新疆小麦1Dx5基因的分离克隆及表达载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦种子中的高分子量麦谷蛋白亚基(high molecular weight glutenin subunit,HMW-GS)组成和数量直接影响着小麦面包烘烤品质的优劣。本文以新疆主栽春小麦(Triticun aestivum L.,AABBDD)品种新春19为实验材料,分离克隆了优质5亚基基因,并分析了它与国外面包小麦中优质5亚基基因间核酸序列、蛋白质序列以及结构差异和分子进化关系,进而构建了植物表达载体和拟南芥的遗传转化。
     主要研究结果如下:
     基因克隆与序列分析:利用PCR技术从新春19中分离克隆5亚基基因,所克隆基因命名为1Dx5-XJ19。测序结果表明:1Dx5-XJ19基因全长4658bp,编码区有2544bp,编码848个氨基酸,启动子及5’UTR有1780bp,含有启动子特征序列和增强子序列,3’端有334bp。所克隆基因与数据库中提交从国外优质面包小麦中克隆的5亚基基因,序列号为X12928相似性达到99%。由1Dx5-XJ19所推导的氨基酸序列与数据库中面包小麦氨基酸(序列号CAA31395)有两处氨基酸的替换,分别位于信号肽区和中间重复区,氨基酸中含有4个半胱氨酸,两个连续的终止子。通过对推到氨基酸二级结构预测发现β-转角含量高,结果表明所克隆基因是1Dx5优质亚基基因。
     植物表达载体构建:将目的基因插入表达载体pMON530 CaMV 35S启动子之后,构建植物表达载体pMON-1Dx5-XJ19,经PCR检测、酶切鉴定,插入的目的条带大小与克隆片段大小一致,均约为4.7Kb左右,表明目的基因已有效构建到表达载体中,所构建的表达载体含有CaMV 35S启动子和1Dx5-XJ19自身启动子序列。
     拟南芥中转化:构建含有目的基因的工程菌株GV-pMON-1Dx5-XJ19,采用花序浸泡法转化拟南芥(Arabidopsis thaliana L.),收获T_0代种子播种于含有50mg/L卡那霉素的1/2MS培养基上进行抗性筛选,采用PCR技术对抗性幼苗进行检测,结果表明:1Dx5-XJ19基因已插入到拟南芥基因组中,对于目的基因能否在拟南芥种子中成功表达,表达蛋白与新春19中5亚基SDS-PAGE迁移率是否相同,有待于实验继续进行。
     本文的研究结果不仅为新疆农作物优质基因的操作搭建了技术平台,而且为新疆小麦品种的分子改良育种奠定了坚实的理论和应用基础。
The compositions and numbers of the high molecular weight glutenin subunit (HMW-GS) would directly affect and determine the flour baking quality in wheat seed. 1Dx5 gene was cloned from the main Spring Wheat Cultivars in Xinjiang (Triticun aestivum L., AABBDD) named xinchun 19 has the subunit 5, Analysed by subunit nucleic acid sequence, protein sequence, the structural differences and molecular evolution relations. The plant expression vector was also constructed and transformated into Arabidopsis.
     Cloning and sequence analysis: in this paper, HMW-GS 5 subunit gene from Xinchun 19 was cloned and named 1Dx5-XJ19. The sequencing results showed that: 1Dx5-XJ19 gene was 4658bp, containing 2544bp code region, encoding 848 amino acids, promoter are 1780bp, containing promoter and enhancer sequences characteristic sequence, 3 'end contains 334bp. 1Dx5-XJ19 similarity achieved 99% with X12928 which from bread wheat. Two amino acids had been replaced compared with CAA31395 come from bread wheat.One was located at the signal peptide area and the other was in middle repeat area. It contained four cysteines. Through the secondary structure prediction of amino acids, highβ-turn content to be found. These indicated that the cloned gene was the high quality subunit gene.
     Establishment of plant expression vector: Insertting correct gene into pMON530, after CaMV 35S promoter, so the plant expression vector was constructed named pMON-1Dx5-XJ19. By PCR and restriction enzyme digestion analysis, the insert fragment was about 4.7kb, contains double promoters.
     Transformation of Arabidopsis thaliana: Obtaining engineering strain includes target gene. Target gene was transformed to Arabidopsis thaliana by floral dip transformation method. The T_0 generation seeds were sowned on 1/2MS medium containing 50mg/L kanamycin for screening transgenic seedlings. Transformants were analysed by PCR. The results showed that 1Dx5-XJ19 gene had been inserted into the Arabidopsis genome. Whether the target gene is expressed in Arabidopsis would be our next research work.
     The result of this study not only builds a technology platform for crops in Xinjiang, also has the important theory value and the application significant in the triticum aestivum variety’s molecular breeding.
引文
[1] Wrigley C W. Giant Proteins with flour Power [J]. Nature, 1996, 381:738-739
    [2]于振文.优质专用小麦品种及栽培[M].北京:中国农业出版社,2001
    [3] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality [J]. Plant Physiol, 1987, 38:141-153
    [4] D’Ovidio R, Masci S. The low-molecular-weight glutenin subunits of wheat gluten [J].Cereal Sci, 2004, 39:321-339
    [5] Bietz J A, Wall J S. Wheat gluten subunits: molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [J]. Cereal Chem, 1972, 49:416-430
    [6] Jackson E A, Holt L M, Payne P I. Characterization of high-molecular-weight gliadin and Low-molecular- weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes[J]. Theor Appl Genet, 1983, 66:29-37
    [7] Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci,Glu-A1, Glu-B1, Glu-D1,which code for high-molecular-weight subunit of glutein in hexaploid wheat[J]. Cereal Res Common, 1983, 11(1):29-35
    [8] Lawence G J, shepherd K W. Chromosomal location of gene controlling seed proteins in species related to wheat [J]. Theor Appl Genet, 1981, 59:25-32
    [9] Waines J G, Panyne P I. Electrophoretic analysis of the high-molecular-weight giutenin subunits of Triticum monococcum, T.urartu, and the A genome of bread wheat (T.aesticum) [J]. Theor Appl Genet, 1987, 74:71-76
    [10]仝胜利,高翔,张改生.小麦高分子色素谷蛋白亚基及其遗传学研究进展[J].西北农业学报,2004,13(14):87-92
    [11] Khan I A, Procunier J D, Humphreys D G, et al. Development of PCR-based markers for a high grain protein content gene from Triticum Turgidum ssp.Dicoccoides trans-ferred to wheat[J]. Crop Sci, 2000, 40:518-524
    [12] Marchylo B A, Lukow O M, Kruger J E. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats[J]. Cereal Sci, 1992, 15: 29-37
    [13] Margiotta B, Urbano M, Colaprico G, et al. Detection of y-type subunit at theGlu-A1 locus in some Swedish bread wheat lines [J]. Cereal Sci, 1996, 23:203-21
    [14]赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其他农艺性状关系的研究[J].作物学报,1994,20(1):67-75
    [15] Shewry P R, Halford N G. Cereal seed storage proteins structures, properties and role in grain utilization [J].Experimental Biology, 2002, 53:974-959
    [16] Shewry P R, Halford N G, Tatham AS, et al. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties [J]. Adv Food Nutr Res, 2003, 45:219-242
    [17] Ovidio R D, Proceddle E, et al. PCR analysis of genes encoding allelic variats of HMW glutenin subunits at the glu-D1 locus [J].Theor Appl Genet, 1994, 88: 175-180
    [18] Shewry P R, Halford N G, Tatham AS. High molecular weight subunits of wheat glutenin [J].Cereal Science, 1992, 5:105-120
    [19] Payne P I, Nightingale M A, Krattiger A F. et al. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties [J].Sci Food, 1987, 4(40):51–65
    [20] Pogna N E, Mellini F, Beretta A, et al. The high-molecular-weight glutenin subunits of common wheat cultivars grown inItaly [J].Genet Breed, 1989, 43:17-24
    [21] Branlard G, Dardevet M, Saccomano R, et al. Gourdon J Genetic diversity of wheat storage proteins and bread wheat quality [J].EuPhytiea, 2001, 119:59-67
    [22] Margiotta B, Urbano M, Colaprieo G, et al. Detection of y-type Subunit at Glu-A1 Locus in Some Swedish Bread Wheat Lines[J].Cereal Sci,1996,23:203-211
    [23]姜怡,余建中,晏月明等.大麦醇溶蛋白毛细管电泳及其品种鉴定研究[J].麦类作物学报,2002,22(增):43-46
    [24] Altpeter F, Vail V. Integration and expression of the high-molecular weigh glutenin subunit lAx gene in wheat [J].Nature Biotechnology, 1996, 14(9):1155-1159
    [25] Blechl A E, Anderson O D. Expression of a novel high-molecular weight glutenin subunit gene in transgenic wheat [J].Nature Biotechnology, 1996, 14(7):875-879
    [26] Barro F, Rooks L, Bekes F, et al. Barcelo P Transformation of wheat with high molecular weight subunit genes results in improved functional properties[J].Nature Biotechnology, 1997, 15:1295-1299
    [27] Vasil I K, Anderson O D. Genetic engineering of wheat gluten[J].Trends Plant Science,1997,2:292-297
    [28] Alvarez M L, Guelman S, Halford N G, et al. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits[J].Theor Appl Genet,2000,100:319-327
    [29] Barro F, Barcelo P, Lazzeri P A, et al. Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes [J].Mol Breed, 2003, 12:223-229
    [30]金善宝.中国小麦学[M].北京:中国农业出版社,1996
    [31]孙宝启,郭天财,曹广才.中国北方专用小麦[M].北京:气象出版社,2004
    [32]栾凤侠,陶波.小麦贸易与转入外源基因研究进展[J].黑龙江农业科学,2005,(1):46-48
    [33]张晓东,梁荣奇.优质HMW谷蛋白转基因小麦的获得及其遗传稳定性和品质性状分析[J].科学通报,2003,48(5):473-479
    [34] Vasil V, Castillo AM, Fromm ME, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus [J].Bio Technology, 1992, 10:667-674
    [35]张晓东,高泽发,陈绪清等.GNA基因在小麦中的表达与抗蚜虫效果研究[C].2005年全国作物生物技术与诱变技术学术研讨会论文摘要集,2005,53
    [36]陈焕丽.海藻糖合成基因TPSP的小麦遗传转化及水分胁迫诱导基因TaSNAC1的克隆[D].2007, 1-55
    [37]王静英.洛旱2号小麦中4个干旱诱导基因的克隆和表达[D].2008, 1-51
    [38]权军利.耐盐相关基因HAL1的作物转化研究[D].2006, 1-89
    [39]张晓东,王军卫,杨凤萍等.DREB基因在小麦中的增强表达与抗干旱生理效果[C].2005年全国作物生物技术与诱变技术学术研讨会论文摘要集,2005,40
    [40]周淼平,于桂红,张晓波等.基因枪共转化将拟南芥DREB2A基因和Bar基因导入小麦[J].江苏农业学报,2009,25(6):1224-1228
    [41]徐涛,赵宝存,葛荣朝等.利用基因枪法将Tagsk1基因导入敏盐小麦成熟胚愈伤组织提高其耐盐性的研究[J].生物工程学报,2006, 22(2):211-214
    [42]彭燕.普通小麦A1毒害特性及其耐A1机理研究[D].2006, 1-55
    [43] RAZZAQ Abdul,张艳敏,赵和等.通过基因枪和农杆菌介导用BADH基因转化小麦[J].华北农学报,2005,20(5):1-9
    [44]吴峰.小麦成熟胚转化系统的建立与转盐胁迫应答基因植株的获得[D].2006,1-63
    [45]倪金龙.Hvs/TPK基因的表达分析及反义Hvs/TPK基因想小麦易位系92R137中的导入[D].2007, 1-75
    [46]刘永伟,徐兆师,杜丽璞等.病毒复制酶基因Nib8和ERF转录因子W17基因枪法共转化小麦[R].作物学报,2007,33(9):1548-1552
    [47]王华忠,邢丽萍,陈佩度等.小麦抗白粉病相关基因的转化[R].遗传,2007,29(2):242-249
    [48]邢丽萍,王华忠,蒋正宁等.小麦类甜蛋白基因的转化及转基因植株的抗病性分析[J].作物学报,2008,34(3):349-354
    [49]蒋正宁,邢丽萍,王华忠等.用基因枪法将小麦病程相关蛋白基因TaPR-1导入小麦的研究[J].麦类作物学报,2006,26(3):51-57
    [50]姜晓东.基因枪法获得phs-r转基因小麦植株的研究[J].山西农业科学,2007,35(12):10-11
    [51]孙重霞.利用RNAi技术抑制籽粒ppo合成以改良小麦面粉白度的研究[D].2009, 22(2):211-214
    [52]刘晋.小麦基因枪转化体系的建立及HMW-GS14基因的基因枪转化[D].2005, 1-52
    [53]文付喜.转高效表达HMW-Glu(5+10)基因小麦的研究[D].2006, 1-52
    [54]刘晋.小麦类胡萝卜素生物合成关键酶基因的克隆及遗传转化研究[D].2008, 1-127
    [55]刘鲁甄.小麦低分子量麦谷蛋白基因XYGluD3-LMWGS1的原核表达载体构建[D].2008, 1-81
    [56]刘琦,王小霞,唐宗祥等.基因枪法将细胞周期蛋白基因CycD2导入小麦的研究[J].农业生物技术科学,2007,23(6):104-107
    [57]李鹏.基因枪介导玉米pepc基因导入小麦的研究[D].2007, 1-66
    [58]康乐,叶兴国,徐惠军等.葡萄糖氧化酶基因转化小麦的研究[J].作物学报,2005,31(6):686-691
    [59]王晓丹.PF40基因与DREB转录因子转化小麦的研究[D].2007, 1-54
    [60]尹钧,任江萍,李志刚等.转基因抗穗发芽小麦的获得[J].湖南农业大学学报(自然科学版),2007,33:67-71, 85
    [61]朱元芳,校现周.小麦连体叶片高效瞬时表达体系的建立[J].植物生理科学,2007,23(7):280-284
    [62] Cheng M, Joyce E F, Pang S Z, et al. Genetic transformation of wheat mediated by agrobacterrium tumefaciens [J].Plant Physiol, 1997, 115: 971-980
    [63]刘庆法,唐克轩,叶建明等.农杆菌介导的小麦遗传转化条件的研究[J].复旦学报(自然科学版),1998,37(4):569-572
    [64]周光宇.远缘杂交的分子基础-DNA片段杂交假说的一个论证[J].遗传学报,1979,6(4):405-413
    [65] Serik O, Ainur I, Murat K. et al. Silicon carbide fiber mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos [J].Plant Cell Rep, 1996, 16:133-136
    [66]郭光沁,许智宏,魏志明等.用PEG法向小麦原生质体导入外源基因获得转基因植株[J].科学通报,1993,38 (13): 1227-1231
    [67] He D G, Mouradov A, Yang Y M, et al. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts [J].Plant Cell Pep, 1994, 14:192-196.
    [68]吴丽芳,余增亮.离子注人法获得大豆-小麦分子远缘杂种及后代的变异分析[J].核农学报,2000,14(4):206-211
    [69]苌收伟,程玉红,秦广雍等.离子束辅助大豆基因群导入小麦的研究[J].华北农学报,2004,19(1):5-7
    [70]张晓东,梁荣奇,陈绪清等.优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性分析[J].科学通报,2003,48(5):474-479
    [71]施农农,何光源,李克秀等.基因枪法获得优质HMW亚基基因表达的转基因小麦[J].中国农业科学, 2005, 38( 5) :874-881
    [72]唐凤兰等.利用花粉管通道法向小麦中导入麦谷蛋白高分子量优质亚基基因的研究初报[J].黑龙江农业科学,2002,3:1-2
    [73]刘香利,刘缙,郭蔼光等.小麦高分子量麦谷蛋白14亚基基因的花粉管通道法转化[J].西北农林科技大学学报(自然科学版),2008,1(36):121-124
    [74]陈军营,文付喜,程西永等.农杆菌介导小麦HMW-Glu( 5 + 10)基因转化研究[J].河南农业大学学报,2006,5(40):459-467
    [75]李建疆,梁晓东,金平等.新疆主要春小麦品种丰产性、品质与主要特性鉴定[J].新疆农业科学,2007,44(s1):81-84
    [76] Singh N K, Domovan G R, MacRitchie F. Use of sonication and high performance liquid chromatography in the study of wheat flour proteinsⅡ.relative quantity of glutenin as a measure of breadmarking quality[J]. Cereal Chem, 1990, 67:161-170
    [77]郑友良,周永红,魏育明等.小麦分子生物学应用研究[J].成都:四川科学技术出版社,2001
    [78] Van Dijk A A, Van Wijk L L, Van Vliet E, et al. Structure characeterization of the central repetitive domain of high molecular weight gluten proteinsⅠ.Modelstudies using cyclic and linear peptides [J].Protein Sci.1997.6:637-648
    [79] Tatham A S, Miflin B J, Shewry P.R. The beta-turn conformation in wheat gluten proteins: Relationship to gluten elasticity [J].Cereal Chem, 1985, 62:405-442
    [80]苏君,张学新,张霞等.双启动子报告基因表达载体的构建及其在真核细胞中表达活性的测定[J] .哈尔滨医科大学学报,2000, 34(6):399-401
    [81]孟莉,韩保光,马贤凯等.利用T7和PR双启动子的新型表达载体的构建及其应用[J] .军事医学科学院院刊,1998 ,22 (4) :260-264
    [82]董晨,华子春,董雪吟等.含PRPL , Ptac双启动子表达载体的构建[J] .南京大学学报.1994, 30(4):622-626
    [83]刘刚,张燕,邢苗.双启动子对重组溶源性枯草杆菌中外源蛋白表达的增强作用[J] .生物工程学报,2006 ,22 (2) :191-197
    [84]张倩倩,刘松才,戴建威等. CMV与SP双启动子增强外源基因在小鼠骨骼肌组织中的表达效率[J].中国生物化学与分子生物学报,2007, 23(7):554-559
    [85]张韩杰.双启动子表达载体的构建以及酯酶B1基因的表达[D].山东农业大学,2004
    [86] Thomas C L, Jones L, Baulcombe D C, et al. Size constraints for targeting post-transcrip tional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vecto[R].Plant , 2001, 25 (4): 417-425
    [87]王关林.植物基因工程原理与技术[M].科学出版社.1998,161-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700