非甾体类抗炎药调节A型瞬时外向钾电流的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞离子通道的结构和功能正常是维持生命过程的基础,其基因变异和功能障碍与许多疾病的发生和发展有关。离子通道的主要类型有钾、钠、钙、氯和非选择性阳离子通道,各型又分若干亚型。其中钾离子通道在所有可兴奋性和非兴奋性细胞的重要信号传导过程中具有重要作用,其家族成员在调节神经递质释放、心率、胰岛素分泌、神经细胞分泌、上皮细胞电传导、骨骼肌收缩、细胞容积等方面发挥重要作用。病变中的钾离子通道的改变导致机体发生或纠正某些病理生理改变。比如老年性痴呆(Alzheimers'disease, AD),大量的研究发现AD患者体内的一些内源性致病物质与钾通道、钙通道功能异常密切相关,可能通过影响钾通道、钙通道的本身结构或调节过程等,参与AD患者早期记忆损失、认知功能下降等症状的出现。已有大量的研究表明:非甾体类抗炎药(NSAIDs)在体内和体外都可以选择性降低AD的产生,NSAIDs可通过作用于COX等对AD具有一定保护作用。为了进一步了解NSAIDs对于钾离子通道的调控机制,我们选择了两种不同的细胞模型,使用全细胞膜片钳记录,细胞转染等方法对其进行研究。研究主要分为以下两个部分,这些结果显示了NSAIDs对于大鼠小脑颗粒细胞和HEK293细胞中电压依赖型瞬时外向钾离子通道具有双向的调控作用。
     第一部分:以前的实验观察到NSAIDs在不同的细胞模型上对于细胞膜离子通道具有调节作用。在这部分研究中我们选取两种NSAIDs:甲芬那酸(mefenamic acid, MA)和氟芬那酸(flufenamic acid, FFA),应用全细胞膜电流记录技术,分别研究了FFA、MA对于原代培养的大鼠小脑颗粒细胞电压门控瞬时失活外向钾通道电流(IA)的影响机制。以FFA为例,结果表明:FFA在细胞外浓度为20μM至1 mM之间时,能可逆性地抑制IA,这种抑制效果呈现浓度依赖性。然而,当FFA细胞外浓度降低到10μM以下时,IA反而显著性地增大。更高浓度的FFA对激活和失活的动力学参数也有显著影响,使电流的稳态激活和失活曲线分别向右移动10 mV和9 mV,提示FFA与IA通道亲和力是呈电压依赖性的。细胞内加入FFA能显著性的增加IA电流,但是当细胞外同时加入FFA时,不能改变细胞外FFA对于IA的抑制作用,表明FFA是通过细胞内外两种不同的途径作用的。进一步观察到:细胞内加入FFA增大IA电流的这一效应可被其它环氧化酶抑制剂和花生四烯酸所模拟,提示细胞内加入FFA增大IA电流的作用很可能是通过抑制环氧化酶和提高细胞内花生四烯酸水平。这些实验结果表明了FFA能够在神经元中以不同的浓度双向调节IA电流并且可能涉及到细胞内、外两种不同调节机制。
     第二部分:人胚胎肾细胞(HEK293)是研究细胞膜电生理学和离子通道的一种最常用的表达系统。在这部分研究中我们以HEK293为细胞模型,采用瞬时转染pEGFP-N1/Kv4.2和pEGFP-N1/Kv4.3通道质粒到HEK293细胞株,原代培养小脑颗粒细胞和全细胞膜片钳记录等方法,主要观察比较了Kv4.2、Kv4.3通道IA电流电生理学特性及FFA/MA对其调控作用机制。结果表明:小脑颗粒细胞上IA电流和转染的Kv4.2、Kv4.3通道电流均具有明显的A型电流特征。Kv4.3的衰减速率明显小于Kv4.2并且接近于天然颗粒细胞上IA通道电流的衰减速率,而单独表达的Kv4.3通道电流幅度也大于Kv4.2,同样接近于天然颗粒细胞。当细胞外分别给予适当浓度的FFA和MA时,能可逆性地抑制IA,然而在低浓度时, IA反而显著性增大。细胞内分别加入FFA和MA也能显著性的增加IA电流,这一过程也能被细胞内加入花生四烯酸所模拟。进一步分别在细胞内加入FFA和MA,并对其激活失活参数予以比较,观察到无论给药FFA/MA前后,或细胞内外给药, Kv4.2较之颗粒细胞IA通道动力学敏感性提高,而Kv4.3与颗粒细胞上IA通道相比更不易激活和失活。细胞外FFA/MA对Kv4.2通道IA电流的稳态激活参数和稳态失活参数的改变一致,这提示我们FFA和MA在细胞外对于Kv4.2的作用机制相似,这一点也与FFA/MA对小脑颗粒细胞上的相同细胞外作用一致,当细胞内给予一定浓度FFA对Kv4.2通道和颗粒神经元上IA通道电流的稳态激活参数和稳态失活参数的改变一致,这提示我们Kv4.2通道亚单位在FFA/MA对于颗粒神经元的细胞内调控起到了主要作用,主要参与调控颗粒神经元,A通道的电生理门控特性。
Cell structure and normal function of ion channels is to maintain basic life processes. The genetic variation and dysfunction are related to the occurrence and development of many diseases. Potassium channel plays an important role during signal transduction of all excitable and non-excitable cells. Changes of lesions in potassium channels lead to the occurrence or the body to correct some of the pathophysiological changes. Such as senile dementia (Alzheimers'disease, AD), a large number of studies have found pathogenicity of some endogenous substances of AD patients is closely related to dysfunctions of potassium channel and calcium channel, and involved in AD patients with early memory loss, cognitive decline and other symptoms appeared through affecting the structure of potassium channel and calcium channel or processes of modulation. Extensive research has been shown that:non-steroidal anti-inflammatory drugs (NSAIDs) can selectively reduce the production of AD in vitro and in vivo, NSAIDs have some protective effect against AD by acting on COX and so. We chose two different cell models, using the whole cell patch clamp recording, cell transfection and other methods to get further understanding of the mechanisms regulated by NSAIDs on the potassium ion channels. The research is divided into the following two sections, the results show that NSAIDs bi-directionally modulated voltage-dependent transient outward K+ channel on rat cerebellar granule cells and HEK293 cells.
     Part One:It is observed that NSAIDs can regulate membrane ion channels in different cell models in previous experiments. In this part of the study, we selected two NSAIDs:Mefenamic acid (MA) and flufenamic acid(FFA). Take FFA for example, results show that at a higher concentration FFA reversibly inhibited IA in a dose-dependent manner. However, FFA at a low concentration significantly increased the current amplitude of IA. A higher concentration of FFA had a significant effect on the kinetic parameters of the steady-state activation and inactivation process, suggesting that the binding affinity of FFA to IA channels may be state-dependent. Intracellular application of FFA could significantly increase the IA amplitude but did not alter the inhibited effect induced by extracellular application of FFA, implying that FFA may exert its effect from both the inside and outside sites of the channel. Furthermore, the activation of current induced by intracellular application of FFA could mimic other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate how FFA is able to bidirectionally modulate IA channels in neurons at different concentrations and by different methods of application and that two different mechanisms may be involved.
     Part Two:The results showed that IA in cultured rat cerebellar granule neurons and Kv4.2, Kv4.3 expressed in HEK293 cells both displayed "A"-type current properties. Appropriate concentration of FFA/MA reversibly inhibited IA but significantly increased the current amplitude of IA at lower concentration. Intracellular application of FFA/MA could significantly increase the IA amplitude and can be mimicked by intracellular arachidonic acid application. Comparitive of its activation parameters, Kv4.2 channel kinetics is more sensitive than that of the granule cells no matter of before and after administration, or intracellular and extracellular administration, while less sensitive to that of Kv4.3. Extracellular FFA/MA on the Kv4.2 channel IA current in steady-state activation parameters and steady-state inactivation parameters consistent with the changes. This suggests that FFA and MA have similar mechanisms on the Kv4.2 channel extracellularly, it is also consistent with the effect of FFA/MA on cerebellar granule cells extracellularly. When exposed to a certain concentration of FFA, steady-state activation parameters and inactivation parameters consistent with the changes on the Kv4.2 channel and granule neurons of the IA channel current. This suggests that Kv4.2 channel subtypes play a major role in the regulation of FFA/MA on the intracellular granule neurons, mainly involved in regulation of granule neurons IA channel electrophysiological gating.
引文
1 Abbott, G. W. and S. A. Goldstein (2001). Potassium channel subunits encoded by the KCNE gene family:physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol Interv 1(2):95-107.
    2 An, W. F., M. R. Bowlby, et al. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553-6.
    3 Armstrong, C. M. (1969). Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54(5):553-75.
    4 Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58(4):413-37.
    5 Awtry, E. H. and J. Loscalzo (2000). Aspirin. Circulation 101(10):1206-18.
    6 Bazan, N. G. (2003). Synaptic lipid signaling:significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44(12):2221-33.
    7 Bett, G. C., M. J. Morales, et al. (2006a). Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. J Physiol 576(Pt 3):755-67.
    8 Bett, G. C., M. J. Morales, et al. (2006b). KChIP2b modulates the affinity and use-dependent block of Kv4.3 by nifedipine. Biochem Biophys Res Commun 340(4):1167-77.
    9 Bett, G. C. and R. L. Rasmusson (2004). Inactivation and recovery in Kv1.4 K+ channels: lipophilic interactions at the intracellular mouth of the pore. J Physiol 556(Pt 1):109-20.
    10 Bett GCL& Rasmusson RL (2002). Models of cardiac ion channels. In Quantitative Cardiac Electrophysiology, ed. Cabo C& Rosenbaum DS), pp.1-60. Marcel Dekker, Inc., New York, NY.
    11 Birnbaum, S. G., A. W. Varga, et al. (2004). Structure and function of Kv4-family transient potassium channels. Physiol Rev 84(3):803-33.
    12 Bock, J., I. Szabo, et al. (2003). Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305(4):890-7.
    13 Caballero, R., M. Pourrier, et al. (2003). Effects of flecainide and quinidine on Kv4.2 currents: voltage dependence and role of S6 valines. Br J Pharmacol 138(8):1475-84.
    14 Chandrasekharan, N. V., H. Dai, et al. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs:cloning, structure, and expression. Proc Natl Acad Sci U S A 99(21):13926-31.
    15 Chen, J., G. Seebohm, et al. (2002). Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc Natl Acad Sci U S A 99(19):12461-6.
    16 Chiang, C. E. and D. M. Roden (2000). The long QT syndromes:genetic basis and clinical implications. J Am Coll Cardiol 36(1):1-12.
    17 Choi, K. L., R. W. Aldrich, et al. (1991). Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A 88(12): 5092-5.
    18 Chorbachi, R., J. M. Graham, et al. (2002). Cochlear implantation in Jervell and Lange-Nielsen syndrome. Int J Pediatr Otorhinolaryngol 66(3):213-21.
    19 Cieslik, K., Y. Zhu, et al. (2002). Salicylate suppresses macrophage nitric-oxide synthase-2 and cyclo-oxygenase-2 expression by inhibiting CCAAT/enhancer-binding protein-beta binding via a common signaling pathway. J Biol Chem 277(51):49304-10.
    20 Conti, M. (2004). Targeting K+ channels for cancer therapy. J Exp Ther Oncol 4(2):161-6.
    21 Danthi, S., J. A. Enyeart, et al. (2003). Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol 195(3):147-64.
    22 Davis, T. M., L. G. Dembo, et al. (1996). Neurological, cardiovascular and metabolic effects of mefloquine in healthy volunteers:a double-blind, placebo-controlled trial. Br J Clin Pharmacol 42(4):415-21.
    23 De Biasi, M., Z. Wang, et al. (1997). Open channel block of human heart hKv1.5 by the beta-subunit hKv beta 1.2. Am J Physiol 272(6 Pt 2):H2932-41.
    24 Demo, S. D. and G. Yellen (1991). The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7(5):743-53.
    25 Dixon, J. E., W. Shi, et al. (1996). Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 79(4):659-68.
    26 Doyle, D. A., J. Morais Cabral, et al. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69-77.
    27 Escande, D. (2000). Pharmacogenetics of cardiac K(+) channels. Eur J Pharmacol 410(2-3): 281-287.
    28 Fiset, C., R. B. Clark, et al. (1997). Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol 500 (Pt 1):51-64.
    29 Franqueza, L., C. Valenzuela, et al. (1999). Functional expression of an inactivating potassium channel (Kv4.3) in a mammalian cell line. Cardiovasc Res 41(1):212-9.
    30 Gintant, G. A. and B. F. Hoffman (1984). Use-dependent block of cardiac sodium channels by quaternary derivatives of lidocaine. Pflugers Arch 400(2):121-9.
    31 Giovannini, M. G., C. Scali, et al. (2002). Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo:involvement of the p38MAPK pathway. Neurobiol Dis 11(2):257-74.
    32 Grissmer, S., A. N. Nguyen, et al. (1994). Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1,1.2,1.3,1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45(6):1227-34.
    33 Hatano, N., S. Ohya, et al. (2003). Dihydropyridine Ca2+ channel antagonists and agonists block Kv4.2, Kv4.3 and Kv1.4 K+ channels expressed in HEK293 cells. Br J Pharmacol 139(3):533-44.
    34 Hatta, S., J. Sakamoto, et al. (2002). Ion channels and diseases. Med Electron Microsc 35(3): 117-26.
    35 Hille B (2001). Ion Channels of Excitable Membranes,3rd edn. Sinauer Associates Inc., Sunderland, Massachusetts.
    36 Hinz, B. and K. Brune (2002). Cyclooxygenase-2--10 years later. J Pharmacol Exp Ther 300(2):367-75.
    37 Hoffman, D. A. and D. Johnston (1998). Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18(10):3521-8.
    38 Holmqvist, M. H., J. Cao, et al. (2001). Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins. J Neurosci 21(12): 4154-61.
    39 Hondeghem, L. M. and B. G. Katzung (1977). Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472(3-4):373-98.
    40 Hondeghem, L. M. and B. G. Katzung (1984). Antiarrhythmic agents:the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol 24:387-423.
    41 Hosaka, Y., H. Hanawa, et al. (2003). Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome. J Mol Cell Cardiol 35(4):409-15.
    42 Hoshi, T., W. N. Zagotta, et al. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250(4980):533-8.
    43 Hoshi, T., W. N. Zagotta, et al. (1991). Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7(4):547-56.
    44 Hu, C. L., X. M. Zeng, et al. (2008). Kv 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. J Neurochem 106(3): 1125-37.
    45 Isom, L. L., K. S. De Jongh, et al. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron 12(6):1183-94.
    46 Jan, L. Y and Y. N. Jan (1992). Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54:537-55.
    47 Jennings, B. R., P. J. Rudd, et al. (2005). Precision in transient electric birefringence measurements for colloids. J Colloid Interface Sci 288(1):304-7.
    48 Jo, S. H., J. B. Youm, et al. (2000). Blockade of the HERG human cardiac K(+) channel by the antidepressant drug amitriptyline. Br J Pharmacol 129(7):1474-80.
    49 Johns, D. C., H. B. Nuss, et al. (1997). Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant-negative Kv4.2 constructs. J Biol Chem 272(50): 31598-603.
    50 Kim, D., C. D. Sladek, et al. (1995). Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol 484 (Pt 3):643-60.
    51 Kiss, T., Z. Laszlo, et al. (2002). Mechanism of 4-aminopyridine block of the transient outward K-current in identified Helix neuron. Brain Res 927(2):168-79.
    52 Kushida, S., T. Ogura, et al. (2002). Inhibitory effect of the class Ⅲ antiarrhythmic drug nifekalant on HERG channels:mode of action. Eur J Pharmacol 457(1):19-27.
    53 Kwon, K. S. and H. J. Chae (2003). Sodium salicylate inhibits expression of COX-2 through suppression of ERK and subsequent NF-kappaB activation in rat ventricular cardiomyocytes. Arch Pharm Res 26(7):545-53.
    54 Lee, S. Y., A. Lee, et al. (2005). Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102(43):15441-6.
    55 Lee, Y. T. and Q. Wang (1999). Inhibition of hKv2.1, a major human neuronal voltage-gated K+ channel, by meclofenamic acid. Eur J Pharmacol 378(3):349-56.
    56 Li, L., K. Vaali, et al. (1999). Effects of K(+) channel inhibitors on relaxation induced by flufenamic and tolfenamic acids in guinea-pig trachea. Eur J Pharmacol 383(2):169-76.
    57 Lipkind, G. M., D. A. Hanck, et al. (1995). A structural motif for the voltage-gated potassium channel pore. Proc Natl Acad Sci U S A 92(20):9215-9.
    58 Liu, X. S., M. Jiang, et al. (2007). Electrical remodeling in a canine model of ischemic cardiomyopathy. Am J Physiol Heart Circ Physiol 292(1):H560-71.
    59 Long, S. B., E. B. Campbell, et al. (2005a). Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897-903.
    60 Long, S. B., E. B. Campbell, et al. (2005b). Voltage sensor of Kv1.2:structural basis of electromechanical coupling. Science 309(5736):903-8.
    61 Maayan, R., S. Lotan, et al. (2006). Dehydroepiandrosterone (DHEA) attenuates cocaine-seeking behavior in the self-administration model in rats. Eur Neuropsychopharmacol 16(5):329-39.
    62 Malykhina, A. P., F. Shoeb, et al. (2002). Fenamate-induced enhancement of heterologously expressed HERG currents in Xenopus oocytes. Eur J Pharmacol 452(3):269-77.
    63 McCarty, N. A., S. McDonough, et al. (1993). Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl-channel by two closely related arylaminobenzoates. J Gen Physiol 102(1):1-23.
    64 McCrossan, Z. A. and G. W. Abbott (2004). The MinK-related peptides. Neuropharmacology 47(6):787-821.
    65 McGeer, P. L. and E. G. McGeer (2007). NSAIDs and Alzheimer disease:epidemiological, animal model and clinical studies. Neurobiol Aging 28(5):639-47.
    66 Melnyk, P., J. R. Ehrlich, et al. (2005). Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc Res 65(1):104-16.
    67 Nerbonne, J. M. (1998). Regulation of voltage-gated K+ channel expression in the developing mammalian myocardium. J Neurobiol 37(1):37-59.
    68 Ogata, N. and H. Tatebayashi (1993). Differential inhibition of a transient K+ current by, chlorpromazine and 4-aminopyridine in neurones of the rat dorsal root ganglia. Br J Pharmacol 109(4):1239-46.
    69 Ordway, R. W., J. J. Singer, et al. (1991). Direct regulation of ion channels by fatty acids. Trends Neurosci 14(3):96-100.
    70 Ordway, R. W., J. V. Walsh, Jr., et al. (1989). Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244(4909):1176-9.
    71 Ottolia, M. and L. Toro (1994). Potentiation of large conductance KCa channels by niflumic, flufenamic, and mefenamic acids. Biophys J 67(6):2272-9.
    72 Ouellet, M. and M. D. Percival (1995). Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306 (Pt 1):247-51.
    73 Pang, L., M. Nie, et al. (2003). Cyclooxygenase-2 expression by nonsteroidal anti-inflammatory drugs in human airway smooth muscle cells:role of peroxisome proliferator-activated receptors. J Immunol 170(2):1043-51.
    74 Partridge, L. D. and C. F. Valenzuela (2000). Block of hippocampal CAN channels by flufenamate. Brain Res 867(1-2):143-8.
    75 Patel, A. J. and E. Honore (2001). Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24(6):339-46.
    76 Persson, F., L. Carlsson, et al. (2005). Blocking characteristics of hERG, hNavl.5, and hKvLQT1/hminK after administration of the novel anti-arrhythmic compound AZD7009. J Cardiovasc Electrophysiol 16(3):329-41.
    77 Purdy, L. (2005). Like a motherless child:fetal eggs and families. J Clin Ethics 16(4): 329-34.
    78 Rasmusson RL, Campbell DL, Qu Y& Strauss HC (1994). Conformation-dependent drug binding to cardiac potassium channels. In Ion Channels in the Cardiovascular System: Function and Dysfunction, ed. Spooner PM, Brown AM, CatterallWA, Kaczorowski GJ& Strauss HC, pp.387-414. Futura Publishing Co., Inc., Armonk, NY.
    79 Rasmusson, R. L., M. J. Morales, et al. (1995). C-type inactivation controls recovery in a fast inactivating cardiac K+ channel (Kv1.4) expressed in Xenopus oocytes. J Physiol 489 (Pt 3): 709-21.
    80 Rasmusson, R. L., M. J. Morales, et al. (1998). Inactivation of voltage-gated cardiac K+ channels. Circ Res 82(7):739-50.
    81 Rasmusson, R. L., S. Wang, et al. (1997). The beta subunit, Kv beta 1.2, acts as a rapid open channel blocker of NH2-terminal deleted Kv1.4 alpha-subunits. Adv Exp Med Biol 430: 29-37.
    82 Sanguinetti, M. C. and M. Tristani-Firouzi (2006). hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463-9.
    83 Schrader, L. A., S. G. Birnbaum, et al. (2006). ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 290(3):C852-61.
    84 Schulte, U., J. O. Thumfart, et al. (2006). The epilepsy-linked Lgil protein assembles into presynaptic Kvl channels and inhibits inactivation by Kvbetal. Neuron 49(5):697-706.
    85 Schwab, J. M., H. J. Schluesener, et al. (2003). COX-3 the enzyme and the concept:steps towards highly specialized pathways and precision therapeutics? Prostaglandins Leukot Essent Fatty Acids 69(5):339-43.
    86 Seebohm, G., J. Chen, et al. (2003). Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol Pharmacol 64(1):70-7.
    87 Seebohm, G., C. Lerche, et al. (2001). A kinetic study on the stereospecific inhibition of KCNQ1 and I(Ks) by the chromanol 293B. Br J Pharmacol 134(8):1647-54.
    88 Sergeant, G. P., S. Ohya, et al. (2005). Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase Ⅱ. Am J Physiol Cell Physiol 288(2):C304-13.
    89 Serodio, P. and B. Rudy (1998). Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+(A-type) currents in rat brain. J Neurophysiol 79(2): 1081-91.
    90 Shah, M., F. G. Akar, et al. (2005). Molecular basis of arrhythmias. Circulation 112(16): 2517-29.
    91 Sharp, L., Z. Miedzybrodzka, et al. (2006). The C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR), maternal use of folic acid supplements, and risk of isolated clubfoot:A case-parent-triad analysis. Am J Epidemiol 164(9):852-61.
    92 Shibata, R., K. Nakahira, et al. (2000). A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 20(11):4145-55.
    93 Shimoni, Y., C. Fiset, et al. (1997). Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol 500 (Pt 1):65-73.
    94 Simmons, D. L., R. M. Botting, et al. (2004). Cyclooxygenase isozymes:the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56(3):387-437.
    95 Simon, R. A. and J. Namazy (2003). Adverse reactions to aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Clin Rev Allergy Immunol 24(3):239-52.
    96 Soliven, B., S. Szuchet, et al. (1989). Expression and modulation of K+ currents in oligodendrocytes:possible role in myelinogenesis. Dev Neurosci 11(2):118-31.
    97 Song, W. J., T. Tkatch, et al. (1998). Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 18(9):3124-37.
    98 Spector, P. S., M. E. Curran, et al. (1996). Class Ⅲ antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ Res 78(3):499-503.
    99 Starmer, C. F., A. O. Grant, et al. (1984). Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46(1):15-27.
    100 Steinmeyer, J. (2000). Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res 2(5):379-85.
    101 Stork, D., E. N. Timin, et al. (2007). State dependent dissociation of HERG channel inhibitors. Br J Pharmacol 151(8):1368-76.
    102 Strichartz, G. R. (1973). The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62(1):37-57.
    103 Surti, T. S. and L. Y. Jan (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs 6(7):704-11.
    104 Takahira, M., N. Sakurada, et al. (2001). Two types of K+ currents modulated by arachidonic acid in bovine corneal epithelial cells. Invest Ophthalmol Vis Sci 42(8):1847-54.
    105 Tamargo, J., R. Caballero, et al. (2004). Pharmacology of cardiac potassium channels. Cardiovasc Res 62(1):9-33.
    106 Thompson, L. H., S. Giercke, et al. (2005). Enhanced surveillance of non-0157 verotoxin-producing Escherichia coli in human stool samples from Manitoba. Can J Infect Dis Med Microbiol 16(6):329-34.
    107 Townsend, K. P. and D. Pratico (2005). Novel therapeutic opportunities for Alzheimer's disease:focus on nonsteroidal anti-inflammatory drugs. FASEB J 19(12):1592-601.
    108 Tuppo, E. E. and H. R. Arias (2005). The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 37(2):289-305.
    109 Turini, M. E. and R. N. DuBois (2002). Cyclooxygenase-2:a therapeutic target. Annu Rev Med 53:35-57.
    110 Uchide, T., N. Takatsu, et al. (2005). Expression of survivin mRNA in dog tumors. DNA Seq 16(5):329-34.
    111 Vane, J. R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231(25):232-5.
    112 Wang, H. S., J. E. Dixon, et al. (1997). Unexpected and differential effects of Cl-channel blockers on the Kv4.3 and Kv4.2 K+ channels. Implications for the study of the I(to2) current. Circ Res 81(5):711-8.
    113 Wang, S., M. J. Morales, et al. (2003). Kv1.4 channel block by quinidine:evidence for a drug-induced allosteric effect. J Physiol 546(Pt 2):387-401.
    114 Wang, X., J. Bao, et al. (2005). Elevation of intracellular Ca2+ modulates A-currents in rat cerebellar granule neurons. J Neurosci Res 81(4):530-40.
    115 Wang, Z., J. Feng, et al. (1999). Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 84(5):551-61.
    116 Wei, Y., D. H. Lin, et al. (2004). Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase-dependent metabolic pathways. J Gen Physiol 124(6): 719-27.
    117 Wickenden, A. D. (2002). Potassium channels as anti-epileptic drug targets. Neuropharmacology 43(7):1055-60.
    118 Wissmann, R., T. Baukrowitz, et al. (1999). NMR structure and functional characteristics of the hydrophilic N terminus of the potassium channel beta-subunit Kvbetal.1. J Biol Chem 274(50):35521-5.
    119 Wu, K. K. (1998). Biochemical pharmacology of nonsteroidal anti-inflammatory drugs. Biochem Pharmacol 55(5):543-7.
    120 Wulff, H., N. A. Castle, et al. (2009). Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8(12):982-1001.
    121 Xu, X. M., L. Sansores-Garcia, et al. (1999). Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. Proc Natl Acad Sci U S A 96(9):5292-7.
    122 Yeola, S. W., T. C. Rich, et al. (1996). Molecular analysis of a binding site for quinidine in a human cardiac delayed rectifier K+ channel. Role of S6 in antiarrhythmic drug binding. Circ Res 78(6):1105-14.
    123 Yeola, S. W. and D. J. Snyders (1997). Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc Res 33(3):540-7.
    124 Yool, A. J. and T. L. Schwarz (1991). Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349(6311):700-4.
    125 Zagotta, W. N. and R. W. Aldrich (1990). Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol 95(1):29-60.
    126 Zhang, S., Z. Zhou, et al. (1999). Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84(9):989-98.
    127 Zhang, X. and D. Fedida (1998). Potassium channel-blocking actions of nifedipine:a cause for morbidity at high doses? Circulation 97(20):2098. SCs. This appears to be the first example, in a physiological preparation, in which BK receptors were linked to the cAMP/PKA pathway and to the modulation of the IA current.
    ACKNOWLEDGEMENTS
    The study was supported by a grant from the Committee of Science and Technology, Shanghai (04DZ19901), National Basic Research Program of China (2007CB512303) and Shanghai Leading Academic Discipline Project (B111). Guang Yang was supported by the National Talent Training Fund in Basic Research of China (No. J0630643).
    REFERENCE
    1. Anderson AE, Adams JP, Qian Y, Cook RG, Pfaffinger PJ, and Sweatt JD. Kv4.2 phosphorylation by cyclic AMP-dependent protein kinase. JBiol Chem 275:5337-5346,2000.
    2. Brockes JP, Fields KL, and Raff MC. Studies on cultured rat Schwann cells. Ⅰ. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165:105-118,1979.
    3. Clark MC, Dever TE, Dever JJ, Xu P, Rehder V, Sosa MA, and Baro DJ. Arthropod 5-HT2 receptors:a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif. J Neurosci 24:3421-3435, 2004.
    4. Dray A and Perkins M. Bradykinin and inflammatory pain. Trends Neurosci 16:99-104, 1993.
    5. El-Bizri N, Bkaily G, Wang S, Jacques D, Regoli D, D'Orleans-Juste P, and Sukarieh R. Bradykinin induced a positive chronotropic effect via stimulation of T-and L-type calcium currents in heart cells. Can JPhysiol Pharmacol 81:247-258,2003.
    6. England S, Heblich F, James IF, Robbins J, and Docherty RJ. Bradykinin evokes a Ca2+-activated chloride current in non-neuronal cells isolated from neonatal rat dorsal root ganglia. J Physiol 530:395-403,2001.
    7. Freissmuth M, Boehm S, Beindl W, Nickel P, Ijzerman AP, Hohenegger M, and Nanoff C. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol 49:602-611,1996.
    8. Gallego M, Setien R, Puebla L, Boyano-Adanez Mdel C, Arilla E, and Casis O. alphal-Adrenoceptors stimulate a Galphas protein and reduce the transient outward K+ current via a cAMP/PKA-mediated pathway in the rat heart. Am JPhysiol Cell Physiol 288:C577-585,2005.
    9. Gimpl G, Walz W, Ohlemeyer C, and Kettenmann H. Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci Lett 144: 139-142,1992.
    10. Hall A. Signal transduction through small GTPases--a tale of two GAPs. Cell 69:389-391, 1992.
    11. Han P and Lucero MT. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience 134: 745-756,2005.
    12. Hanke S, Nurnberg B, Groll DH, and Liebmann C. Cross talk between beta-adrenergic and bradykinin B(2) receptors results in cooperative regulation of cyclic AMP accumulation and mitogen-activated protein kinase activity. Mol Cell Biol 21:8452-8460,2001.
    13. Hosli E and Hosli L. Autoradiographic localization of binding sites for neuropeptide Y and bradykinin on astrocytes. Neuroreport 4:159-162,1993.
    14. Hsieh HL, Wu CY, and Yang CM. Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-delta-dependent ERK/Elk-1 pathway in astrocytes. Glia 56: 619-632,2008.
    15. Hu CL, Liu Z, Gao ZY, Zhang ZH, and Mei YA.2-iodomelatonin prevents apoptosis of cerebellar granule neurons via inhibition of A-type transient outward K+ currents. JPineal Res 38: 53-61,2005.
    16. Hu CL, Liu Z, Zeng XM, Liu ZQ, Chen XH, Zhang ZH, and Mei YA.4-aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons. Neuropharmacology 51: 737-746,2006.
    17. Hu CL, Zeng XM, Zhou MH, Shi YT, Cao H, and Mei YA. Kv 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. J Neurochem 106:1125-1137,2008.
    18. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, and Noda M. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27:13065-13073,2007.
    19. Kim HA, DeClue JE, and Ratner N. cAMP-dependent protein kinase A is required for Schwann cell growth:interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49:236-247,1997.
    20. Kim HA, Ratner N, Roberts TM, and Stiles CD. Schwann cell proliferative responses to cAMP and Nfl are mediated by cyclin D1. J Neurosci 21:1110-1116,2001.
    21. Kiss ZH, Mooney DM, Renaud L, and Hu B. Neuronal response to local electrical stimulation in rat thalamus:physiological implications for mechanisms of deep brain stimulation. Neuroscience 113:137-143,2002.
    22. Knutson P, Ghiani CA, Zhou JM, Gallo V, and McBain CJ. K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J Neurosci 17:2669-2682,1997.
    23. Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, and Patel AJ. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem 278:32068-32076,2003.
    24. Lauton-Santos S, Guatimosim S, Castro CH, Oliveira FA, Almeida AP, Dias-Peixoto MF, Gomes MA, Pessoa P, Pesquero JL, Pesquero JB, Bader M, and Cruz JS. Kinin B1 receptor participates in the control of cardiac function in mice. Life Sci 81:814-822,2007.
    25. Li Z, Guo L, Ye C, and Zhang D. U50488 inhibits outwardly rectifying potassium channel in PC 12 cells via pertussis toxin-sensitive G-protein. Biochem Biophys Res Commun 340:1184-1191, 2006.
    26. Liebmann C. Bradykinin signalling to MAP kinase:cell-specific connections versus principle mitogenic pathways. Biol Chem 382:49-55,2001.
    27. Liu B, Freyer AM, and Hall IP. Bradykinin activates calcium-dependent potassium channels in cultured human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292: L898-907,2007.
    28. Ma JX, Wang DZ, Chao L, and Chao J. Cloning, sequence analysis and expression of the gene encoding the mouse bradykinin B2 receptor. Gene 149:283-288,1994.
    29. Mei YA, Vaudry D, Basille M, Castel H, Fournier A, Vaudry H, and Gonzalez BJ. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway:evidence for the involvement of I k in the anti-apoptotic action of PACAP. Eur J Neurosci 19:1446-1458, 2004.
    30. Menke JG, Borkowski JA, Bierilo KK, MacNeil T, Derrick AW, Schneck KA, Ransom RW, Strader CD, Linemeyer DL, and Hess JF. Expression cloning of a human B1 bradykinin receptor. J Biol Chem 269:21583-21586,1994.
    31. Millan MJ. The induction of pain:an integrative review. Prog Neurobiol 57:1-164,1999.
    32. Mirsky R and Jessen KR. Schwann cell development, differentiation and myelination. Curr Opin Neurobiol 6:89-96,1996.
    33. Nadeau H, McKinney S, Anderson DJ, and Lester HA. ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. JNeurophysiol 84:1062-1075,2000.
    34. Neylon CB, D'Souza T, and Reinhart PH. Protein kinase A inhibits intermediate conductance Ca2+-activated K+ channels expressed in Xenopus oocytes. Pflugers Arch 448:613-620,2004.
    35. Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, and Wada K. Expression and function of bradykinin receptors in microglia. Life Sci 72:1573-1581,2003.
    36. Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, and Wada K. Kinin receptors in cultured rat microglia. Neurochem Int 45:437-442,2004.
    37. Oh EJ and Weinreich D. Bradykinin decreases K(+) and increases Cl(-) conductances in vagal afferent neurones of the guinea pig. JPhysiol 558:513-526,2004.
    38. Pappas CA and Ritchie JM. Effect of specific ion channel blockers on cultured Schwann cell proliferation. Glia 22:113-120,1998.
    39. Parpura V, Liu F, Jeftinija KV, Haydon PG, and Jeftinija SD. Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells. J Neurosci 15: 5831-5839,1995.
    40. Peretz A, Sobko A, and Attali B. Tyrosine kinases modulate K+ channel gating in mouse Schwann cells. JPhysiol 519 Pt 2:373-384,1999.
    41. Shibata R, Nakahira K, Shibasaki K, Wakazono Y, Imoto K, and Ikenaka K. A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells. J Neurosci 20:4145-4155,2000.
    42. Sobko A, Peretz A, and Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. Embo J 17:4723-4734,1998.
    43. Sobko A, Peretz A, Shirihai O, Etkin S, Cherepanova V, Dagan D, and Attali B. Heteromultimeric delayed-rectifier K+ channels in schwann cells:developmental expression and role in cell proliferation. J Neurosci 18:10398-10408,1998.
    44. Stephens GJ, Cholewinski AJ, Wilkin GP, and Djamgoz MB. Calcium-mobilizing and electrophysiological effects of bradykinin on cortical astrocyte subtypes in culture. Glia 9: 269-279,1993.
    45. Tiwari MM, Stimers JR, and Mayeux PR. Bradykinin-induced chloride conductance in murine proximal tubule epithelial cells. Mol Cell Biochem 297:1-8,2007.
    46. Xu Y, Chiamvimonvat N, Vazquez AE, Akunuru S, Ratner N, and Yamoah EN. Gene-targeted deletion of neurofibromin enhances the expression of a transient outward K+ current in Schwann cells:a protein kinase A-mediated mechanism. JNeurosci 22:9194-9202,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700