 Zhu WF,Xu SQ,Shao PP,et al.Bioelectrical activity of central nervous system among populations in a rare earth element area.Biol Trace Elem Res.1997;57(1):71-77.
    23 He X,Feng L,Xiao H,et al.Unambiguous effects of lanthanum.Toxicol Lett.2007;170(1):94-96.
    24 Feng LX,Xiao HQ,He X,et al.Long-term effects of lanthanum intake on the neurobehavioral development of the rat.Neurotoxicol Teratol.2006;28(1):119-124.
    25 Summers MJ,Crowe SF,Ng KT.Memory retrieval in the day-old chick:a psychobiological approach.Neurosci Biobehav Rev.2003;27(3):219-231.
    26 李秀琹,杨磊,刘猛,等.硝酸镧对大鼠神经行为功能及海马皮质神经元形态学的影响.中华预防医学杂志.2000;34(增刊):13-17.
    27 姜杰.孕哺期母鼠镧暴露对子代中枢神经系统钙稳态、谷氨酸及神经元凋亡的影响:[硕士论文].中国医科大学,2007.
    28 黄可欣,李冬梅,李树蕾,等.长期服用低剂量硝酸镧对大鼠心脏超氧化物歧化酶和脂质过氧化物含量的影响.吉林大学学报(医学版).2003;29(5):558-559.
    29 黄可欣,李冬梅,李树蕾,等.经口给予低剂量硝酸镧对大鼠肾脏自由基防御机能的影响.微量元素与健康研究.2003;20(2):5-7.
    30 章子贵,中秀英,许晓路,等.稀土元素铈对大鼠学习记忆和抗氧化能力的影响.浙江师范大学学报(自然科学版).2004;27(2):167-170.
    31 杨维东,张萍,刘洁生,等.长期稀土钇暴露对大鼠学习记忆能力影响.中国公共卫生.2008;24(2):183-184.
    32 Liu HX,Yuan L,Yang XD,et al.La(3+),Gd(3+) and Yb(3+) induced changes in mitochondrial structure,membrane permeability,cytochrome C release and intracellular ROS level.Chem Biol Interact.2003;146(1):27-37.
    33 Sayre LM,Perry G,Smith MA.Oxidative stress and neurotoxicity.Chem Res Toxicol.2008;21(1):172-188.
    34 刘会雪,杨晓达,王夔.稀土离子(La~(3+),Gd~(3+),Yb~(3+),Ce~(3+))对线粒体的氧化损伤.中国稀土学报.2007;25(1):102-106.
    35 Dringen R,Hirrlinger J.Glutathione pathways in the brain.Biol Chem.2003;384(4):505-516.
    36 Saez JC,Retamal MA,Basilio D,et al.Connexin-based gap junction hemichannels:gating mechanisms.Biochim Biophys Acta.2005;1711(2):215-224.
    37 Spray DC,Ye ZC,Ransom BR.Functional connexin "hemichannels":a critical appraisal.Glia.2006;54(7):758-773.
    38 Rana S,Dringen R.Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes.Neurosci Lett.2007;415(1):45-48
    39 Contreras JE,Sanchez HA,Eugenin EA,et al.Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture.Proc Natl Acad Sci USA.2002;99(1):495-500.
    40 Ye ZC,Wyeth MS,Baltan-Tekkok S,et al.Functional hemichannels in astrocytes:a novel mechanism of glutamate release J Neurosci.2003;23(9):3588-3596.
    41 黄可欣,李冬梅,等.口服低剂量硝酸镧对小鼠心脏抗氧化能力的影响.微量元素与健康研究.2003;20(4):1-2.
    42 He X,Zhang Z,Zhang H,et al.Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats.Toxicol Sci.2008;103(2):354-361.
    43 Nakamura Y,Yukari T.Studies on the biological effects of rate earth elements:relationship between the concentration of rare earth elements and 9 minerals in various organs in the rat after intravenous administration Dy,Eu and Y by low or high dose.Toxicol Environ Health.2001;39(2):172.
    44 姜杰,蔡原.镧暴露对仔鼠学习记忆及海马神经元细胞凋亡的影响.中国公共卫生.2006;22(增):105.
    45 王瑜,赵晓宁,杨思军,等.镧对小鼠皮层细胞内游离钙和代谢活力的影响.中华劳动卫生职业病杂志.1999;17(2):85-87.
    46 Alshuaib WB,Cherian SP,Hasan MY,et al.Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons.Int J Neurosci.2003;113(10):1317-1332.
    47 Alshuaib WB,Cherian SP,Hasan MY,et al.Ca~(2+) clearance mechanisms in neurohypophysial terminals of the rat.Int J Neurosci.2003;113(10):1317-1332.
    48 Vale-Gonzalez C,Gomez-Limia B,Vieytes MR,et al.Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells.Neurosci Res.2007;85(1):90-98.
    49 Vale-Gonzalez C,Alfonso A,Su(?)ol C,et al.Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebelar granule cells.Neurosci Res.2006;84(2):326-337.
    50 Yamaguchi M,Takakura Y,Nakagawa T.Regucalcin increases Ca2+-ATPase activity in the mitochondria of brain tissues of normal and transgenic rats.Cell Biochem.2008;104(3):795-804.
    51 Reichling DB,MacDermott AB.Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons:fast kinetics and mechanisms.Physiology.1993;469:67-88.
    52 Basu A,Chaktabarty K,Halder S,et al.The effects of lanthanum chloride administration in newborn chicks on glutamate uptake and release by brain synaptasomes.Toxicol Lett.1984;20(3):303-308.
    53 张智勇,肖海清,柴之芳,等.核磁共振氢谱研究氯化镧对大鼠脑中代谢物的影响.中国稀土学报.2006;24(suppl):171-173.
    54 Lopatina LP,Vasim TV,Fedorovich SV,et al.Lanthanides induce neurotransmitter release from the vesicular pool in rat brain synaptosomes.Biofizika.2005;50(6):1120-1124.
    55 姜杰,蔡原.孕哺期镧暴露对仔鼠中枢神经系统谷氨酸含量的影响.中国公共卫生.2006;22(增):109.
    56 Campbell AK,Naseem R,Holland IB,et al.Methylglyoxal and other carbohydrate metabolites induce lanthanum-sensitive Ca2+ transients and inhibit growth in E.coli.Arch Biochem Biophys,2007;468(1):107-113.
    57 Nagai Y,Tsugane M,Oka J,et al.Hydrogen sulfide induces calcium waves in astrocytes.FASEB J.2004;18(3):557-559.
    58 Kim YV,Pearce D,Kim KS.Ca(2+)/calmodulin-dependent invasion of microvascular endothelial cells of human brain by Escherichia coli K1.Cell Tissue Res.2008;332(3):427-433.
    59 Yamaxhita Y,Akaike N,Qakamori M,et al.Voltage-dependent currents in isolated single merkel cells of rats.Physiology.1992;450:143.
    60 Akaile N,Kostyuk PG,Osipchuk YV.Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurons.Physiology.1989;412:181.
    61 祝世功,计国义,曹晓杰.氯化镧对下丘脑神经元L型钙通道的影响.中国病理生理杂志.1999;15(11):1017-1020.
    62 Baba A,Yasui T,Fujisawa S,et al.Activity-evoked capacitative Ca2+ entry:implications in synaptic plasticity.J N eurosci.2003;23(21 ):7737-7741.
    63 段波,徐天乐.通道与信号转导.生物物理学报.2005;21(4):245-260.
    64 Chinopoulos C,Starkov AA,Fiskum G.Cyclosporin A-insensitive permeability transition in brain mitochondria:inhibition by 2-aminoethoxydiphenyl borate.Biol Chem.2003;278(27):382-389.
    65 Semtner M,Schaefer M,Pinkenburg O,et al.Potentiation of TRPC5 by Protons.Biol Chem.2007;282(46):33868-33878.
    66 Pinilla PJ,Hernandez AT,Camello MC,et al.Non-stimulated Ca~(2+) leak pathway in cerebellar granule neurons.Biochem Pharmacol.2005;70(5):786-793.
    67 杜会枝,杨频.镧对大鼠海马锥形细胞钾电流的影响.山西大学学报(自然科学版).2006; 29(2):175-178.
    68 Alshuaib WB,Mathew MV.Transient K+ current is blocked by lanthanum in Drosophila neurons.Neurochem Res.2005;30(9):1087-1092.
    69 杜会枝,杨频.镧对大鼠海马神经元瞬时外向钾电流和延迟整流钾电流动力学的影响.高等学校化学学报.2006;27(1):13-16.
    70 Chi XX,Xu ZC.Differential changes of potassium currents in CA1 pyramidal neurons after transient for brain ischemia.J Neurophysiol.2000;84(6):2834-2843.
    71 Tytgat J,Daenens P.Effect of lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel.Brain Res.1997;749(2):232-237.
    72 Duan SM,Cooke IM.Selective inhibition of transient K+ current by La3+ in crab peptide-secretory neurons.J Neurophysiol.1999;81(4):1848-1855.
    73 Yu SP,Yeh CH,Sensi SL,et al.Mediation of neuronal apoptosis by enhancement of outward potassium current.Science.1997;278(5335):114-117.
    74 Yu SP,Yeh CH,Strasser U,et al.NMDA receptor-mediated K+ efflux and neuronal apoptosis.Science.1999;284(5412):336-339.
    75 Zhu WJ,Wang JF,Corsi L,et al.Lanthanum-mediated modification of GABAA receptor deactivation,desensitization and inhibitory synaptic currents in rat cerebellar neurons.J Physiol.1998;511(3):647-661.
    76 Kolbaev SN.Modulation of GABA-activated currents in rat isolated cerebellar neurons by lanthanum ions.Bull Exp Biol Med.2002;133(1):44-47.
    77 Barila B,Cupello A,Robello M.Modulation by lanthanum ions of gamma-aminobutyric acid (A) receptors of rat cerebellum granule cells in culture:clues on their subunit composition.Neurosci Lett.2001;298(1):13-16.
    78 Boldyreva AA.Lanthanum potentiates GABA-activated currents in rat pyramidal neurons of CA1 hippocampal field.Bull Exp Bio Med.2005;140(4):403-405.
    79 Kozhemiakin MB,Draguhn A,Skrebitsky VG.Layer-specific potentiation of evoked IPSCs in rat hippocampal CA1 pyramidal cells by lanthanum.Brain Res Bull.2004;64(2):97-101.
    80 Chang CW,Qu B,Hong Z,et al.Potentiation of inhibitory amino acid receptors-mediated responses by lanthanum in rat sacral dorsal commissural neurons.Neurotoxicol Teratol.2006;28(6):-657-663.
    81 Li P,Wilding TJ,Kim SJ,et al.Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord.Nature.1999;397(6715):161-164.
    82 Santos SD,Carvalho AL,Caldeira MV,et al.Regulation of AMPA receptors and synaptic plasticity.J Neurosci.2008;[Epub ahead of print]
    83 Huettner JE,Stack E,Wilding TJ.Antagonism of neuronal kainite receptors by lanthanum and gadolinium[J].Neuropharmacology.1998;37(10-11):1239-1247.
    84 Wilding TJ,Huettner JE.Activation and desensitization of hippocampal kainate receptors.J Neurosci.1997;17(8):2713-2721.
    85 Vandenberghe W,Ihle EC,Patneau DK,et al.AMPA receptor current density,not desensitization,predicts selective motoneuron vulnerability.J Neurosci.2000;20(19):7158-7166.
    86 李伟国,祁超,杜丽,等.稀土离子诱导钙调蛋白构象变化后的单克隆抗体制备.高等学校化学学报.2002;23(4):526-529.
    87 Lee HW,Yang W,Ye YM,et al.Isolated EF-loop Ⅲ of calmodulin in a scaffold protein remains unpaired in solution using pulsed-field-gradient NMR spectroscopy.Biochimica et Biophysica Acta,2002;15(1-2):80-87.
    88 Miyamoto E.Molecular mechanism of neuronal plasticity:induction and maintenance of longterm potentiation in the hippocampus.J Pharmacol Sci.2006;100(5):433-42.
    89 Wei F,Qiu CS,Liauw J,et al.Calcium-calmodulin-dependent protein kinase Ⅳ is required for fear memory.Nat neurosci.2002;5(6):573-580.
    90 Kasahara J,Fukunaga K,Miyamoto E.Activation of calcium/calmodulin-dependent protein kinase Ⅳ in long term potentiation in the rat hippocampal CA1 region.Biol Chem.2001;276(26):24044-24050.
    91 Hu J,Yang XD,Wang K.La3+ stimulate the activity of calcineurin in two different ways.Biol Inorg Chem.2005;10(6):704-711.
    92 胡健.镧对钙调蛋白及钙调蛋白-靶肽/蛋白间分子识别的影响及其作用机制(博士论文)[R].2002.
    93 杨秦,刘会雪,李勤.核磁共振法研究大肠杆菌细胞内La3+与钙调蛋白的相互作用.中国稀土学报.2007;25(3):344-348.
    94 Ye Y,Lee HW,Yang W,et al.Probing site-specific calmodulin calcium and lanthanide affinity by grafting.Am Chem Soc.2005;127(11):3743-3750.
    95 Hu J,Jia X,Li Q,et al.Binding of La3+ to calmodulin and its effects on the interaction between calmodulin and calmodulin binding peptide,polistes mastoparan.Biochemistry.2004;43(10):2688-2698.
    96 Lepsik M,Field MJ.Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations.Phys Chem.2007;111(33):10012-10022.
    97 Ye YM,Shealy S,Lee HW,et al.A grafting approach to obtain site-specific metal-binding properties of EF-hand proteins.Protein Eng.2003;6(6):429-434.
    98 李伟国,祁超,杜丽,等.稀土离子对钙调蛋白与单克隆抗体分子识别的影响.高等学校化学学报.2003;24(8):1346-1350.
    99 Yang Q,Hu J,Yang XD,et al.Mastoparan/Mastoparan X altered binding behavior of La~(3+) to calmodulin in ternary complexes.Inorg Biochem.2008;102(2):278-284.
    100 李伟国.稀土离子对钙调蛋白及其靶酶结构与功能的影响:[博士论文].中国科学院长春应用化学研究所,2002.
    101 Zeng HK,Chattarji S,Barbarosie M,et al.Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory.Cell.2001;107(5):617-629.
    102 Walters JD,Johnson JD.Terbium as a Luminescent Probe of Metal-binding Sites in Protein Kinase C.Biol Chem.1990;265(8):4223-4226.
    103 Feng LX,Xiao H,He X,et al.Element distribution in the brain of rats exposed to lanthanum measured by synchrotron radiation X-ray fluorescence.J Radioanal Nucl Chem.2007;272(2):333-337.
    104 于彤,李亚明,任艳,等.中子活化分析研究长期摄入氯化镧对大鼠脑中部分常量和微量元素含量的影响.核技术.2005;28(7):510-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700