椎基静脉孔的形态特征及与胸腰椎爆裂性骨折椎体后缘骨折块形成的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     椎体后缘骨折块(Retropulsed bone fragment, RBF)形成是胸腰椎爆裂性骨折(Thoracolumbar burst fracture, TLBF)特征性的影像学表现,往往发生在椎体后上缘。它对判断神经损伤、椎管占位、骨折稳定性、后纵韧带损伤等具有重要意义;也是决定胸腰椎骨折是否需要手术和如何手术的重要决定因素。目前椎体RBF形成的确切机制不清。有研究认为,暴力作用导致终板骨折,椎间盘突入椎体,椎体内压力增高,随后椎体爆裂;同时暴力使椎弓根基底部应力集中区骨折,并产生沿椎弓根传递的剪力,对椎体产生切入效果,导致椎体RBF形成和移位。此外对上下终板生物力学的研究发现,上终板更容易骨折,解释了骨折块总是位于椎体后上缘的原因。然而,上述理论存在一个共同缺陷,即:忽视了椎体后缘一个明显骨质缺省区(椎基静脉孔)的存在对椎体RBF形成的影响。当前,国内解剖学教材并未对椎基静脉孔(Basivertebral foramen, BF)这一特殊的解剖结构进行描述;国外虽偶有文献报道,但也只是简单提及其大致位置,并未关注BF的形态特征及与椎体RBF形成的关系。
     研究目的:
     1、明确胸腰椎(T12、L1、L2和L3)BF的形态特征,包括:物理参数(宽、深、高绝对值和相对值)、在椎体中的位置、不同椎体BF的差异、BF的影响因素。
     2、通过临床和实验研究,明确BF与TLBF时RBF形成的关系。
     研究方法:
     1、对36例健康成人胸腰椎(T12、L1、L2和L3)进行螺旋CT薄层扫描、对每个节段单独进行正中矢状位和横断位重建。在CT横断位和正中矢状位重建图像上,测量BF宽(BFW)、深(BFD)、高(BFH)的绝对值,计算同一测量平面上BF相对于椎体宽、深、高的相对值(BFWr、BFDr、BFHr);测量BF距椎体左右边缘和上下终板的距离,观察BF在椎体中的确切位置。应用SPSS 11.5统计学软件对上述数据进行统计学分析,应用配对设计t检验分析同一个节段中BF距椎体左右边缘和上下终板的距离均数值的差异;应用单因素方差分析检验不同节段之间BFW、BFWr、BFD、BFDr、BFH、BFHr的差异。利用单因素方差分析检验性别与各个节段BFW、BFWr、BFD、BFDr、BFH、BFHr的相关性;利用Pearson检验分析年龄、体重指数与各个节段BFW、BFWr、BFD、BFDr、BFH、BFHr的相关性。P<0.05时具有统计学意义。
     2、在36例健康成人胸腰椎(T12、L1、L2和L3)的正中矢状位重建图像上测量BFSL (BF后上角距上终板后角的距离)和BFSW(由BF顶点向上终板作垂线,上终板后角距该垂线的距离)。应用配对设计t检验分析相邻节段BFSL平均值与中间椎体BFSL的关系;应用配对设计t检验分析相邻节段BFSW平均值与中间椎体BFSW的关系。P<0.05时差异具有统计学意义。
     收集临床胸腰椎爆裂性骨折患者50例,其中L1骨折29例、L2骨折21例。对骨折进行螺旋CT薄层扫描、三维重建,在CT正中矢状位重建图像上,测量骨折上下相邻椎体BFSL和BFSW测量骨折椎体RBF的参数,包括RBFL(骨折块的椎管侧长度)和RBFW(由骨折块前下角向骨折块上边做垂线,骨折块后上角距该垂线的距离)。利用相邻椎体BFSL和BFSW平均值分别代表骨折椎体的BFSL和BFSW,应用配对设计t检验分析其与骨折块RBFL、RBFW的差异,从而推测RBF形成与BF的关系。
     3、冻存胸腰椎节段标本9例(T12-L2),应用累积撞击模型复制L1爆裂性骨折,骨折前后应用螺旋CT薄层扫描、三维重建,测量和分析骨折前BFSL、BFSW与骨折后RBFL、RBFW的差异,推测RBF形成与BF的关系。在冰冻状态下对标本进行解剖,肉眼观察RBF与BF的关系。观察撞击后上下终板的骨折情况和后纵韧带损伤等。
     研究结果:
     1、CT横断位和矢状位重建图像上,81%BF表现为三角形或梯形;6%BF内部出现骨性间隔。相同测量节段的BFW、BFD和BFH最大值接近或超过同一测量平面椎体宽、深和高的1/3,平均宽、深和高接近或超过同一测量平面椎体的25%。在T12和L3,BF距椎体两端距离无统计学差异(P>0.05);而在L1和L2,BF距椎体两边的距离具有统计学差异(P<0.05)。在T12、L1、L2和L3中,BF距上下终板的距离均存在统计学差异(P<0.05),更靠近于上终板。在不同测量节段,BFW、BFH、BFWr、BFHr的均数值均无统计学差异(P>0.05);而BFD和BFDr在L3更大,其中,与T12、L1、L2绝对值比较均有统计学差异,与L1、L2的相对值比较存在统计学差异。性别与BF各测量参数无相关性;年龄与L1BFHr和L2BFHr相关;而体重指数与LIBFH、L2BFW、L3BFH、L3BFHr相关。
     2、对36例健康成人的BFSL和BFSW进行测量和统计学分析,结果显示:相邻上下椎体BFSL均数值与中间椎体BFSL无统计学差异(P>0.05);相邻上下椎体BFSW均数值与中间椎体BFSW无统计学差异(P>0.05)。对29例L1爆裂骨折进行测量和统计学分析,结果显示:T12和L2的BFSL均数值与L1的RBFL无统计学差异(P>0.05);T12和L2的BFSW均数值与L1的RBFW无统计学差异(P>0.05)。对21例L2爆裂骨折进行测量和统计学分析,结果显示:L1和L3的BFSL均数值与L2的RBFL无统计学差异(P>0.05);L1和L3的BFSW均数值大于L2的RBFW,具有统计学差异(P<0.05)
     3、9例胸腰段标本,通过累积撞击模型成功复制骨折8例,撞击次数2-6次,平均3.75次。对比和测量撞击前后标本的正中矢状位CT重建图像显示,8例标本椎体后缘骨折块形成均与BF相关,骨折线通过BF;统计学分析显示:撞击后RBFL与撞击前BFSL无统计学差异(P>0.05);撞击后RBFW小于撞击前BFSW,差异具有统计学意义(P<0.05)。4例标本出现不同程度的PLL损伤,损伤部位主要位于BF边缘。8例标本均出现不同程度的上终板损伤,2例标本出现下终板损伤。标本经正中矢状位切开后显示,6例标本椎体中出现突入的髓核或软骨终板,椎体骨折块的骨折线经过BF上边。
     研究结论:
     1、36例健康成人144个椎体后缘均存在BF。在CT横断位和矢状位上,BF最常见的形态结构为三角形或梯形。少数BF内部存在骨性间隔。CT横断位上,T12和L3的BF更倾向位于椎体的中央区域;而L1和L2的BF稍偏向于椎体左侧。CT矢状位上,T12、L1、L2和L3椎体的BF均更靠近上终板。在不同个体,BF的物理参数存在较大差异,BFW、BFD和BFH的最大值超过同一测量平面上椎体宽、深和高的1/3,平均宽、深和高接近或超过椎体的25%。BFW、BFWr、BFH、BFHr的均数值在T12、L1、L2和L3中无差异;而L3椎体具有更大的BFD。性别与BFW、BFWr、BFD、BFDr、BFH、BFHr无相关性。
     2、健康成人中,上下相邻椎体BFSL平均值与中间椎体BFSL无差异、上下相邻椎体BFSW平均值与中间椎体BFSW无差异。L1爆裂性骨折时,骨折上下相邻椎体BFSL平均值与骨折椎体RBFL无差异,骨折上下相邻椎体BFSW平均值与骨折椎体RBFW无差异,推测椎体BF与椎体RBF形成相关。L2爆裂性骨折时,骨折上下相邻椎体BFSL平均值与骨折椎体RBFL无差异,骨折上下相邻椎体BFSW平均值大于骨折椎体RBFW,推测椎体BF与椎体RBF形成相关。
     3、实验模拟的骨折标本中,RBF形成与BF密切相关。累积撞击方案是模拟胸腰椎爆裂骨折的有效方法。
Background
     The retropulsed bone fragment (RBF) is the characteristic of the thoracolumbar burst fracture (TLBF) in axial CT images. It always comes from the posterior superior vertebral body. It is very important to evaluate the neurologic deficit, canal compromise, stability or instability in TLBF, and posterior longitudinal ligament injury. Also, it is one of the indications for the surgery and making a choice for surgical approach in TLBF. The mechanism of the RBF is not absolutely clear. Various studies in the literature have dealt with the issue. Under the axial impact, the endplate in the central portion is failure, allowing the nucleus material to enter the vertebral body, thereby pressurizing it more, squeezing the fat and marrow contents of the vertebral body out of the cancellous bone. When nucleus material enters the vertebral body faster than fat and marrow being expulsed, burst fracture is said to occur. At the same time, the shear force at the facet joints is transmitted through the pedicles to the posterior half of the vertebral body, creating a wedging effect, which dislodges and displaces the bony fragments. Additionally, the biomechanical study of the endplates has demonstrated that comparing with the caudal endplate, the cranial endplate is preferential failure under the same stress. This finding have accounted for the phenomenon that the RBF always originates from the posterior superior vertebral body. However, there is a same defect in these theories, that is an obvious bone default (Basivertebral foramen, BF) in the posterior vertebral body has been ignored. Nowadays, Chinese anatomy textbooks do not even describe this special anatomic structure, and English anatomy textbooks only provided a brief description of the approximate location. The morphological features of the BF and its relevance to the RBF in TLBF are not still clear.
     Objective
     1. to observe the morphological features of the BF in T12, L1, L2 and L3,including BF weight (BFW), BF depth (BFD), BF high (BFH), BF relative to the body weight (BFWr), BF relative to the body depth (BFDr), BF relative to the body high (BFHr). the location in the vertebral body, the difference of BF in different levels.
     2. To certify the relationship between the BF and the RBF in TLBF by clinical and experiment study.
     Methods
     1. A total of 36 health adults were underwent multi-slice CT thin slice scans and three-dimensional reconstruction for T12, L1, L2 and L3. In the horizontal and sagittal CT reconstruction images, the BFW, BFD, BFH, BFWr, BFDr and BFHr were measured. The distance between the BF and each side in the horizontal and sagittal CT images were also measured, to investigate the precise location in the body. The correlation between the measured parameters of BF and the gender, age, body mass index (BMI) were analyzed statistically.
     2.In the midsagittal reconstruction images of 36 health adults (T12, L1, L2 and L3), The BFSL (the distance between the posterior superior corner of BF and posterior corner of cranial endplate) and BFSW (the distance between posterior corner of cranial endplate and perpendicular from the end of BF to the cranial endplate) were measured. The difference between the average of BFSL in upper and lower level and BFSL of middle level was analyzed statistically. The BFSW was analyzed statistically by the same method. A total of 50 TLBF cases,29 cases in L1 and 21 cases in L2. All cases were underwent multi-slice CT thin slice scans and three-dimensional reconstruction. In the midsagittal reconstruction images, the parameters of BF in upper and lower adjacent fracture level were measured, including BFSL and BFSW. In the midsagittal reconstruction images, the parameters of RBF in fracture level were also measured, including RBFL (the length of RBF closed to the canal) and RBFW (the distance between posterior corner of cranial endplate and perpendicular from the anterior inferior corner of RBF to the cranial endplate). The difference between the average of BFSL in upper and lower adjacent fracture level and RBFL was analyzed statistically. Also, the difference between the average of BFSW in upper and lower adjacent fracture level and RBFW was analyzed statistically. By the statistical analysis, the relationship between the BF and RBF was studied.
     3. A total of 9 frozen samples of thoracolumbar motion segment (T12-L2). An incremental trauma model was applied to reproduce the L1 burst fracture. Before and after fracture, the multi-slice CT thin slice scans and three-dimensional reconstruction was undergone in all samples. The BFSL and BFSW of L1 were measured before fracture, and the RBFL and RBFW of L1 were measured after fracture. The difference between the BFSL and RBFL was analyzed statistically, to investigate the relationship between the BF and RBF. The difference between the BFSW and RBFW was also analyzed statistically for the same purpose. The samples were cut through midsagittal plane to observe the relationship between the BF and RBF by eye.
     Results
     1.In the horizontal and sagittal reconstruction images,81% BF was triangular or trapezoid. There was a bone interval within 6% BF. In the same level in 36 cases, the maximum of BFW was approximately 1/3 vertebral body width, which was measured in the same plane as BFW. The maximum of BFD and BFH respectively were also approximately 1/3 vertebral body depth and high. The average BFW, BFD and BFH were approximately 25% vertebral body in the same plane. In T12 and L3, the distance from the BF to right vertebral border was no significant difference than the distance from the BF to left vertebral border (P> 0.05). In the L1 and L2, however, there was statistical difference (P<0.05). In all four levels, the distance from the BF to the cranial endplate was shorter than to the caudal endplate (P<0.05). The mean BFW, BFH. BFWr, BFHr in different levels were no significant difference (P> 0.05). The mean BFD and BFDr in L3, however, were greater than other levels. There was not a correlation between gender and BFW, BFWr, BFD, BFDr, BFH, BFHr. There was a correlation between the age and L1BFHr and L2BFHr,and a correlation between BMI and L1BFH, L2BFW,L3BFH and L3BFHr.
     2.In all 36 health adults, BFSL and BFSW were measured and statistically analyzed. The mean of BFSL of the upper and lower levels was no significant difference than the BFSL of the middle level (P> 0.05). The mean of BFSW of the upper and lower levels was also no significant difference than the middle level (P> 0.05).
     In all L1 and L2 TLBF cases, there was no significant difference between the mean of BFSL of upper and lower levels and RBFL in fracture level (P> 0.05). There was also no significant difference between the mean of BFSW of upper and lower levels and RBFW in L1 (P> 0.05). However, the mean of BFSW of upper and lower levels was greater than RBFW in L2 (P<0.05).
     3. Experimental fracture was reproduced successfully by incremental trauma model in 8 frozen samples. The number of impact was 2-6 times, the average was 3.75 times. By comparing the midsagittal CT images pre- and post-fracture, the RBF was directly related with the BF, and the fracture line of RBF passed through the top border BF. There was no significant difference between the BFSL pre-fracture and the RBFL post-fracture (P>0.05). The BFSW pre-fracture was greater than the RBFW post-fracture (P<0.05). Posterior longitudinal ligament was torn variously in 4 samples. The fracture of cranial endplate was observed in all 8 samples, and only 2 samples showed the fracture in caudal endplate. The samples were cut through midsagittal plane and revealed that the nucleus material or cartilage endplate entered the vertebral body and the fracture line of RBF passed through the top border of BF.
     Conclusions
     1. There was a BF in all 144 levels in 36 health adults. In the horizontal and sagittal CT images, the most common appearance of BF was triangular or trapezoid. There was a bone interval within a few BF. The location of BF in T12 and L3 was more central than L1 and L2 in the horizontal CT images, and the BF was closer to the cranial endplate in all four levels in the sagittal CT images. In different individuals, the physical parameters of BF were quite different. The maximum of BFW,BFD and BFH respectively were approximately 1/3 vertebral body width, depth and high. The average BFW, BFD and BFH respectively were approximately 25% vertebral body in the same plane. The mean BFW, BFH, BFWr and BFHr in different levels were no significant difference. The mean BFD and BFDr in L3, however, were greater than other levels. There was not a correlation between gender and BFW, BFWr, BFD, BFDr, BFH, BFHr.
     2. In health adults, the mean of BFSL of the upper and lower levels was no significant difference than the BFSL of the middle level. The mean of BFSW of the upper and lower levels was no significant difference than the BFSW of the middle level. In 50 TLBF cases, the RBF was closely related to the BF.
     3. The RBF was closely related to the BF. The incremental trauma model was an effective method to reproduce the experimental fracture, which meet the purpose of this study.
引文
1 Khoueir P, Oh BC. Wang MY. Delayed posttraumatic thoracolumbar spinal deformities:diagnosis and management. Neurosurgery,2008,63(3 Suppl):117-24.
    2 Siebenga J, Leferink VJ, Segers MJ, Elzinga MJ, Bakker FC, Ten DH, et al. A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture. Eur Spine J,2008,17(8):1096-100.
    3 Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation:an in vitro study. J Clin Neurosci,2008,15(3):286-90.
    4 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005, 30(7):787-91.
    5 Diaz JJ Jr, Cullinane DC, Altman DT, Bokhari F, Cheng JS, Como J, et al. Practice management guidelines for the screening of thoracolumbar spine fracture. J Trauma, 2007;63(3):709-18.
    6 Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol,2007,67(3):221-31.
    7 Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V,et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am, 2003,85(5):773-81.
    8 Qiu TX, Tan KW, Lee VS, Teo EC. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys,2006, 28(7):656-64.
    9 Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery,2003,53(6):1354-601.
    10 Willen J, Lindahl S, Nordwall A. Unstable thoracolumbar fractures. A comparative clinical study of conservative treatment and Harrington instrumentation. Spine,1985, 10(2):111-22.
    11 Wilcox RK, Boerger TO, Allen DJ, Barton DC, Limb D, Dickson RA, et al. A dynamic study of thoracolumbar burst fractures. J Bone Joint Surg Am,2003, 85(11):2184-9.
    12 Panjabi MM, Hoffman H, Kato Y, Cholewicki J. Superiority of incremental trauma approach in experimental burst fracture studies. Clin Biomech (Bristol, Avon).2000. 15(2):73-8.
    13 Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures. Spine.2009,34(24):2662-8.
    14 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine,1983,8(8):817-31.
    15 DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord, 1997,35(12):809-13.
    16 Wilcox RK, Boerger TO. Hall RM, Barton DC, Limb D, Dickson RA. Measurement of canal occlusion during the thoracolumbar burst fracture process. J Biomech,2002, 35(3):381-4.
    17 Shuman WP, Rogers JV, Sickler ME, Hanson JA, Crutcher JP, King HA, et al. Thoracolumbar burst fractures:CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol,1985,145(2):337-341.
    18 Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Spine,1999.24(12):1197-202.
    19 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007;67(3):232-7.
    20 Limb D, Shaw DL, Dickson RA. Neurological injury in thoracolumbar burst fractures. J Bone Joint Surg Br.1995,77(5):774-7.
    21 Boerger TO, Limb D. Dickson RA. Does 'canal clearance'affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br.2000. 82(5):629-35.
    22 Kong W. Sun Y, Hu J, Xu J. Modified Posterior Decompression for the Management of Thoracolumbar Burst Fractures With Canal Encroachment. J Spinal Disord Tech, 2010 [Epub ahead of print]
    23 Tezer M, Ozturk C, Aydogan M, Mirzanli C, Talu U, Hamzaoglu A. Surgical outcome of thoracolumbar burst fractures with flexion-distraction injury of the posterior elements. Int Orthop,2005,29(6):347-50.
    24 Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures:a new view of loading mechanisms. Spine,2002,27(5):498-508.
    25 DeWald RL. Burst fractures of the thoracic and lumbar spine. Clin Orthop Relat Res, 1984, (189):150-61.
    26 Ferguson RL, Allen BL Jr. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res,1984, (189):77-88.
    27 Tran NT, Watson NA, Tencer AF, Ching RP, Anderson PA. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Spine,1995, 20(18):1984-8.
    28 Heggeness MH, Doherty BJ. The trabecular anatomy of thoracolumbar vertebrae: implications for burst fractures. J Anat,1997,191(2):309-12.
    29 Leferink VJ, Nijboer JM, Zimmerman KW, Veldhuis EF, ten Vergert EM, ten Duis HJ. Burst fractures of the thoracolumbar spine:changes of the spinal canal during operative treatment and follow-up. Eur Spine J,2003,12(3):255-60.
    30 Overaker DW, Langrana NA, Cuitino AM. Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng,1999,121(5):542-50.
    31 Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone,2009,44(2):372-9.
    32 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine,2001,26(8):889-96.
    33 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone,2007,41(6):946-57.
    34 Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body. Bone,2001,28(5):563-71.
    35 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-683.
    36 Crock HV, Yoshizawa H. Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-533.
    37 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology,2007,242(3): 811-816.
    38 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940; 112(1):138-149.
    39 Oeppen RS, Tung K. Retrograde venous invasion causing vertebral metastases in renal cell carcinoma. Br J Radiol,2001,74(884):759-761.
    40 Yeh ML, Heggeness MH, Chen HH, Jassawalla J, Luo ZP. Compressive loading at the end plate directly regulates flow and deformation of the basivertebral vein:an analytical study. J Orthop Surg,2006,1:18.
    41 Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, Muller CJ, Grobbelaar M, Mattyssen J. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty:a reappraisal of the vertebral venous system. Spine,2004.29(13):1465-1471.
    42 Wenger M, Markwalder TM. Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance. Acta Neurochir (Wien), 1999,141(6):625-631.
    1 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-683.
    2 Crock HV, Yoshizawa H, Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-533.
    3 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology,2007,242(3): 811-816.
    4 Wiltse LL. Anatomy of the extradural compartments of the lumbar spinal canal. Peridural membrane and circumneural sheath. Radiol Clin North Am,2000, 38(6):1177-206.
    5 Antonacci MD, Mody DR, Heggeness MH. Innervation of the human vertebral body: a histologic study. J Spinal Disord,1998,11(6):526-31.
    6 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg,1940,112(l):138-49.
    7 Brinckmann P, Frobin W, Hierholzer E, Horst M. Deformation of the vertebral end-plate under axial loading of the spine. Spine,1983,8(8):851-6.
    8 Oeppen RS, Tung K. Retrograde venous invasion causing vertebral metastases in renal cell carcinoma. Br J Radiol,2001,74(884):759-761.
    9 Yeh ML, Heggeness MH, Chen HH, Jassawalla J, Luo ZP. Compressive loading at the end plate directly regulates flow and deformation of the basivertebral vein:an analytical study. J Orthop Surg,2006,1:18.
    10 Dommisse GF. The arteries and veins of the human spinal cord from birth/G.F. Dommisse. Churchill Livingstone,1975,100-102.
    11 Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, Muller CJ, Grobbelaar M, Mattyssen J. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty:a reappraisal of the vertebral venous system. Spine,2004,29(13):1465-1471.
    12 Wenger M, Markwalder TM. Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance. Acta Neurochir (Wien), 1999,141(6):625-631.
    13 Algra PR, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Van Kooten B. Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients. AJR Am J Roentgenol,1992,158(6):1275-9.
    14 Asdourian PL, Weidenbaum M, DeWald RL, Hammerberg KW, Ramsey RG. The pattern of vertebral involvement in metastatic vertebral breast cancer. Clin Orthop Relat Res,1990, (250):164-70.
    15 Arguello F, Baggs RB, Duerst RE, Johnstone L, McQueen K, Frantz CN. Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer, 1990,65(1):98-106.
    16 Yeom JS, Kim WJ, Choy WS, Lee CK, Chang BS, Kang JW. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br,2003,85(1):83-9.
    17 Phillips FM, Todd Wetzel F, Lieberman I, Campbell-Hupp M. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine,2002,27(19):2173-8.
    18 Wu CC, Lin MH, Yang SH, Chen PQ, Shih TT. Surgical removal of extravasated epidural and neuroforaminal polymethylmethacrylate after percutaneous vertebroplasty in the thoracic spine. Eur Spine J,2007,16(s3):326-31.
    19 Ryu KS, Park CK, Kim MC, Kang JK. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. J Neurosurg,2002,96(1 Suppl):56-61.
    20 Schmidt R, Cakir B, Mattes T, Wegener M, Puhl W, Richter M. Cement leakage during vertebroplasty:an underestimated problem? Eur Spine J,2005,14(5):466-73.
    21 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007;67(3):232-7.
    22 Shuman WP, Rogers JV, Sickler ME, Hanson JA, Crutcher JP, King HA, et al. Thoracolumbar burst fractures:CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol,1985,145(2):337-41.
    23 Rajasekaran S. Thoracolumbar burst fractures without neurological deficit:the role for conservative treatment. Eur Spine J,2010,19(Suppl):S40-7.
    24 Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone,2009,44(2):372-9.
    25 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine,2001,26(8):889-96.
    26 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone,2007,41(6):946-57.
    27Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body. Bone,2001,28(5):563-71.
    28 Khoueir P, Oh BC, Wang MY. Delayed posttraumatic thoracolumbar spinal deformities:diagnosis and management. Neurosurgery,2008,63(3 Suppl):117-24.
    29 Siebenga J, Leferink VJ, Segers MJ, Elzinga MJ, Bakker FC, Ten DH, et al. A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture. Eur Spine J,2008,17(8):1096-100.
    30 Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation:an in vitro study. J Clin Neurosci,2008,15(3):286-90.
    31 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005, 30(7):787-91.
    1 Meves R, Avanzi O. Correlation among canal compromise, neurologic deficit, and injury severity in thoracolumbar burst fractures. Spine,2006,31(18):2137-41.
    2 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005. 30(7):787-91.
    3 Trafton PG, Boyd CA Jr. Computed tomography of thoracic and lumbar spine injuries. J Trauma,1984,24(6):506-15.
    4 Boerger TO, Limb D, Dickson RA. Does'canal clearance' affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br,2000, 82(5):629-35.
    5 Mohanty SP, Venkatram N. Does neurological recovery in thoracolumbar and lumbar burst fractures depend on the extent of canal compromise? Spinal Cord,2002, 40(6):295-9.
    6 Dai LY, Wang XY, Jiang LS. Evaluation of traumatic spinal canal stenosis in thoracolumbar burst fractures. A comparison of three methods for measuring the percent canal occlusion. Eur J Radiol,2008,67(3):526-30.
    7 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007,67(3):232-7.
    8 Eberl R, Kaminski A, Muller EJ. Muhr G. Importance of the cross-sectional area of the spinal canal in thoracolumbar and lumbar fractures. Is there any correlation between the degree of stenosis and neurological deficit? Orthopade,2003, 32(10):859-64.
    9 Wessberg P, Wang Y, Irstam L, Nordwall A. The effect of surgery and remodelling on spinal canal measurements after thoracolumbar burst fractures. Eur Spine J,2001, 10(1):55-63.
    10 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-83.
    11 Crock HV, Yoshizawa H, Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-33.
    12 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology.2007,242(3):811-6.
    13 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg,1940:112(1):138-49.
    14 Oeppen RS, Tung K. Retrograde venous invasion causing vertebral metastases in renal cell carcinoma. Br J Radiol,2001,74(884):759-61.
    15 Yeh ML, Heggeness MH, Chen HH, Jassawalla J, Luo ZP. Compressive loading at the end plate directly regulates flow and deformation of the basivertebral vein:an analytical study. J Orthop Surg,2006,1:18.
    16 Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, et al. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty:a reappraisal of the vertebral venous system. Spine,2004,29(13): 1465-71.
    17 Wenger M, Markwalder TM. Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance. Acta Neurochir (Wien), 1999,141(6):625-31.
    1 Khoueir P, Oh BC, Wang MY. Delayed posttraumatic thoracolumbar spinal deformities:diagnosis and management. Neurosurgery,2008,63(3 Suppl):117-24.
    2 Siebenga J, Leferink VJ, Segers MJ, Elzinga MJ, Bakker FC, Ten DH, et al. A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture. Eur Spine J,2008,17(8):1096-100.
    3 Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation:an in vitro study. J Clin Neurosci,2008,15(3):286-90.
    4 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005, 30(7):787-91.
    5 Diaz JJ Jr, Cullinane DC, Altman DT, Bokhari F, Cheng JS, Como J, et al. Practice management guidelines for the screening of thoracolumbar spine fracture. J Trauma, 2007;63(3):709-18.
    6 Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol,2007,67(3):221-31.
    7 Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V, et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am, 2003,85(5):773-81.
    8 Qiu TX, Tan KW, Lee VS, Teo EC. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys,2006, 28(7):656-64.
    9 Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery,2003,53(6):1354-601.
    10 Willen J, Lindahl S, Nordwall A. Unstable thoracolumbar fractures. A comparative clinical study of conservative treatment and Harrington instrumentation. Spine,1985, 10(2):111-22.
    11戴力扬.胸腰椎爆裂性骨折的生物力学.中国临床解剖学杂志,2001,19(3):280-1.
    12 Meves R, Avanzi O. Correlation among canal compromise, neurologic deficit, and injury severity in thoracolumbar burst fractures. Spine,2006,31(18):2137-41.
    13 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures:is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007; 67(3):232-7.
    14 Dai LY, Jiang LS, Jiang SD. Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures, a five to seven-year prospective randomized study. J Bone Joint Surg Am,2009,91(5):1033-41.
    15 Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Spine,1999,24(12):1197-202.
    16 Shuman WP, Rogers JV, Sickler ME, Hanson JA, Crutcher JP, King HA, et al. Thoracolumbar burst fractures:CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol,1985,145(2):337-41.
    17 Rajasekaran S. Thoracolumbar burst fractures without neurological deficit:the role for conservative treatment. Eur Spine J,2010,19(Suppl):S40-7.
    18 Dai LY, Wang XY, Jiang LS. Evaluation of traumatic spinal canal stenosis in thoracolumbar burst fractures. A comparison of three methods for measuring the percent canal occlusion. Eur J Radiol,2008,67(3):526-30.
    19 Boerger TO, Limb D, Dickson RA. Does'canal clearance'affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br,2000, 82(5):629-35.
    20 Limb D, Shaw DL, Dickson RA. Neurological injury in thoracolumbar burst fractures. J Bone Joint Surg Br,1995,77(5):774-7.
    21 Kong W, Sun Y, Hu J, Xu J. Modified Posterior Decompression for the Management of Thoracolumbar Burst Fractures With Canal Encroachment. J Spinal Disord Tech, 2010 [Epub ahead of print]
    22 Tezer M, Ozturk C, Aydogan M, Mirzanli C, Talu U, Hamzaoglu A. Surgical outcome of thoracolumbar burst fractures with flexion-distraction injury of the posterior elements. Int Orthop,2005,29(6):347-50.
    23 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-683.
    24 Crock HV, Yoshizawa H, Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-533.
    25 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology,2007,242(3): 811-816.
    26 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940; 112(1):138-149.
    27 Wilcox RK, Boerger TO, Allen DJ, Barton DC, Limb D, Dickson RA, et al. A dynamic study of thoracolumbar burst fractures. J Bone Joint Surg Am,2003, 85(11):2184-9.
    28 Panjabi MM, Hoffman H, Kato Y, Cholewicki J. Superiority of incremental trauma approach in experimental burst fracture studies. Clin Biomech (Bristol, Avon),2000, 15(2):73-8.
    29 Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures. Spine,2009,34(24):2662-8.
    30 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine,1983,8(8):817-31.
    31 DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord, 1997,35(12):809-13.
    32 Wilcox RK, Boerger TO, Hall RM, Barton DC, Limb D, Dickson RA. Measurement of canal occlusion during the thoracolumbar burst fracture process. J Biomech,2002, 35(3):381-4.
    33 Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures:a new view of loading mechanisms. Spine,2002,27(5):498-508.
    34 DeWald RL. Burst fractures of the thoracic and lumbar spine. Clin Orthop Relat Res, 1984, (189):150-61.
    35 Ferguson RL, Allen BL Jr. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res,1984, (189):77-88.
    36 Tran NT, Watson NA, Tencer AF, Ching RP, Anderson PA. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Spine,1995, 20(18):1984-8.
    37 Heggeness MH, Doherty BJ. The trabecular anatomy of thoracolumbar vertebrae: implications for burst fractures. J Anat,1997,191(2):309-12.
    38 Leferink VJ, Nijboer JM, Zimmerman KW, Veldhuis EF, ten Vergert EM, ten Duis HJ. Burst fractures of the thoracolumbar spine:changes of the spinal canal during operative treatment and follow-up. Eur Spine J,2003,12(3):255-60.
    39 Overaker DW, Langrana NA, Cuitino AM. Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng,1999,121(5):542-50.
    40 Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone,2009,44(2):372-9.
    41 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine,2001,26(8):889-96.
    42 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone,2007,41(6):946-57.
    43 Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body. Bone,2001,28(5):563-71.
    44 Trafton PG, Boyd CA Jr. Computed tomography of thoracic and lumbar spine injuries. J Trauma,1984,24(6):506-15.
    45 Mohanty SP, Venkatram N. Does neurological recovery in thoracolumbar and lumbar burst fractures depend on the extent of canal compromise? Spinal Cord,2002, 40(6):295-9.
    46 Eberl R, Kaminski A, Muller EJ, Muhr G. Importance of the cross-sectional area of the spinal canal in thoracolumbar and lumbar fractures. Is there any correlation between the degree of stenosis and neurological deficit? Orthopade,2003, 32(10):859-64.
    47 Wessberg P, Wang Y, Irstam L, Nordwall A. The effect of surgery and remodelling on spinal canal measurements after thoracolumbar burst fractures. Eur Spine J,2001, 10(1):55-63.
    1 Khoueir P, Oh BC, Wang MY. Delayed posttraumatic thoracolumbar spinal deformities:diagnosis and management. Neurosurgery,2008,63(3 Suppl):117-24.
    2 Siebenga J, Leferink VJ, Segers MJ, Elzinga MJ, Bakker FC, Ten DH, et al. A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture. Eur Spine J,2008,17(8):1096-100.
    3 Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation:an in vitro study. J Clin Neurosci,2008,15(3):286-90.
    4 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005, 30(7):787-91.
    5 Diaz JJ Jr, Cullinane DC, Altman DT, Bokhari F, Cheng JS, Como J, et al. Practice management guidelines for the screening of thoracolumbar spine fracture. J Trauma, 2007;63(3):709-18.
    6 Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol,2007,67(3):221-31.
    7 Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V, et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am, 2003,85(5):773-81.
    8 Qiu TX, Tan KW, Lee VS, Teo EC. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys,2006, 28(7):656-64.
    9 Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery,2003,53(6):1354-601.
    10 Willen J, Lindahl S, Nordwall A. Unstable thoracolumbar fractures. A comparative clinical study of conservative treatment and Harrington instrumentation. Spine,1985, 10(2):111-22.
    11 Wilcox RK, Boerger TO, Allen DJ, Barton DC, Limb D, Dickson RA, et al. A dynamic study of thoracolumbar burst fractures. J Bone Joint Surg Am,2003, 85(11):2184-9.
    12 Panjabi MM, Hoffman H, Kato Y, Cholewicki J. Superiority of incremental trauma approach in experimental burst fracture studies. Clin Biomech (Bristol, Avon),2000, 15(2):73-8.
    13 Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures. Spine,2009,34(24):2662-8.
    14 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine,1983,8(8):817-31.
    15 DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord, 1997,35(12):809-13.
    16 Wilcox RK, Boerger TO, Hall RM, Barton DC, Limb D, Dickson RA. Measurement of canal occlusion during the thoracolumbar burst fracture process. J Biomech,2002, 35(3):381-4.
    17 Shuman WP, Rogers JV, Sickler ME, Hanson JA, Crutcher JP, King HA, et al. Thoracolumbar burst fractures:CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol,1985,145(2):337-341.
    18 Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Spine,1999,24(12):1197-202.
    19 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-683.
    20 Crock HV, Yoshizawa H, Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-533.
    21 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology,2007,242(3): 811-816.
    22 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007; 67(3):232-7.
    23 Limb D, Shaw DL, Dickson RA. Neurological injury in thoracolumbar burst fractures. J Bone Joint Surg Br,1995,77(5):774-7.
    24 Boerger TO, Limb D, Dickson RA. Does'canal clearance' affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br,2000, 82(5):629-35.
    25 Kong W, Sun Y, Hu J, Xu J. Modified Posterior Decompression for the Management of Thoracolumbar Burst Fractures With Canal Encroachment. J Spinal Disord Tech, 2010 [Epub ahead of print]
    26 Tezer M, Ozturk C, Aydogan M, Mirzanli C, Talu U, Hamzaoglu A. Surgical outcome of thoracolumbar burst fractures with flexion-distraction injury of the posterior elements. Int Orthop,2005,29(6):347-50.
    27 Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures:a new view of loading mechanisms. Spine,2002,27(5):498-508.
    28 DeWald RL. Burst fractures of the thoracic and lumbar spine. Clin Orthop Relat Res, 1984, (189):150-61.
    29 Ferguson RL, Allen BL Jr. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res,1984, (189):77-88.
    30 Tran NT, Watson NA, Tencer AF, Ching RP, Anderson PA. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Spine,1995, 20(18):1984-8.
    31 Heggeness MH, Doherty BJ. The trabecular anatomy of thoracolumbar vertebrae: implications for burst fractures. J Anat,1997,191(2):309-12.
    32 Leferink VJ, Nijboer JM, Zimmerman KW, Veldhuis EF, ten Vergert EM, ten Duis HJ. Burst fractures of the thoracolumbar spine:changes of the spinal canal during operative treatment and follow-up. Eur Spine J,2003,12(3):255-60.
    33 Overaker DW, Langrana NA, Cuitino AM. Finite element analysis of vertebral body mechanics with-a nonlinear microstructural model for the trabecular core. J Biomech Eng,1999,121(5):542-50.
    34 Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone,2009,44(2):372-9.
    35 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine,2001,26(8):889-96.
    36 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone,2007,41(6):946-57.
    37 Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body. Bone,2001,28(5):563-71.
    38 Mikles MR, Stchur RP, Graziano GP. Posterior instrumentation for thoracolumbar fractures. J Am Acad Orthop Surg,2004,12(6):424-35.
    39 Harrington RM, Budorick T, Hoyt J, Anderson PA, Tencer AF. Biomechanics of indirect reduction of bone retropulsed into the spinal canal in vertebral fracture. Spine,1993,18(6):692-9.
    40 Verlaan JJ, van de Kraats EB, Oner FC, van Walsum T, Niessen WJ, Dhert WJ. Bone displacement and the role of longitudinal ligaments during balloon vertebroplasty in traumatic thoracolumbar fractures. Spine,2005,30(16):1832-9.
    41 Panjabi MM, Kato Y, Hoffman H, Cholewicki J. Canal and intervertebral foramen encroachments of a burst fracture:effects from the center of rotation. Spine,2001, 26(11):1231-7.
    42 Mueller LA, Degreif J, Schmidt R, Pfander D, Forst R, Rommens PM, et al. Ultrasound-guided spinal fracture repositioning, ligamentotaxis, and remodeling after thoracolumbar burst fractures. Spine,2006,31(20):E739-46.
    43 Vaccaro AR, Kim DH, Brodke DS, Harris M, Chapman JR, Schildhauer T, et al. Diagnosis and management of thoracolumbar spine fractures. Instr Course Lect, 2004,53:359-73.
    44 Arlet V, Orndorff DG, Jagannathan J, Dumont A. Reverse and pseudoreverse cortical sign in thoracolumbar burst fracture:radiologic description and distinction-a propos of three cases. Eur Spine J,2009,18(2):282-7.
    45 Sarli M, Perez Manghi FC. The vacuum cleft sign:an uncommon radiological sign. Osteoporos Int,2005,16(10):1210-4.
    46 Yasuoka H, Nemoto O. Nerve root compression by gas containing lumbar disc herniation-case report. Brain Nerve,2009,61(6):691-4.
    47 Armingeat T, Pham T, Legre V, Lafforgue P. Coexistence of intravertebral vacuum and intradiscal vacuum. Joint Bone Spine,2006,73(4):428-32.
    48 Jung JY, Lee MH, Ahn JM. Leakage of Polymethylmethacrylate in Percutaneous Vertebroplasty:Comparison of Osteoporotic Vertebral Compression Fractures With and Without an Intravertebral Vacuum Cleft. J Comput Assist Tomogr,2006,30(3): 501-6.
    49王向阳,戴力扬.胸腰椎爆裂性骨折模型.医用生物力学,2006,21(2):153-8.
    50 Kifune M, Panjabi MM, Arand M, Liu W. Fracture pattern and instability of thoracolumbar injuries. Eur Spine J,1995,4(2):98-103.
    51 Panjabi MM, Kifune M, Liu W, Arand M, Vasavada A, Oxland TR. Graded thoracolumbar spinal injuries:development of multidirectional instability. Eur Spine J,1998,7(4):332-9.
    52 Kallemeier PM, Beaubien BP, Buttermann GR, Polga DJ, Wood KB. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model. J Spinal Disord Tech,2008,21(3):216-24.
    53 Atlas OK, Dodds SD, Panjabi MM. Single and incremental trauma models:a biomechanical assessment of spinal instability. Eur Spine J,2003,12(2):205-10.
    1 Khoueir P, Oh BC, Wang MY. Delayed posttraumatic thoracolumbar spinal deformities:diagnosis and management. Neurosurgery,2008,63(3 Suppl):117-24.
    2 Siebenga J, Leferink VJ, Segers MJ, Elzinga MJ, Bakker FC, Ten DH, et al. A prospective cohort study comparing the VAS spine score and Roland-Morris disability questionnaire in patients with a type A traumatic thoracolumbar spinal fracture. Eur Spine J,2008,17(8):1096-100.
    3 Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation:an in vitro study. J Clin Neurosci,2008,15(3):286-90.
    4 Meves R, Avanzi O. Correlation between neurological deficit and spinal canal compromise in 198 patients with thoracolumbar and lumbar fractures. Spine,2005, 30(7):787-91.
    5 Diaz JJ Jr, Cullinane DC, Altman DT, Bokhari F, Cheng JS, Como J, et al. Practice management guidelines for the screening of thoracolumbar spine fracture. J Trauma, 2007;63(3):709-18.
    6 Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol,2007,67(3):221-31.
    7 Wood K, Buttermann G, Mehbod A, Garvey T, Jhanjee R, Sechriest V, et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am, 2003,85(5):773-81.
    8 Qiu TX, Tan KW, Lee VS, Teo EC. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys,2006, 28(7):656-64.
    9 Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery,2003,53(6):1354-601.
    10 Willen J, Lindahl S, Nordwall A. Unstable thoracolumbar fractures. A comparative clinical study of conservative treatment and Harrington instrumentation. Spine,1985, 10(2):111-22.
    11 Wilcox RK, Boerger TO, Allen DJ, Barton DC, Limb D, Dickson RA, et al. A dynamic study of thoracolumbar burst fractures. J Bone Joint Surg Am,2003, 85(11):2184-9.
    12 Panjabi MM, Hoffman H, Kato Y, Cholewicki J. Superiority of incremental trauma approach in experimental burst fracture studies. Clin Biomech (Bristol, Avon),2000, 15(2):73-8.
    13 Castellon AT, Meves R, Avanzi O. Intraoperative neurophysiologic spinal cord monitoring in thoracolumbar burst fractures. Spine,2009,34(24):2662-8.
    14 Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine,1983,8(8):817-31.
    15 DeVivo MJ. Causes and costs of spinal cord injury in the United States. Spinal Cord, 1997,35(12):809-13.
    16 Wilcox RK, Boerger TO, Hall RM, Barton DC, Limb D, Dickson RA. Measurement of canal occlusion during the thoracolumbar burst fracture process. J Biomech,2002, 35(3):381-4.
    17戴力扬.胸腰椎爆裂性骨折的生物力学.中国临床解剖学杂志,2001,19(3):280-1.
    18 Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures:a new view of loading mechanisms. Spine,2002,27(5):498-508.
    19 Meves R, Avanzi O. Correlation among canal compromise, neurologic deficit, and injury severity in thoracolumbar burst fractures. Spine,2006,31(18):2137-41.
    20 Kim NH, Lee HM, Chun IM. Neurologic injury and recovery in patients with burst fracture of the thoracolumbar spine. Spine,1999,24(3):290-3.
    21 McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg Am,1983, 65(4):461-73.
    22 Dai LY, Wang XY, Jiang LS. Neurologic recovery from thoracolumbar burst fractures: is it predicted by the amount of initial canal encroachment and kyphotic deformity? Surg Neurol,2007; 67(3):232-7.
    23 Dai LY, Jiang LS, Jiang SD. Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures, a five to seven-year prospective randomized study. J Bone Joint Surg Am,2009,91(5):1033-41.
    24 Hongo M, Abe E, Shimada Y, Murai H, Ishikawa N, Sato K. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Spine,1999,24(12):1197-202.
    25 Shuman WP, Rogers JV, Sickler ME, Hanson JA, Crutcher JP, King HA, et al. Thoracolumbar burst fractures:CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol,1985,145(2):337-41.
    26 Rajasekaran S. Thoracolumbar burst fractures without neurological deficit:the role for conservative treatment. Eur Spine J,2010,19(Suppl):S40-7.
    27 DeWald RL. Burst fractures of the thoracic and lumbar spine. Clin Orthop Relat Res, 1984, (189):150-61.
    28 Ferguson RL, Allen BL Jr. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res,1984, (189):77-88.
    29 Tran NT, Watson NA, Tencer AF, Ching RP, Anderson PA. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Spine,1995, 20(18):1984-8.
    30 Heggeness MH, Doherty BJ. The trabecular anatomy of thoracolumbar vertebrae: implications for burst fractures. J Anat,1997,191(2):309-12.
    31 Leferink VJ, Nijboer JM, Zimmerman KW, Veldhuis EF, ten Vergert EM, ten Duis HJ. Burst fractures of the thoracolumbar spine:changes of the spinal canal during operative treatment and follow-up. Eur Spine J,2003,12(3):255-60.
    32 Overaker DW, Langrana NA, Cuitino AM. Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng,1999,121(5):542-50.
    33 Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone,2009,44(2):372-9.
    34 Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine,2001,26(8):889-96.
    35 Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone,2007,41(6):946-57.
    36 Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M. Inhomogeneity of human vertebral cancellous bone:systematic density and structure patterns inside the vertebral body. Bone,2001,28(5):563-71.
    37 Limb D, Shaw DL, Dickson RA. Neurological injury in thoracolumbar burst fractures. J Bone Joint Surg Br,1995,77(5):774-7.
    38 Boerger TO, Limb D, Dickson RA. Does'canal clearance'affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br,2000, 82(5):629-35.
    39 Kong W, Sun Y, Hu J, Xu J. Modified Posterior Decompression for the Management of Thoracolumbar Burst Fractures With Canal Encroachment. J Spinal Disord Tech, 2010 [Epub ahead of print]
    40 Tezer M, Ozturk C, Aydogan M, Mirzanli C, Talu U, Hamzaoglu A. Surgical
    outcome of thoracolumbar burst fractures with flexion-distraction injury of the posterior elements. Int Orthop,2005,29(6):347-50. 41 Panjabi MM, Kifune M, Wen L, Arand M, Oxland TR, Lin RM, et al. Dynamic canal encroachment during thoracolumbar burst fractures. J Spinal Disord,1995, 8(1):39-48. 42 Dai LY, Wang XY, Jiang LS. Evaluation of traumatic spinal canal stenosis in thoracolumbar burst fractures. A comparison of three methods for measuring the percent canal occlusion. Eur J Radiol,2008,67(3):526-30. 43 Shen WJ, Shen YS. Nonsurgical treatment of three-column thoracolumbar junction burst fractures without neurologic deficit. Spine,1999,24(4):412-5. 44 Mueller LA, Degreif J, Schmidt R, Pfander D, Forst R, Rommens PM, et al. Ultrasound-guided spinal fracture repositioning, ligamentotaxis, and remodeling after thoracolumbar burst fractures. Spine,2006,31(20):E739-46. 45 de Klerk LW, Fontijne WP, Stijnen T, Braakman R, Tanghe HL, van Linge B. Spontaneous remodeling of the spinal canal after conservative management of thoracolumbar burst fractures. Spine,1998,23(9):1057-60. 46 Shen WJ, Liu TJ, Shen YS. Nonoperative treatment versus posterior fixation for thoracolumbar junction burst fractures without neurologic deficit. Spine,2001, 26(9):1038-45. 47 Celebi L, Muratli HH, Dogan O, Yagmurlu MF, Aktekin CN, Bicimoglu A. The efficacy of non-operative treatment of burst fractures of the thoracolumbar vertebrae. Acta Orthop Traumatol Turc,2004,38(1):16-22. 48 Yazici M, Atilla B, Tepe S, Calisir A. Spinal canal remodeling in burst fractures of the thoracolumbar spine:a computerized tomographic comparison between operative and nonoperative treatment. J Spinal Disord,1996,9(5):409-13. 49 Dai LY. Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop Relat Res,2001, (382):119-23. 50Johnsson R, Herrlin K, Hagglund G, Stromqvist B. Spinal canal remodeling after thoracolumbar fractures with intraspinal bone fragments.17 cases followed 1-4 years. Acta Orthop Scand,1991,62(2):125-7. 51 Wessberg P, Wang Y, Irstam L, Nordwall A. The effect of surgery and remodelling on spinal canal measurements after thoracolumbar burst fractures. Eur Spine J,2001, 10(1):55-63.
    52 Willen J, Anderson J, Toomoka K, Singer K. The natural history of burst fractures at the thoracolumbar junction. J Spinal Disord,1990,3(1):39-46.
    53 Mumford J, Weinstein JN, Spratt KF, Goel VK. Thoracolumbar burst fractures. The clinical efficacy and outcome of nonoperative management. Spine,1993, 18(8):955-70.
    54 Alanay A, Acaroglu E, Yazici M, Aksoy C, Surat A. The effect of transpedicular intracorporeal grafting in the treatment of thoracolumbar burst fractures on canal remodeling. Eur Spine J,2001,10(6):512-6.
    55 Mohanty SP, Venkatram N. Does neurological recovery in thoracolumbar and lumbar burst fractures depend on the extent of canal compromise? Spinal Cord,2002, 40(6):295-9.
    56 Mikles MR, Stchur RP, Graziano GP. Posterior instrumentation for thoracolumbar fractures. J Am Acad Orthop Surg,2004,12(6):424-35.
    1 Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, et al. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty:a reappraisal of the vertebral venous system. Spine,2004, 29(13):1465-71.
    2 Kaso G, Horvath Z, Szenohradszky K, Sandor J, Doczi T. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques. Acta Neurochir (Wien),2008,150(7): 677-83.
    3 Crock HV, Yoshizawa H, Kame SK. Observations on the venous drainage of the human vertebral body. J Bone Joint Surg Br,1973,55(3):528-33.
    4 O'Connor SD, Yao J, Summers RM. Lytic metastases in thoracolumbar spine: computer-aided detection at CT-preliminary study. Radiology,2007,242(3):811-6.
    5 Crock HV, Yoshizawa H. The blood supply of the lumbar vertebral column. Clin Orthop Relat Res,1976, (115):6-21.
    6 Yuh WT, Quets JP, Lee HJ, Simonson TM, Michalson LS, Nguyen PT, et al. Anatomic distribution of metastases in the vertebral body and modes of hematogenous spread. Spine,1996,21(19):2243-50.
    7 Wiltse LL. Anatomy of the extradural compartments of the lumbar spinal canal. Peridural membrane and circumneural sheath. Radiol Clin North Am,2000, 38(6):1177-206.
    8 Antonacci MD, Mody DR, Heggeness MH. Innervation of the human vertebral body: a histologic study. J Spinal Disord,1998,11(6):526-31.
    9 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg,1940,112(1):138-49.
    10 Brinckmann P, Frobin W, Hierholzer E, Horst M. Deformation of the vertebral end-plate under axial loading of the spine. Spine,1983,8(8):851-6.
    11 Yeh ML, Heggeness MH, Chen HH, Jassawalla J, Luo ZP. Compressive loading at the end plate directly regulates flow and deformation of the basivertebral vein:an analytical study. J Orthop Surg Res,2006,1:18.
    12 Oeppen RS, Tung K. Retrograde venous invasion causing vertebral metastases in renal cell carcinoma. Br J Radiol,2001,74(884):759-61.
    13 Dommisse GF. The arteries and veins of the human spinal cord from birth/G.F. Dommisse. Churchill Livingstone,1975,100-102.
    14 Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res,2006,12(20 Pt 2):6243s-6249s.
    15 Perrin RG, Laxton AW. Metastatic spine disease:epidemiology, pathophysiology. and evaluation of patients. Neurosurg Clin N Am,2004,15(4):365-73.
    16 Wu AS, Fourney DR. Evolution of treatment for metastatic spine disease. Neurosurg Clin N Am.,2004,15(4):401-11.
    17 Rades D. Dunst J, Schild SE. The first score predicting overall survival in patients with metastatic spinal cord compression. Cancer,2008,112(1):157-61.
    18 Rades D, Fehlauer F, Veninga T, Stalpers LJ, Basic H. Hoskin PJ, et al. Functional outcome and survival after radiotherapy of metastatic spinal cord compression in patients with cancer of unknown primary. Int J Radiat Oncol Biol Phys.2007, 67(2):532-7.
    19 Rades D, Stalpers LJ, Veninga T, Schulte R, Hoskin PJ, Obralic N, et al. Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol,2005,23(15):3366-75.
    20 Swift PS. Radiation for spinal metastatic tumors. Orthop Clin North Am,2009, 40(1):133-44.
    21 White AP, Kwon BK, Lindskog DM. Friedlaender GE, Grauer JN. Metastatic disease of the spine. J Am Acad Orthop Surg,2006,14(11):587-98.
    22 Sciubba DM, Nguyen T, Gokaslan ZL. Solitary vertebral metastasis. Orthop Clin North Am.2009,40(1):145-54.
    23 Harada M, Shimizu A. Nakamura Y, Nemoto R. Role of the vertebral venous system in metastatic spread of cancer cells to the bone. Adv Exp Med Biol,1992.324:83-92.
    24 Alamin T, Mayle R. Lumbar tumor resections and management. Orthop Clin North Am,2009.40(1):93-104.
    25 Coman DR, deLong RP. The role of the vertebral venous system in the metastasis of cancer to the spinal column:experiments with tumor-cell suspensions in rats and rabbits. Cancer,1951,4(3):610-8.
    26 Algra PR, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Van Kooten B. Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients. AJR Am J Roentgenol,1992,158(6):1275-9.
    27 Asdourian PL, Weidenbaum M, DeWald RL, Hammerberg KW, Ramsey RG. The pattern of vertebral involvement in metastatic vertebral breast cancer. Clin Orthop Relat Res,1990, (250):164-70.
    28 Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol,1988,45(7):741-4.
    29 Arguello F, Baggs RB, Duerst RE, Johnstone L, McQueen K. Frantz CN. Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer, 1990,65(1):98-106.
    30 Shah AN, Pietrobon R, Richardson WJ, Myers BS. Patterns of tumor spread and risk of fracture and epidural impingement in metastatic vertebrae. J Spinal Disord Tech, 2003,16(1):83-9.
    31 Phillips FM. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine,2003,28(15 Suppl):S45-53.
    32 Afzal S, Dhar S, Vasavada NB, Akbar S. Percutaneous vertebroplasty for osteoporotic fractures. Pain Physician,2007,10(4):559-63.
    33 Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine,2000,25(8):923-8.
    34 Alvarez L, Perez-Higueras A, Granizo JJ, de Miguel I, Quinones D, Rossi RE. Predictors of outcomes of percutaneous vertebroplasty for osteoporotic vertebral fractures. Spine,2005,30(1):87-92.
    35 Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures:technical aspects. AJNR Am J Neuroradiol,1997, 18(10):1897-904.
    36 Schachar NS. An update on the nonoperative treatment of patients with metastatic bone disease. Clin Orthop Relat Res,2001, (382):75-81.
    37 Garfin SR, Yuan HA, Reiley MA. New technologies in spine:kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 200,26(14):1511-5.
    38 Togawa D, Kovacic JJ, Bauer TW, Reinhardt MK, Brodke DS, Lieberman IH. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine:percutaneous vertebroplasty versus kyphoplasty. Spine,2006,31(1):E4-10.
    39 Saliou G,Kocheida el M, Lehmann P, Depriester C, Paradot G, Le Gars D. et al. Percutaneous vertebroplasty for pain management in malignant fractures of the spine with epidural involvement. Radiology,2010,254(3):882-90.
    40 Chen YJ, Tan TS, Chen WH, Chen CC, Lee TS. Intradural cement leakage:a devastatingly rare complication of vertebroplasty. Spine,2006,31(12):E379-82.
    41 Hostin R, Carr J. Gupta MC, Hazelwood S, Dublin A. Importance of the peridural membrane in percutaneous vertebroplasty. J Spinal Disord Tech,2005,18(1):34-9.
    42 Chen JF. Lee ST. Percutaneous vertebroplasty for treatment of thoracolumbar spine bursting fracture. Surg Neurol,2004,62(6):494-500.
    43 Wenger M, Markwalder TM. Surgically controlled, transpedicular methyl methacrylate vertebroplasty with fluoroscopic guidance. Acta Neurochir (Wien), 1999,141(6):625-31.
    44 Ratliff J. Nguyen T, Heiss J. Root and spinal cord compression from methylmethacrylate vertebroplasty. Spine,2001,26(13):E300-2.
    45 Jang JS. Lee SH, Jung SK. Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty:a report of three cases. Spine,2002,27(19):E416-8.
    46 Sarzier JS, Evans AJ. Intrathecal injection of contrast medium to prevent polymethylmethacrylate leakage during percutaneous vertebroplasty. AJNR Am J Neuroradiol.2003,24(5):1001-2.
    47 Becker S, Meissner J, Tuschel A, Chavanne A, Ogon M. Cement leakage into the posterior spinal canal during balloon kyphoplasty:a case report. J Orthop Surg (Hong Kong).2007,15(2):222-5.
    48 Lee BJ. Lee SR, Yoo TY. Paraplegia as a complication of percutaneous vertebroplasty with polymethylmethacrylate:a case report. Spine.2002. 27(19):E419-22.
    49 Zoarski GH, Snow P, Olan WJ, Stallmeyer MJ, Dick BW, Hebel JR, et al. Percutaneous vertebroplasty for osteoporotic compression fractures:quantitative prospective evaluation of long-term outcomes. J Vase Interv Radiol,2002,13(2 Pt 1):139-48.
    50 Gaughen JR Jr. Jensen ME, Schweickert PA, Kaufmann TJ. Marx WF, Kallmes DF. Relevance of antecedent venography in percutaneous vertebroplasty for the treatment of osteoporotic compression fractures. AJNR Am J Neuroradiol,2002, 23(4):594-600.
    51 Benneker LM, Heini PF, Suhm N, Gisep A. The effect of pulsed jet lavage in vertebroplasty on injection forces of polymethylmethacrylate bone cement, material distribution, and potential fat embolism:a cadaver study. Spine,2008, 33(23):E906-10.
    52 Kao FC, Tu YK, Lai PL, Yu SW, Yen CY, Chou MC. Inferior vena cava syndrome following percutaneous vertebroplasty with polymethylmethacrylate. Spine,2008, 33(10):E329-33.
    53 Laredo JD, Hamze B. Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol,2004,33(9):493-505.
    54 Anselmetti GC, Zoarski G, Manca A, Masala S, Eminefendic H, Russo F, Regge D. Percutaneous vertebroplasty and bone cement leakage:clinical experience with a new high-viscosity bone cement and delivery system for vertebral augmentation in benign and malignant compression fractures. Cardiovasc Intervent Radiol,2008, 31(5):937-47
    55 Fenoglio L, Cena P, Migliore E, Bracco C, Ferrigno D, Silvestri A, et al. Vertebroplasty in the treatment of osteoporosis vertebral fractures:report on 52 cases. J Endocrinol Invest,2008,31(9):795-8.
    56 Yeom JS, Kim WJ, Choy WS, Lee CK, Chang BS, Kang JW. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br.2003,85(1):83-9.
    57 Phillips FM, Todd Wetzel F, Lieberman I, Campbell-Hupp M. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine,2002,27(19):2173-8.
    58 Wu CC, Lin MH, Yang SH, Chen PQ, Shih TT. Surgical removal of extravasated epidural and neuroforaminal polymethylmethacrylate after percutaneous vertebroplasty in the thoracic spine. Eur Spine J,2007,16(s3):326-31.
    59 Ryu KS, Park CK, Kim MC, Kang JK. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. J Neurosurg,2002,96(1 Suppl):56-61.
    60 Padovani B, Kasriel O, Brunner P, Peretti-Viton P. Pulmonary embolism caused by acrylic cement:a rare complication of percutaneous vertebroplasty. AJNR Am J Neuroradiol, 1999.20(3):375-7.
    61 Cotten A, Dewatre F, Cortet B, Assaker R, Leblond D, Duquesnoy B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma:effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology,1996.200(2):525-30.
    62 Schmidt R, Cakir B. Mattes T. Wegener M, Puhl W. Richter M. Cement leakage during vertebroplasty:an underestimated problem? Eur Spine J,2005,14(5):466-73.
    63 McGraw JK, Strnad BT, Patzik SB, Silber JS, LaValley AL, Boorstein JM. Carbon dioxide and gadopentetate dimeglumine venography to guide percutaneous vertebroplasty. Cardiovasc Intervent Radiol,2000,23(6):485-7.
    64 McGraw JK. Heatwole EV. Strnad BT. Silber JS. Patzilk SB, Boorstein JM. Predictive value of intraosseous venography before percutaneous vertebroplasty. J Vase Interv Radiol.2002,13(2 Pt 1):149-53.
    65 Liang B. Xiao EH, Zhou SK, Wu YZ. Luo JG, Liu J. Preliminary clinical application of percutaneous vertebroplasty. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2006. 31(1): 114-9.
    66 Peh WC, Gilula LA. Additional value of a modified method of intraosseous venography during percutaneous vertebroplasty. AJR Am J Roentgenol.2003. 180(1):87-91.
    67 Bhatia C. Barzilay Y. Krishna M. Friesem T, Pollock R. Cement leakage in percutaneous vertebroplasty:effect of preinjection gelfoam embolization. Spine. 2006.31(8):915-9.
    68 Kim DS,Doh JW. Lee KS,Yoon SM, Shim JJ. Kim SH. The Patterns of Intraosseous Venography before Percutaneous Vertebroplasty for Osteoporotic Compression Fractures. J Korean Neurosurg Soc,2008,43(6):288-93.
    69 Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H. Percutaneous vertebroplasty:a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol,2001,22(2):373-81.
    70 Vasconcelos C, Gailloud P, Beauchamp NJ, Heck DV, Murphy KJ. Is percutaneous vertebroplasty without pretreatment venography safe? Evaluation of 205 consecutives procedures. AJNR Am J Neuroradiol.2002,23(6):913-7.
    71 Kallmes DF, Jensen ME. Percutaneous vertebroplasty. Radiology,2003, 229(1):27-36.
    72 Komemushi A, Tanigawa N, Kariya S, Kojima H, Shomura Y, Tokuda T, et al. Intraosseous venography with carbon dioxide in percutaneous vertebroplasty:carbon dioxide retention in renal veins. Cardiovasc Intervent Radiol,2008,31(6):1174-7.
    73 Tanigawa N, Komemushi A, Kariya S, Kojima H, Sawada S. Intraosseous venography with carbon dioxide contrast agent in percutaneous vertebroplasty. AJR Am J Roentgenol,2005,184(2):567-70.
    74 Do HM. Intraosseous venography during percutaneous vertebroplasty:is it needed? AJNR Am J Neuroradiol,2002,23(4):508-9.
    75 Deramond H, Depriester C, Galibert P, Le Gars D. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am, 1998,36(3):533-46.
    76 Groen RJ, Groenewegen HJ, van Alphen HA, Hoogland PV. Morphology of the human internal vertebral venous plexus:a cadaver study after intravenous Araldite CY 221 injection. Anat Rec,1997,249(2):285-94.
    77 O'Brien JP, Sims JT, Evans AJ. Vertebroplasty in patients with severe vertebral compression fractures:a technical report. AJNR Am J Neuroradiol,2000, 21(8):1555-8.
    78 Vallejo R, Benyamin R, Floyd B, Casto JM, Joseph NJ, Mekhail N. Percutaneous cement injection into a created cavity for the treatment of vertebral body fracture: preliminary results of a new vertebroplasty technique. Clin J Pain,2006,22(2):182-9.
    79 Baroud G, Martin PL, Cabana F. Ex vivo experiments of a new injection cannula for vertebroplasty. Spine,2006,31 (1):115-9.
    80 Liebschner MA, Rosenberg WS. Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine,2001,26(14):1547-54.
    81 Chen JK, Lee HM, Shih JT, Hung ST. Combined extraforaminal and intradiscal cement leakage following percutaneous vertebroplasty. Spine,2007,32(12):E358-62.
    82 Teng MM, Cheng H, Ho DM, Chang CY. Intraspinal leakage of bone cement after vertebroplasty:a report of 3 cases. AJNR Am J Neuroradiol,2006,27(1):224-9.
    83 Baumann C, Fuchs H, Kiwit J, Westphalen K, Hierholzer J. Complications in percutaneous vertebroplasty associated with puncture or cement leakage. Cardiovasc Intervent Radiol.2007,30(2):161-8.
    84 Abdul-Jalil Y, Bartels J. Alberti O, Becker R. Delayed presentation of pulmonary polymethylmethacrylate emboli after percutaneous vertebroplasty. Spine,2007, 32(20):E589-93.
    85 Lee ST. Chen JF. A syringe compressor for vertebroplasty:technical note. Surg Neurol,2004.61(6):580-4.
    86 Harrington KD. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate:a case report. J Bone Joint Surg Am, 2001,83-A(7):1070-3.
    87 Peh WC, Gilula LA, Peck DD. Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology,2002,223(1):121-6.
    88 Vogelsang H. Intraosseous Spinal Venography. Amsterdam:Excerpta Medica; 1970:117.
    89 Amar AP, Larsen DW, Esnaashari N, Albuquerque FC, Lavine SD, Teitelbaum GP. Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery,2001,49(5):1105-14.
    90 Shapiro S, Abel T. Purvines S. Surgical removal of epidural and intradural polymethylmethacrylate extravasation complicating percutaneous vertebroplasty for an osteoporotic lumbar compression fracture. Case report. J Neurosurg,2003.98(1 Suppl):90-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700