GMAW-P数字电源设计及熔滴过渡特征信号提取与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲熔化极气体保护焊(GMAW-P)在工业生产中的应用日益广泛。当前,铝合金等材料的广泛应用,由此而带来的新工艺等对焊接设备提出了更高的要求。GMAW-P焊接方法在应用中存在的其中一个工艺问题就是:弧长稳定性。由于GMAW-P焊接过程中,脉冲电流波形不断地在基值与峰值电流之间进行切换,因此弧长也在两个值之间不断变化,很容易出现导电嘴的回烧。如何有效的控制电弧长度是GMAW-P亟待解决的工艺问题之一。GMAW-P熔滴形成、长大及过渡与脉冲参数有着密切的关系,而GMAW-P熔滴过渡过程对GMAW-P焊接工艺性能、焊缝成形和焊接质量有重要影响。如何能有效、精确控制熔滴过渡的形式,实现精确的一脉一滴熔滴过渡过程也是GMAW-P研究的一个重要任务。
     对于GMAW-P焊接电源,应用环境多为开放式的车间或野外,各种高频信号干扰容易导致数字焊接电源发生故障。目前,GMAW-P数字焊接电源从控制方案设计角度存在以下问题:1)采用单一的CPU,信号高度集中;2)资源独占,程序设计复杂;3)可靠性不高,某一环节的问题可能会导致系统的瘫痪。
     针对当前GMAW-P数字焊接电源存在的问题,应用模块化理论,计算各零部件之间的相似程度系数,形成模糊相似矩阵,从数字控制角度对GMAW-P焊接电源系统进行了模块划分。系统的主模块分为主回路模块和控制模块。控制模块又包括信息交互模块、过程控制模块、辅助功能模块三大部分。信息交互模块与过程控制模块分别采用DSP和MCU独立控制。过程控制模块以DSP为核心,通过RS-485总线与MCU控制的信息交互模块采用软件握手的方式进行数据通讯,实现对GMAW-P焊接过程中脉冲电流、电弧长度控制。此外,通过CAN总线实现了GMAW-P焊接电源与PC机之间的通讯,方便的进行产品的升级。双CPU设计将管理功能与算法功能
     合理分配,为优化GMAW-P工艺奠定了基础。采用模块化熵(?)度量系统的模块化程度,其中,p为产品模块化的级数;i为模块的级别。
     论文分析了GMAW-P焊接电源的故障类型,研究了GMAW-P焊接电源系统的可靠性。采用分层控制技术,构建了GMAW-P焊接电源系统故障树模型。确定了故障传播的逻辑关系,根据传播矩阵来确定各故障节点的排查次序。如果故障一旦发生,从直接导致顶事件发生的第一级节点按照排查次序检查各个节点,快速确定故障源,提高故障的诊断效率。根据故障的关键重要度采用了不同的处理方法,可以有效的节约DSP的软件资源,并且快速的处理异常状况,达到保护焊接电源的目的。
     理想的GMAW-P一脉一滴熔滴过渡方式可以保证熔滴尺寸的一致性,而脉冲频率与熔滴直径有着密切关系: f = k * v_f/D。一个脉冲周期内焊丝熔化的体积由两部分组成,一部分为发生过渡的熔滴体积φ_d ,另一部分为没有过渡而残留在焊丝端部的熔化金属的体积φ_r。基于对焊丝端部熔化金属体积的考虑,修正了GMAW-P熔滴过渡时熔滴的尺寸与脉冲频率的关系方程: f =εk * v_f/D,(?),ε为考虑熔滴过渡后残余熔滴的体积系数。修正公式为优化选择脉冲参数提供了理论支持。
     建立了等速送丝GMAW-P系统传递函数,从控制理论角度解释缓降外特性对于GMAW-P电弧弧长控制的必要性。针对GMAW-P焊接的特点,对GMAW-P弧长适应控制展开研究,设计了频率-特性复合弧长控制器。一方面通过脉冲频率控制使弧长保持稳定,同时,控制焊接电源的外特性,以保证脉冲频率在小范围内波动。台阶试验和爬坡试验表明,该控制方法的调节过程快速、稳定。一方面通过电压反馈,调节基值时间;同时,监控每个脉冲周期的平均电流变化情况,根据平均电流的大小来实时优化电压给定值,通过焊接电源外特性控制,以保证维持稳定弧长的条件下脉冲频率的波动范围在±10%以内。在弧长受到扰动的当前脉冲周期内及时调整焊接电压的设定值,对于防止焊丝回烧或抑制短路的发生具有重要的意义。
     搭建了基于Lab VIEW技术和高速摄像的GMAW-P多信息采集分析系统,将焊接过程中的电信号与图像信号相结合,实现了焊接过程的电流、电压与熔滴过渡形态的量化对应,为分析熔滴过渡过程提供了动态信息。基于此系统平台,进行GMAW-P焊接工艺实验,综合分析熔滴过渡的图像信息及同步对应的电信号,提取了GMAW-P熔滴过渡过程特征信号。
     在一个脉冲周期内熔滴脱离焊丝过渡是一个电,热,力等相互作用,且伴随着各种干扰,复杂的物理化学过程。其中大量随机的、不确定的影响因素导致了熔滴过渡的随机性,最终体现在电压,电流的具体变化中。实验结果表明,对于多脉一滴GMAW-P熔滴过渡形式,发现在脉冲周期的下降阶段脉冲电压波形上存在一个拐点,定义该点为熔滴过渡电压;熔滴过渡电压的持续时间称为熔滴过渡电压持续时间。熔滴过渡电压及该点的电压变化率与熔滴过渡状态密切相关。熔滴过渡电压持续时间决定了熔滴过渡的状态。熔滴过渡电压持续时间小于1ms,在该脉冲周期内,熔滴发生过渡;如果某脉冲周期内,熔滴过渡电压持续时间大于1ms,则熔滴不过渡。因此通过提取熔滴过渡特征电信号参数,建立特征参数与熔滴过渡预判的数学模型。在一个脉冲周期内,熔滴只有过渡和未过渡两种状态,是典型的二分类变量,常采用对数线性模型。取熔滴过渡状态作为因变量,特征信号参数为自变量,建立了基于Logistic回归判断熔滴过渡预测数学模型: (?)。试验验证结果表明:该预测模型对焊接过程中,脉冲周期内熔滴成功过渡的预测准确率为92.9%;对熔滴未过渡的预测准确率为93.3%,可见所建立的模型能够较好的预测焊接过程中的熔滴过渡情况。
Pulsed gas metal arc welding (GMAW-P) becomes more and more important with the application and development of semi-automatic and automatic industrial production. GMAW-P has high efficiency and good quality with wide process scope and good environmental protection effect. Now the wider use of aluminium and aluminium alloy is brought the new process of welding equipment, such as a higher demand. It is important to further improve GMAW-P welding control performance and corresponding process performance by digital control design in welder power source research.
     One of the problems of GMAW-P application is the arc stability. Since the switch of current waveform from base to pulse, the arc length is fluctuated, too. Metal transfer process is affected by control performance of welding power source, so it presents higher requirement for output characteristic of welding power source. Moreover droplet formation, dimension and transfer form are affected by pulse parameters. The arc length stability and the metal transfer are two urgent problems for GMAW-P.
     The application environment of GMAW-P welding power source is bad, which are located mostly in workshop or field. The failure of welding power source based on microcontroller is resulted easily from all kinds of disturbances of high frequency signal. There some problems with digital welding power source: 1) A single CPU: the signal is highly concentrated; 2) Resource-exclusive: the program design becomes complicated and low reliable; 3) Lower reliability: one part’s error may lead to the paralysis of the whole system.
     Considering all above problems that exist in current GMAW-P welding power source, it is a good solution to use the module method. Module division of GMAW-P welding power source system is separated to main circuit module and control module. There are three parts of control module which are information interactive module, process control module and accessorial module. Two CPUs respectively for two modules, one is MCU for information interactive module and the other is DSP for process control module. The communication between DSP and MCU is based on RS485, and the communication between MCU and pc is based on can bus. Dual CPU design makes more rational allocation of the algorithm and management for optimization GMAW-P technology. The module entropy (?) IS discussed to value the system modular degree.
     The fault tree of GMAW-P welding power source system is built by the hierarchical control technology. Modules of fault trees can be used to reduce the computational cost of basic operation on fault trees. Graph theory (directed graph) which reflects the relation of fault-dissemination obviously divides the fault-nodes to each level use the matrix to mean the relation of the fault-nodes and top-fault node, and calculate the length of the directed side from one node to the top-fault node, we can assurance the weight of each thoroughfare with the key-importance calculated with the inefficiency of the bottom affairs, then we can know which node to be first checked and which one is last. This test matrix is easy to be processing for the computer, avoiding the difficulty of finding the minimums combination and improve the efficiency of diagnosis. The ideal metal transfer mode in GMAW-P is ODOP (one-droplet-one-pulse) which is related to pulse frequency as the function: f = k * v_f/D. But in one pulse period, there two parts of the melton metal, one is the droplet and the other is the melton string at the end of the electrode. So the function is corrected: f =εk * v_f/D, (?). A new method of arc length control is discussed which has double control parameters: static characteristic of welding power source and frequency. The results show that the frequency fluctuation is within 10%.
     Metal droplet transfer mode which are influenced by the pulse parameters such as pulse current ( I_p), pulse time ( t_p), base current ( I_b) and pulse frequency ( f ) etc. has play an important role in the weld quality. An experimental system has been developed to sample the transient electrical parameters and record the images of droplet transfer process simultaneously which is based on the Lab VIEW virtual instrument and high speed photography technology. Use one trigger signal to start the electrical parameters sample and at the same time the high speed camera records the droplet transfer process. After the welding, all the data can copy into the PC. By this system, how pulse welding parameters affect on metal transfer form was studied on. The system established in this paper provided found support for controlling the droplet transfer form and optimizing the welding parameters.
     A transition voltage U d in the pulse voltage drop edge of electrical waveform which has been discovered according to the analysis of synchronous electric and image signals. The relationship between the metal transfer mode and the slope of the transition voltage has been proposed. The logistic regression model is designed: (?)The result of experiments is shown that the model can be used in closed-loop controlling of one droplet per pulse transfer mode and also can help to optimize the welding parameters.
引文
[1]陈善本,吴林.焊接智能化技术现状与发展[A].第十次焊接会议论文集(第一册)[C].黑龙江:黑龙江人民出版社,2001.
    [2]易志华.国外电焊机发展概况[J].电焊机,1996 (5):1-5.
    [3]郑宜庭,黄石生.弧焊电源[M].北京:机械工业出版社,1994.
    [4]王伟明.逆变式GMA单脉冲和双脉冲焊机数字控制系统研究[D].北京:北京工业大学博士学位论文,2004.
    [5]何建萍,张春波,孙广等.数字化焊接电源系统特征分析[J].电焊机,2003,33(11):5-8.
    [6]刘嘉.数字化焊机及其特点[J].电焊机,2001,31(6):8-10.
    [7]吴开源.基于DSP的弧焊逆变电源数字化控制系统[J].电子设计应用,2002,1(11):71-73.
    [8]易翔,方平,孙周明.焊铝新设备—全数字MIG焊机[J].焊接,2002(3):34-37.
    [9]刘嘉,卢振洋等.电焊机的数字化[J].焊接学报,2002,23(1):88-92.
    [10]华学明,吴毅雄等.数字化焊接电源系统的特征[J].焊接技术,2002,31(2):6-7.
    [11]李阳,吴开源,黄石生,陆沛.DSP在弧焊逆变器中的应用[J].电焊机,2003,33(4):29-31.
    [12] Pfile Richard E.Using a DSP controller to control a three—phase induction motor [C].ASEE Annual Conference Proceedings,1999 ASEE Annual Conference and Exposition:Engineering Education to Serve the World,1999:5489-5497.
    [13] Yagnamurthy,N.K.A DSP based underwater communication solution [J].Oceans Conference Record(IEEE),v1,2003:120-123.
    [14] Chen Hucheng,An Qi,Wang Yanfang,Chen Jiaqin.Digital voice processing system based on high-speed multi DSP [C].Proceedings of the World Congress on Intelligent Control and Automation (WCICA),v4,2000:2716-2718.
    [15] Kawai,Hiroyuki,Inoue,Yoshitsugu;Streitenberger,Rebert.Highly parallel DSP architecture for image recognition [C].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,v E78-A,n 8,Aug,1995:963-970.
    [16]韦江维,廖义奎,农建波,班世炳.TMS320C5402在语音信号数字化及无线传输中的应用[J].微计算机信息2001,17(3):38-40.
    [17] http://www.fronius.com/download/welding.technology/papers/e_prozes.pdf
    [18] http://www.ewm.de/frame.html.
    [19] http://www.otc-china.com/gb/product_detail.asp?catalogid=2&productid=1
    [20]李建国.总结经验、统一认识、全面推广使用逆变焊机[J].中国机械工程学会焊接分会.全国CO2逆变焊机和焊丝技术交流会.上海,2002,10:1-5.
    [21]曾尧,张秀兰.数字化焊接电源[J].中国机械工程学会.全国CO2逆变焊机和焊丝技术交流会.上海,2002,10:43-52.
    [22]李鹤岐,徐德进,李芳.脉冲MIG焊机数字化控制设计[J].电焊机,2002,22(8):1-4.
    [23]张勇,华学明,吴毅雄等.数字信号处理器DSP主控GMAW焊接[J].电焊机,2003,33(2):14-18.
    [24]华学明.基于DSP焊接电源-电弧系统数字化控制技术研究[D].上海,上海交通大学博士论文,2003,11.
    [25]何建萍.短路过渡GMAW动态过程建模及系统动态过程的研究[D].上海交通大学工学博士学位论文,2005,9.
    [26]吴开源,黄石生,李阳等.弧焊逆变电源DSP的选型[J].电焊机,2003,33(11):23-27.
    [27]何德孚.焊接与连接工程导论[M].上海:上海交通大学出版社,1998.
    [28] J. A. Lambert. Assessment of the pulsed GMA technique for tube attachment welding [J]. Welding Journal,1989:68(2):35-43.
    [29] P. K. Palani,N. Murugan. Selection of parameter of pulsed current gas metal arc welding [J]. Journal of Materials Processing Technology,2006:172:1-10.
    [30]蒙永民,黄石生,薛家祥等. GMAW-P焊熔滴过渡及其控制的研究现状与发展[J].电焊机,2000,30(1):1-5.
    [31]杨立军,李桓,李俊岳等.熔化极气体保护焊熔滴过渡过程控制的精确化趋势[J].焊管,1999,22(6):8-13.
    [32]杨运强,李俊岳,李桓等.熔化极气体保护焊的过程控制[J].焊管,20001,24(3):22-28.
    [33] A. Joseph,D. Farson,D. Harwing etc. Influence of GMAW-P current waveform on heat input and weld bead shape [J]. Science and Technology of Welding andJoining,2005,10(3):311-318.
    [34] C. S. Wu,M. A. Chen,Y. F. Lu. Effect of current waveforms on metal transfer in pulsed gas metal arc welding [J]. Measurement Science and Technology,2005,16:2459-2465.
    [35] G. Padmanabham,S. Pandey. Pulsed gas metal arc welding of Al–Cu–Li alloy [J]. Science and Technology of Welding and Joining,2005,10(1):67-75.
    [36] Smati Z. Automatic pulsed MIG welding [J]. Metal construction,1986,18(1):38-44.
    [37] Y.S. Kim,T.W. Eagar. Metal transfer in pulsed current gas metal arc welding, Welding Journal,1993:72(7):279-287.
    [38] P.K. Ghosh,P.C. Gupta. Use of pulse current MIG welding improves the weld characteristics of Al–Zn–Mg Alloy [J]. Indian Welding Journal,1996,4:24-32.
    [39] Y. M. Zhang,Liguo E,B. L. Walcott. Robust control of pulsed gas metal arc welding [J]. ASME Journal of Dynamic Systems, Measurement, and Control,2002,124(2):281-289.
    [40] Y. M. Zhang,P. J. Li. Modified active control of Metal Transfer and Pulsed GMAW of Titanium [J]. Welding Journal,2001,80(2):54-61.
    [41] J. A. Johnson. Process Control of GMAW:Sensoring of Metal Transfer Mode [J]. Welding Journal,1991,70(4):91-98.
    [42] S. Rajasekaran,S.D. Kulkarni. Droplet detachment and plate fusion characteristics in pulsed current gas metal arc welding [J]. Welding Journal,1998:77(6):254-269.
    [43] Ladislav Grad. Feasibility Study of Acoustic Signals for On-line Monitoring in Short Circuit Gas Metal Arc Welding [J]. Machine Tools & Manufacture,2004,44:555-561.
    [44]马跃洲,金虎.短路过渡的GMAW电弧声信号特征及产生机理[J].甘肃工业大学学报,29,2003(3):11-14.
    [45]樊丁,马跃洲.焊接电弧声与飞溅的相关性研究[J],甘肃工业大学学报,1997,23(9):2-5.
    [46] Patrizia Sforza. On-line Optical Monitoring System for Arc Welding [J]. NDT&E International,2002,35:37-43.
    [47]韩国明,曹新华.熔滴过渡光谱信息的计算机自动识别[J].电焊机,2002,32(6):16-19
    [48]杨运强,张晓琪.焊接电弧熔滴过渡特征光谱窗口的选择[J].焊接学报, 2003,24(2):14-18.
    [49]李俊岳,杨立军,胡胜钢等.脉冲MIG焊熔滴过渡光谱信息的研究[J].中国工程科学,2000,2(7):76-83.
    [50]柳刚,李俊岳,李桓等.焊接电弧光谱的分布特征[J].机械工程学报,2000,36(5):58-61.
    [51]胡胜钢.脉冲MIG焊熔滴过渡光谱控制法的研究[D].天津大学博士学位论文,1999.
    [52] Q. L. Wang,P. J. Li. Arc Light Sensing of Droplet Transfer and Its Analysis in Pulsed GMAW Process [J]. Welding Journal,1997,76(11):458-469.
    [53] Amin N. Pulsed current parameter for arc stability and controlled metal transfer in arc welding [J]. Metal Construction, 1983(5):272-278.
    [54] Jesper S. Thomen. Feedback linearization based arc length control for gas metal arc welding [J]. 2005 American control conference,2005.
    [55] Mohamed abderahman. Feedback linearization control of current and arc length in GMAW system [J]. Processing of the American control conference,1998.
    [56] C. J. Allum. Metal transfer in arc welding as a varicose instabilityⅡ:Development of modal for arc welding [J]. Journal of Physics D:Applied Physics,1985(18):1447-1468.
    [57] Jacobsen. Monopulse investigation of drop detachment in pulsed gas metal arc welding [J]. Journal of Physics D: Applied Physics,1992(25):279-287.
    [58] S. Subramaniam,D. R. White. Experimental approach to selection of pulsing parameters in pulsed GMAW [J]. Welding Journal,1999,78(5):166-172.
    [59] Y.S. Kim,T.W. Eagar. Metal transfer in pulsed current gas metal arc welding [J]. Welding Journal,1993:72(7):279-287.
    [60] Mendez P.,Jenkins N. T.,Eagar T. W. Effect of electrode droplet size on evaporation and fume generation in GMAW. Proceedings of the Gas Metal Arc Welding for the 21st Century, American Welding Society,Miami,Florida(2000).
    [61]曾敏,曹彪,黄石生等.熔化极气体保护焊的模糊控制[J].机械工程学报,2003,39(11):113-115.
    [62] K. L. Moore,D. S. Naidu,R. Yender etc. Gas metal arc welding control: Part I-Modeling and Analysis [J]. Proc. 2nd world congress of nonlinear analysis,1997.
    [63] Y. M. Zhang,Liguo E,R. Kovacevic. Active metal transfer control by monitoringexcited droplet oscillation [J]. Welding Journal,1998,77(9):388-395.
    [64]李士凯,陈茂爱,武传松.脉冲GMAW熔滴过渡动态过程的解析模型[J].焊接学报,2004,25(2):47-51.
    [65] Waszink J H,Graat L H J. Experiment investigation of the force acting on a drop of weld metal [J]. Welding Journal,1983,62(4):108-116.
    [66] Ueguri,Shigeo et al. European Patent Application. Application NO.811 05288.5.
    [67] Ohshima K,Abe M,Kubota T. Effect of power source characteristic on stability of pulsed current transfer-sampled-data control pulsed arc [A]. JWS-I-3.
    [68]吴开源,黄石生,蒙永民.脉冲MIG焊电弧双模模糊控制[J].控制理论与应用,2006,23(1):74-78.
    [69]黄鹏飞,卢振洋,吕耀辉等.熔化极脉冲氩弧焊弧长动态调节性能研究[J].机械工程学报,2005,41(1):194-197.
    [70]王伟明,刘嘉,马德等.脉冲焊全数字控制系统[J].焊接学报,2004,25(2):35-38.
    [71]卢振洋,黄鹏飞,廖平等. U-I模式脉冲MAG焊脉冲参数对熔滴过渡影响规律[J].焊接学报,2006,27(5):70-72.
    [72]蒙永民,薛家祥,黄石生等. GMAW-P焊熔滴过渡检测方法的评价[J].焊接,2000(12):7-10.
    [73]刘会杰,张九海,熊志强.脉冲MIG焊熔滴过渡最佳方式的控制[J].金属科学与工艺,1992,11(3):126-130.
    [74]李世凯.脉冲GMAW动态过程建模及系统动态过程的研究[D].山东大学硕士学位论文,2004.
    [75] Jesper S Thomen. Feedback linearization based arc length control for gas metal arc welding [J]. 2005 American control conference,2005.
    [76] Mohamed abderahman. Feedback linearization control of current and arc length in GMAW system [J]. Processing of the American control conference,1998.
    [77]吕云飞.脉冲GMAW焊接电参数波形及熔滴过渡图像的同步在线检测[D].山东大学硕士学位论文,2005,5.
    [78] Bosworth M. R,Deam R. T. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D:Appl. Phys. 2000,33:2605-2610.
    [79] Mendez P.,Jenkins N. T.,Eagar T. W. Effect of electrode droplet size on evaporation and fume generation in GMAW. Proceedings of the Gas Metal Arc Welding for the 21st Century, American Welding Society, Miami,Florida(2000).
    [80] Ma J. L.,Apps R. L. MIG transfer discovery of importance to industry [J]. Welding and Metal Fabrication,1982,50:307-316.
    [81] Ma J. L.,Apps R. L. New MIG process results from metal transfer control [J]. Welding and Metal Fabrication,1983,51:168-175.
    [82] Kim Y. S.,Eagar T. W. Analysis of metal transfer in gas metal arc welding [J]. Welding Journal,1993,72(6):269-277.
    [83] Haidar J. An analysis of the formation of metal droplets in arc welding [J]. J.Phys. D: Appl. Phys.,1998(31):1233-1244.
    [84] Ueguri S.,Hara K., Konura H. Study of metal transfer in pulsed GMA welding [J]. Welding Journal,1985,64(8):242-250.
    [85] Nemchinsky V. A. Electrode melting during arc welding with pulsed current [J]. J. Phys. D:Appl. Phys. 1998,31:2797-2802.
    [86] Amin M. Pulsed current parameters for arc stability and controlled metal transfer in arc welding [J]. Metal Construction,1983,15(5):272-278.
    [87] Brosilow R. Welding better with pulsed power [J]. Welding Design and Fabrication, 1984,57(10):57-70.
    [88] Amin M.,Ahmed N. Synergic control in MIG welding. 1. Parametric relationships for steady DC open arc and short circuiting arc operation [J]. Metal Construction,1987,19(1):331-340.
    [89] Pan J. L.,Zhang R. H., Ou Z. M. Adaptive control GMA welding-A new technique for quality control [J]. Welding Journal,1989,68(3):73-76.
    [90] Rhee S.,Kannatary A. E. J. Analysis of arc pressure effect on metal transfer in gas metal arc welding [J]. J Phy D: Appl. Phys,1991,24(8):5068-5075.
    [91] Subramaniam S.,White D.R.,Jones J.E. etc. Experimental Approach to Selection of Pulsing Parameters in Pulsed GMAW [J]. Welding Journa1,1999,78(5):166-172.
    [92] Thamodharan M.,Beck H. P.,Wolf A. Steady and pulsed direct current welding with a single converter [J]. Welding Journal,1999,78(3):75-79.
    [93] Waszink J. H.,Piena M.J. Experimental investigation of drop detachment and drop velocity in GMAW [J]. Welding Journal,1986,65(11):289-298.
    [94] Jacobsen N. Monopulse investigation of drop detachment in pulsed gas metal arc welding [J]. J. Phys. D:Appl. Phys. 1992,25:783-797.
    [95] Haidar J. An analysis of the formation of metal droplets in arc welding [J]. J.Phys. D: Appl. Phys., 1998(31):1233-1244.
    [96] Essers W. G.,Van G. Arc control with pulsed GMA welding [J]. Welding Journal,1984, 5(6):26-31.
    [97] Matsuda F.,Ushio M., Tanaka Y. etc. Pulsed GMAW: one drop transfer and process parameter [J]. Transactions of JWRI,1984,13(2):15-20.
    [98] Allum C. J. Welding technology data:pulsed MIG welding [J]. Welding and Metal Fabrication,1985,53(1):24-30.
    [99] Rajasekaran S.,Kulkarni S. D.,Mallya U. D. Molten droplet detachment characteristics in steady and pulsed current GMA welding Al-Mg alloys. Proc. Sixth Int. Conf. on Aluminum Weldments,1995:207-214. American Welding Society,Miami,Fla.
    [100] Ueguri S.,Hara K.,Konura H. Study of metal transfer in pulsed GMA welding [J]. Welding Journal,1985,64(8):242-250.
    [101] Nemchinsky V. A. Electrode melting during arc welding with pulsed current [J]. J. Phys. D: Appl. Phys. 1998,31:2797-2802.
    [102] Mendez P.,Jenkins N. T.,Eagar T. W. Effect of electrode droplet size on evaporation and fume generation in GMAW. Proceedings of the Gas Metal Arc Welding for the 21st Century,American Welding Society,Miami,Florida,2000.
    [103]蒙永民. GMAW-P熔滴过渡模糊控制的研究[D].广州:华南理工大学博士学位论文,2001.
    [104]李春田.模块化:产品创新开发的平台策略_模块化促进了设计方法的创新.[J].世界标准化与质量管理, 2007,(02).
    [105] Smith.L.P. Modular Modeling System (MMS): A code for the Dynamic Simulation of fossil and unclear power plants [J], EPRI CS/推进轴转速/Np-2989, 1983.
    [106] Shor S.W.W. Modular Modeling System (MMS), Vol 5: summary report[R] EPRI CS/Np-3016, 1987.
    [107] Lausterer G K. Modular modeling applied to a benson boiler [C]. IFAC proceeding on modeling & Control of electric power plants,Como,Italy,1983.
    [108] Thunln T,Wefonder E. Modular steam generator and turbine model for on-line process control and power system simulation [C]. IFAC proceeding on modeling & Control of electric power plants,Como,Italy,1983.
    [109]马迎辉.电站模块化模型开发系统和流体网络的建模方法[D].北京:清华大学博士论文,1990.
    [110] Rasmussen J. Information processing and human-machine interaction:An approach to cognitive engineering [J]. New York,N Y,USA:Elsevier Science Inc. , 1986.
    [111] Wong K C,Wonham W M. Hierarchical cont rol of timed discrete2event systems. Discrete Event Dynamic Systems , 1996,6(3):275-306.
    [112] Lind M. Making sense of the abst raction hierarchy in the power plant domain. Cognition,Technology & Work. 2003,5(2):672-681.
    [113]陈浩,吴宁.分层控制系统在电网调度方面的应用[J].广东电力,2004,17 (6):22224 ,28.
    [114]朱军飞,唐寅生,周全仁.电网AVC分层控制[J].电力设备,2002,3(4):28-31.
    [115] Hinrichs J F,Noruk J S,McDonald W M,et al. Challenges of welding aluminum alloys for automotive structures [J]. Svetsaren,1995,50(3):7-9.
    [116] Suzuki. Method and apparatus for determining stability of arc welding [P]. United States Patent:6,031,203. 2000-2-29.
    [117] N. Budnik et al [J]. Savar Proizvod, 1968,4:13-16.
    [118] Adam G,Siewert T. Sensing of GMAW droplet transfer modes using an ER100S-1 elctrode [J]. Welding journal,1990(3):103-108.
    [119] Rajasekaran S. Method of selecting the suitable combination of parameters in pulsed current gas metal arc welding process [C]. In proceeding of international conference on advances in mechanical and industrial engineering,Roorkee,1997,2:1115-1122.
    [120] Collard J. F. Adaptive pulsed GMAW control: the digipulse system [J]. Welding journal,1988,67(11):35-38.
    [121]沈才华,张亮有,王欣荣.模块化设计及其应用[J].山西科技,2007,3:129-130.
    [122]景琰,赵惠平.基于图论与故障树结合的控制系统故障诊断[J].舰船科学技术,2007,29(增刊1):86-88.
    [123]史定华,王松瑞.故障树分析技术方法和理论[M].北京:北京师范大学出版社, 1993:204-216.
    [124]黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[M].北京:科学出版社, 1996:196-198.
    [125]王勉宇.基于图论的过程故障诊断研究[D].浙江:浙江大学, 2002.
    [126]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998:191-200.
    [127]陈文梅,潘永密.流体力学基础[M].北京:化学工业出版社,1995.
    [128]安藤弘平,长谷川光雄.焊接电弧现象(增补版)[M]..北京:机械工业出版社,1985.
    [129] Joo T M,Yoo C D,Lee T S. Effects of welding conditions on molten drop geometry in arc welding [J]. Journal of manufacturing science and engineering. 1996,118(1):623-627.
    [130] Choi S. K.,Yoo C. D.,Kim Y. S. Dynamic simulation of metal transfer in GMAW-part 1: globular and spray transfer modes [J]. Welding Journal, 1998, 7738~7744.
    [131] Chio S K,Kim Y S,Yoo C D. Dimensional analysis of metal transfer in GMA welding J. Phys [M]. Appl. Phys. 1999,32:326-334.
    [132] Wang Fang. Simulation of metal transfer and weld pool development in gas metal arc welding of thin sheet metals [D]. Ph.D. University of Michigan,2003.
    [133] Wang F.,Hou W. K.,Hu S. J. et al. Modeling and analysis of metal transfer in gas metal arc welding [J]. J. Phys. D: Appl. Phys. 2003, 36:1143~1152.
    [134] Haidar J.,Lowke J. Prediction of metal droplet formation in arc welding [J]. J.Phys.D: Appl.Phys, 1996, 29(6):2951-2960.
    [135] Haidar J.,Lowke J. Effect of CO2 Shielding Gas on Metal Droplet Formation in Arc Welding [J]. IEEE Transactions on Plasma Science, 1997,25(5):931-936.
    [136]同济大学数学教研室主编.高等数学,上、下册[M]..北京:高等教育出版社,1996.
    [137] Robert shaw. The dripping faucet as a model chaotic system [M]. The Science Frontier Express, Aerial Press, In c., 1984.
    [138] Chio J.H.,Lee J.Y.,Yoo C.D. Simulation of dynamic behavior in a GMAW system [J]. Welding Journal,2001,80(10):239-245.
    [139] Ohshima K. Stability of pulsed current consumable electrode transfer by powe source with periodically varying nonlinear characteristic [J]. Journal of the Japan welding society,1982,51(20):91-97.
    [140] Kim J.M.,Na S. J. A study on prediction of welding current in gas metal arc welding, Part 1 : Modeling of welding current in response to change of tip-to-workpiece distance [J]. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture,,1991,205(1):59-63.
    [141] Ushio M,Mao W. Modeking of the arc sensor for DC MIG/MAG welding in open arc mode-A study of the improvement of the sensitivity and the reliability of the arc sensor in GMA welding (1st report) [J]. Journal of the Japan welding society,1996,14(1):99-107.
    [142]潘际銮.现代弧焊控制[M].北京:机械工业出版社,2000.
    [143]宋政. GMAW-P焊接控制系统及熔滴过渡动态数值模拟研究[D].上海:工学博士学位论文,2006.
    [144]王方,侯文考,胡仕新.熔化极气体保护焊的仿真系统[J].焊接学报,2003,24(1):35-39.
    [145] M Suban,J Tusek. Dependence of melting rate in MIF/MAG welding on the type of shielding gas used [J]. Journal of Materials Processing Technology,2001,119:185-192.
    [146]胡特生.电弧焊[M].北京:机械工业出版社,1996.
    [147]徐鲁宁,殷树言,卢振洋. T.I.M.E.焊工艺与高效MAG焊的发展[J].电焊机,2000,30(5):3-7.
    [148]王济川,郭志刚. Logistic回归模型-方法与应用[M].北京:高等教育出版社,2001.
    [149]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,2002.
    [150] Watkins A. D.,Smartt H. D.,Johnson J. A. A dynamic of droplet growth and detachment in GMAW [C]. 3rd international conference on trends in welding research,Gatlinburg. Tennessee::1992,June 1-5.
    [151] Reutzel E W,Einerson C J,Johnson J A and Smart H B. Derivation and calibration of a gas metal arc welding dynamic droplet metal model [C]. Proc. 4th Int. Conference on Trends in Welding Research,Gatlinburg,TN,1995:377–384.
    [152] Ken Kiyono,Nobuko fuchikami. Dripping faucet dynamics by an improved mass-spring model [J]. Jounal of the Physics Society of Japan,1999,68(10):3259-3270.
    [153]陈茂爱. GMAW焊接熔滴过渡动态过程的数值模拟[D].山东大学博士后研究工作报告,2003,6.
    [154] Physics Dept. UIUC,Shaotic water drop experiment,Scientific Report,2001,8.
    [155] http://www.kemppi.com
    [156] http://www.cloos.de
    [157] Gray Dean. A versatile experimental test rig for GMA weld research. Austrialasian Welding,2001,46(3):33-38.
    [158]杨建红,张认成,杜建华.基于多信息融合的故障电弧保护系统的应用研究[J].高压电器,2007,43(3):194-196.
    [159]马跃洲,瞿敏,陈剑虹.基于电弧声信号的CO_2焊接状态模式识别[J].兰州理工大学学报,2006,32(4):29-33.
    [160]杨运强,张晓琪,李俊岳,李桓.不同窗口的电弧光谱信息与焊丝熔滴过渡[J].焊接学报,2003,24(2):11-15.
    [161]刘占民,李明利,薛龙.熔化极电弧焊熔滴过渡过程的高速摄影[J].中国机械工程,2001,13(9):796-798.
    [162] Allemand C D,ScheoderR,Ries D E et al. A method of filming metal transfer in welding arc [J]. Welding Journal,1985,64(1):45-47.
    [163]张凯. Lab VIEW虚拟仪器工程设计与开发[M].北京:国防工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700