MIMO信道模型及信道估计技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MIMO技术可提高频谱利用率,在不增加带宽的情况下成倍地提高通信系统的容量,这在频谱资源日益紧张的今天具有非常重要的意义。MIMO技术被认为是实现高速宽带无线互联网的关键技术之一,在新一代移动通信系统中有广阔的应用前景。MIMO通信系统的性能很大程度上取决于无线信道的衰落特性。故需要对无线MIMO衰落信道的模型进行研究,建立参数化的便于描述的无线衰落信道模型。在MIMO系统中,信道数量的增多、发送信号空间维的扩展使信道估计己成为制约系统性能和实际应用的关键技术。本文主要对无线MIMO系统中的信道模型、信道估计进行了研究。本文的主要内容如下:
     介绍了多输入多输出无线通信的研究背景和基本概念,阐述了在MIMO无线通信领域中正受到关注的和仍有待解决的基本问题,指出了本文的研究方向。
     分析了电波传播的基本机制,研究了无线信道的特征。为无线信道建模奠定了理论基础。研究了无线MIMO系统的系统模型和信道容量。
     针对MIMO无线信道建模这一具有挑战性的前沿课题,在研究平坦衰落信道模型、频率选择性衰落信道模型和空间信道典型模型的基础上,提出了一个具有直观物理意义的时变相关MIMO信道模型。该模型考虑了传播环境对信号产生的各种影响,并具有较低的计算复杂度;并建立了一个MIMO信道快速仿真器。
     以平坦衰落窄带信道为背景,基于无线MIMO传输帧结构和数学模型,利用训练序列推导了MIMO信道系数的最大似然估计值,最小二乘估计值和最小均方误差估计值。基于信道阶数为L,FIR结构的频率选择性信道,提出了新的基于叠加训练序列的信道估计方法,通过在信息序列上叠加训练序列,仅利用一阶统计量的方法实现信道估计。此算法针对时变信道中可利用的观测数据有限的情况,利用时间上相邻的信道系数之间的相关性,在没有带宽损失的情况下可以估计出信道系数。并在理论上证明了此算法的无偏性和有效性。
     以有理空间理论为基础,在信道阶数己知条件下,研究了基于子空间方法的MIMO盲信道估计算法。将此算法与HGA相结合,提出了基于HGA的MIMO盲信道估计算法。将待估计的信道系数和阶数阶数采用不同的编码方式编码在同一染色体中,以基于子空间的MIMO盲信道估计算法中得到的关于信道系数的方程式为基础构造适应度函数,同时估计出信道系数和信道阶数。解决了以往算法中需将信道阶数定义为已知或设定信道阶数上界的难题。仿真结果显示本文提出的算法有较快的收敛速度,其估计误差和基于子空间方法的MIMO盲信道估计算法相当。
By adopting MIMO (Multiple-Input Multiple-Output) technology, the capacity and spectrum efficiency of wireless communication systems can be increased significantly without the expense of bandwidth. It is believed that the MIMO technology will be one of the key technologies that will be uesd in the high-speed broadband wireless Internet access networks and has wide application prospect in new generation mobile communications in the future.
     The performances of the MIMO systems are decided by the fading characteristics of the wireless channel to a great extent. So, it needs to research the modeling and simulation of MIMO channels. The parametrical models of MIMO fading channels need to be established. In MIMO systems, with the increasing number of channel parameters and the extension of transmit signals in space dimension, the channel estimation have become the bottleneck of system performance and practical application. In this paper, I have mainly made further research on the related theories in the channel models and channel estimation and implementation algorithms on the base of others'research work. The main contents of the paper are expressed as follows:
     The background and basic concept of MIMO techniques are present firstly. A variety of concentrated problems and fundamental questions are introduced. The research directions are indicated later.
     The basic mechanism of radio wave propagation and characteristic of wireless channel are analyzed. The system models and capacity of MIMO are study based on the system models and capacity of SISO. The numerical analysis to MIMO channels capacity was carried on by simulation.
     MIMO wireless channel modeling is studied systematically. Above all, the flat fading channel models, the frequency-selective channel models and typical space-selective channel models were studied. Second, putting forward the methods of generating time varied correlation MIMO channels model. This model has considered a variety of contribution from propagation environment. Third, putting forward a fast MIMO channel simulator This improved the accuracy and saved the time of simulation.
     The MIMO channel estimation base on the training sequence is studied under flat narrow band channel. The channel parameters are deduced by different rule, just as maximum likelihood estimate (MLE), least square estimate (LSE) and minimum mean square error estimate. The new MIMO channel estimation based on the superimposing training sequence was put forward. The channel parameters are deduced by superimposing training sequence on the signal sequence, utilizing first order statistic. Aim at limited observation data in time varied channel, this new algorithm is bring forward. Unbiasedness and effectiveness have been verified.
     MIMO blind channel estimation base on subspace is studied base on rational space. A MIMO blind channel estimation base on HGA is presented. In this algorithm, channel parameters and order are coding in same one chromosome. The fitness function is constructed by MIMO blind channel estimation base on subspace. Channel parameters and order are estimated at same time. It solves the puzzle that the order needs to be assigned. The result of simulation displays:this new algorithm have faster convergence rate and its estimation error is correspond to MIMO blind channel estimation base on subspace.
引文
[1]I.E.Telatar. Capacity of multi-antenna channel[R]. Technical report, AT&T Bell Laboratories Internal Technical Memorandum,1995.
    [2]GJ.Foschini, M.J.Gans. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications,1998(6):311-335.
    [3]王华奎,李艳萍,张立毅等.移动通信原理与技术[M].北京:清华大学出版社,2009.
    [4]Arogyaswami paulraj, Rohit Nabar, Dhananjay Gore. Introduction to Space-Time Wireless Communications [M]. New York:Cambridge University Press,2003.
    [5]A.Paulraj, T. Kailath. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception[P]. US Patent 5345599,1994.
    [6]R.Roy, B.Ottersten. Spatial division multiple access wireless communication system[P]. US Patent 5515378, May 1996.
    [7]GJ.Foschini. Layered space-time architecture for wireless communication in fading environment when using multiple antennas[J]. Bell Labs Technical Journal,1996, Autumn:41-59.
    [8]G.D.Golden. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture[J]. Electronics Letters,1999(3):6-7.
    [9]G.J.Foschini. Simplified processing for high spectral efficiency wireless communications employing multi-element arrays[J]. IEEE Journal on selected areas in communications, 1999(17):1841-1852.
    [10]S.M.Alamouti. A simple transmit diversity technique for wireless communications [J]. IEEE Journal on selected areas in communications,1998,16(8):1451-1458.
    [11]V.Tarokh, H.Jafarkhani, A.R.Calderbank. Space-time block coding for wireless communications:performance results [J]. IEEE Journal on selected areas in communications,1999,17(3):451-460.
    [12]V.Tarokh, H.Jafarkhani, A.R.Calderbank. Space-time block codes from orthogonal designs [J]. IEEE Transaction on Information Theory,1999,45(5):1456-1467.
    [13]V.Tarokh, H. Jafarkhani, A.R.Calderbank. Space-time codes for high data rate wireless communication:performance criterion and construction [J]. IEEE Trans, on I.T.,1998, 44(2):744-765.
    [14]Lu.w.w.4G mobile research in Asia[J]. IEEE Communications Magazine,2003, 41(3):104-106.
    [15]Telatar.Emre. Capaeity of multi-antenna Gaussian channels[J]. European Transactions on Telecommunications.1999,10(6):585-595.
    [16]Branka Vuecetic, Jinhong Yuan. Space-Time Coding[M]. Chichester, England:Wiley, 2003
    [17]Tarokh, Vahid, Jafarkhani, Hamid. Differential detection scheme for transmit diversity [J]. IEEE Journal on Selected Areas in Communications,2000,18(7):1169-1174.
    [18]B.L.Hughes. Differential space time modulation[J]. IEEE Trans. Inform. Theory,2000, 46(7):2567-2578.
    [19]Zhang Chengjin, Bitmead Robert R. Subspace system identification for training-based MIMO channel estimation[J]. Automatica,2005,41(9):1623-1632.
    [20]Mohammed Saif K., Zaki Ahmed, Chockalingam A., et al. High-rate space-time coded large-MIMO systems:Low-complexity detection and channel estimation[J]. IEEE Journal on Selected Topics in Signal Processing,2009,3(6):958-974.
    [21]Ling Qi, Li Tongtong. Blind-channel estimation for MIMO systems with structured transmit delay scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2008,55(8):2344-2355.
    [22]Gao Feifei, Nallanathan Arumugam. Resolving multidimensional ambiguity in blind channel estimation of MIMO-FIR systems via block precoding[J]. IEEE Transactions on Vehicular Technology,2008,57(1):11-21.
    [23]Abuthinien M., Chen S., Hanzo L. Semi-blind joint maximum likelihood channel estimation and data detection for MIMO systems[J]. IEEE Signal Processing Letters, 2008,15:202-205.
    [24]Jagannatham Aditya K., Rao Bhaskar D. Whitening-rotation-based semi-blind MIMO channel estimation[J]. IEEE Transactions on Signal Processing,2006,54(3):861-869.
    [25]R.H.Clarke. A statistical theory of mobile-radio reception[J]. Bell Syst. Tech. J., Ujly-Aug,1968, vol.47:957-1000.
    [26]H. Suzuki. Statistical model for urban radio propagation[J]. IEEE Transactions on Communications,1977, COM-25(7):673-680.
    [27]J. D. Parson, A. S. Bajwa.Wideband characterization of fading mobile radio channels[J]. Inst. Elec. Eng. Proc.1982,129(2):95-101.
    [28]P.A.Bello. Characterization of randomly time-variant linear channels[J]. IEEE Trans. Comm..Syst.,1963,11(4):360-393.
    [29]W.C.Y.Lee. Mobile Communications Engineering[M]. New York, McGraw Hill Publications,1982.
    [30]D. Aszetly. On Antenna Arrays in Mobile Communication Systems:Fast Fading and GSM Base Station Receiver Algorithms[D]. Royal Institute of Technology,1996.
    [31]P.Zetterberg, P.L.Espensen, P. Mogensen. Propagation, beamsteering and uplink combining algorithms for cellular systems[C]. ACTS Mobile Communications Summit, Spain,1996.
    [32]G. G. Raleigh, A.Paulraj. Time varying vector channel estimation for adaptive spatial equalization[C]. IEEE Global Telecommunications Conference,1995,1:218-224.
    [33]Petrus Paul, Reed Jeffrey H., Rappaport Theodore S. Geometrically based statistical channel model for macrocellular mobile environments [C]. IEEE Global Telecommunications Conference,1996,2:1197-1201.
    [34]Liberti Joseph C. Rappaport Theodore S. A geometrically based model for line-of-sight multipath radio channels[C]. IEEE Vehicular Technology Conference,1996:844-848.
    [35]Klein Anja, Mohr Werner. Statistical wideband mobile radio channel model including the directions-of-arrival[C]. IEEE International Symposium on Spread Spectrum Techniques & Applications,1996,1:102-106.
    [36]M.Lu, T.Lo, J.Litva. A physical spatio-temporal model of multipath propagation channels[C]. IEEE Vehicular Technology Conference 1997:180-814.
    [37]R.Schmalenberger, A.Papathanassiou. Two comparible channel models for system and link level simulations of mobile radio systems[S]. COST259 TD (98) 036, Bern,1998.
    [38]Seidel, Scott Y. Rappaport, Theodore S. Site-specific propagation prediction for wireless in-building personal communication system design[J]. IEEE Transactions on Vehicular Technology,1994,43(4):252-263.
    [39]杨大成.移动传播环境[M].北京:机械工业出版社,2003.
    [40]J.P.Kermoal, L.Schumacher, K.I.Pedersen, etc. A stochastic MIMO radio channel model with experimental validation[J]. IEEE J. Selected Areas in Commun.,2002, 20(6):1211-1226.
    [41]Yu, Kai, Bengtsson, Mats, Ottersten, Bjorn, etc. Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements[C]. IEEE Global Telecommunications Conference,2001,1:156-160.
    [42]D.S.Shiu, Wireless communication using dual antenna arrays[M]. Kluwer academic publishers,2000.
    [43]A.Abdi, M.Kaveh. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE Journal on Selected Areas in Communications,2002, 20(3):550-560.
    [44]J.W.Wallace, M.A.Jensen. Modeling the indoor MIMO wireless channel [J]. IEEE Transactions on Antennas and Propagation,2002,50(5):591-599.
    [45]A.F.Molisch, A channel model for MIMO systems in macro-and microcellular environments[C]. IEEE Vehicular Technology Conference,2002,2:655-659.
    [46]Mother M L, Lodge J H. TCMP—a modulation and coding strategy for Rician fading channels[J]. IEEE Journal on Selected Areas in Communications,1989,7(9):1347-1355.
    [47]Janson M., Pontes J., Zwick T., etc. Directional hybrid channel model for ultra-wideband MIMO systems[C]. The 4th European Conference on Antennas and Propagation,2010, EuCAP 2010.
    [48]Wang Jun, Zhu Shihua, Wang Lei, etc. Channel capacity of multiple-input multiple-output systems with transmit and receive correlation [J]. Journal of Systems Engineering and Electronics,2008 19(1):21-26.
    [49]T.Svantesson. A physical MIMO radio channel model for multi-element multi-polarized antenna systems[J]. IEEE Vehicular Technology Conference,2001,2:1083-1087.
    [50]李忻.新一代无线通信系统中的MIMO信道建模与多天线设计研究[D].成都,电子科技大学博士学位论文.2005.
    [51]A.M.Sayeed. Deconstructing multiantenna fading channels[C]. IEEE Transactions on Signal Processing,2002,50(10):2563-2579.
    [52]高凯.MIMO信道的建模、仿真及无线衰落信道的Markov模型研究[D].长沙,国防科学技术大学博士论文,2006.
    [53]罗涛,乐光新.多天线无线通信原理与应用[M].北京:北京邮电大学出版社,2006
    [54]李道本.信号的统计检测与估计理论[M].北京,北京邮电大学出版社,1996.
    [55]J. K. Cavers. An analysis of pilot symbol assisted modulation for rayleigh fading channels[J]. IEEE Transactions on Vehicular Technology,1991,40(4):686-693.
    [56]J. K. Cavers. Pilot symbol assisted modulation and differential detection in fading and delay spread[J]. IEEE Transactions on Communications,,1995,43(7):2206-2212.
    [57]L.Tong, B.M.Sadler, M.Dong. Pilot-assisted wireless transmissions [J]. IEEE Signal Magzaine,2004,21(6):12-25.
    [58]Dimitrios Katselis, Eleftherios Kofidis, Sergios Theodoridis. Training-based estimation of correlated MIMO fading channels in the presence of colored interference [J]. Signal Processing,2007,87(9):2177-2187.
    [59]S. Adireddy. L. Tong, H. Viswanathan. Optimal placement of known symbols for frequency-selective block-fading channels [J]. IEEE Transactions on Information Theory, 2002,48(8):2338-2353.
    [60]B.Hassibi, B.Hochwald. How much training is needed in multiple-antenna wireless links[J]. IEEE Transactions on Information Theory,2003,49(4):951-963.
    [61]Pang Jiyong, Li Jiandong, Lu Zhuo, et al. Optimal training sequences for MIMO systems under correlated fading[J]. Journal of Systems Engineering and Electronics,2008, 19(1):33-38.
    [62]李元杰,杨绿溪,何振亚.基于训练序列的MIMO信道估计[J].通信学报,2006,27(5):1-5.
    [63]肖海林.新一代无线通信系统中的MIMO信道建模与信道估计[D].成都,电子科技大学博士学位论文,2007.
    [64]Tugnait J K, Luo Weilin. On channel estimation using superimposed training and first-order statistics[C], Acoustics, Speech, and Signal Processing,2003,4:624-627.
    [65]Mazzenga F, A hidden pilot assisted demodulation technique for channel estimation in M-QAM transmissions [J], European Transactions on Telecommunications,2002, 13(3):170-176.
    [66]A.G.Orozco-lugo, M.M.Lara, D.C.Mclernon. Channel estimation using implicit training[C]. IEEE Trans Signal Processing,2004,52(1):240-254.
    [67]Li Y J, Yang L X, He Z Y. MIMO channel estimation using implicit training [J] Journal of China Institure of Communications,2004,25(12):1-7.
    [68]X. Meng, J. K. Tugnait. MIMO Channel Estimation Using Superimposed Training[C]. Proc. IEEE ICC'04,2004,5:2663-2667.
    [69]Numan Mostafa Wasiuddin, Islam Mohammad Tariqul, Misran Norbahiah. A proficient channel estimation method for MIMO system[C]. IEEE 9th Malaysia International Conference on Communications with a Special Workshop on Digital TV Contents,2009: 801-804.
    [70]Jiangzhang Zhu, Yan Liu, Tao Jin, et al. Robust low-complexity joint space-time-frequency channel estimation with transmit diversity in mobile wireless channels[J]. International Journal of Electronics and Communications,2010, 64(6):570-578.
    [71]Hamid Nooralizadeh, Shahriar Shirvani Moghaddam. A novel shifted type of SLS estimator for estimation of Rician flat fading MIMO channels [J]. Signal Processing, 2010,90(6):1886-1893.
    [72]Zhou G T, Viberg M, McKeley T, A first-order statistical method for channel estimation [J], IEEE Signal Processing Letters,2003,10:57-60.
    [73]Y.Sato, A method of self-recovery equalization for multilevel amplitude-modulation [J]. IEEE transation on communication,1975,23:679-682.
    [74]Choqueuse, Vincent, Mansour, Ali, Burel, Gilles, et al. Blind channel estimation for STBC systems using higher-order statistics [J]. IEEE Transactions on Wireless Communications,2011,10(2):495-505.
    [75]Cao Wei, Nallanathan A., Chai Chin Choy. A novel high data rate prerake DS UWB multiple access system:Interference modeling and tradeoff between energy capture and imperfect channel estimation effect [J]. IEEE Transactions on Wireless Communications, 2008,7(9):3558-3567.
    [76]Jalloh Mohamed, Das Pankaj. Effect of phase noise and imperfect channel estimation on coded OFDM transmit diversity with application to IEEE 802.16e[C]. International Conference on Signal Processing Proceedings,2008:1756-1760.
    [77]Barton Richard J., Daniel Manoj. Performance evaluation of non-Gaussian channel estimation techniques on ultrawideband impulse radio channels [J]. International Journal of Communication Systems,2007,20(6):723-741.
    [78]J.K.Tugnait. Identification of non-minimum phase linear stochastic systems[J]. Automatica,1986,22:454-464.
    [79]L.Tong, G. Xu., T.Kailaith. Blind identification and equalization based on second-order statistics:A frequency domain approach[J]. IEEE Transation on information theory, 1995,41(1):329-333.
    [80]L.Tong, G. Xu, T.Kailath. Blind identification and equalization based on second-order statistics:A time domain approach[J]. IEEE Transation On information theory,1994, 42(2):1542-1151.
    [81]K. Sabri, M. El Badaoui, F. Guillet, et al. A frequency domain-based approach for blind MIMO system identification using second-order cyclic statistics [J]. Signal Processing, 2009,89(1):77-86.
    [82]Carlos Estevao, R. Fernandes, Pierre Comon, et al. Blind identification of MISO-FIR channels [J]. Signal Processing,2010,90(2):490-503.
    [83]A. Balouchrame, K. Abed-Meraim, J.F. cardoso, et al. A blind source separation technique using second-order statistic[J]. IEEE Transaction on signal processing,2004, 45:434-444.
    [84]Jun Fang, A. Rahim Leyman, Yong Huat Chew, et al. Some further results on blind identification of MIMO FIR channels via second-order statistics [J]. Signal Processing, 2007,87(6):1434-1447.
    [85]张贤达.矩阵分析引论[M].北京:国防工业出版社,2004.
    [86]Yonghong Zeng, Tung Sang Ng. Blind estimation of MIMO channels with an upper bound for channel orders[J]. Signal Processing,2006,86(2):212-222.
    [87]Yonghong Zeng, Tung Sang Ng. A blind MIMO channel estimation method robust to order overestimation [J]. Signal Processing,2004,84(2):435-439.
    [88]Mohan, S. Application of genetic algorithms for estimation of flood routing model parameters[C]. Proceedings of World Environmental and Water Resources Congress, 2009,342:4679-4688.
    [89]Dal Moro Giancarlo, Pipan Michele, Gabrielli Paolo. Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation[J]. Journal of Applied Geophysics,2007,61(1):39-55.
    [90]Mitra Amit, Kundu Debasis. Genetic algorithms based robust frequency estimation of sinusoidal signals with stationary errors[J]. Engineering Applications of Artificial Intelligence,2010,23(3):321-330.
    [91]Lima Marcos A. C. Araujo, Aluizio F. R., Cesar Amilcar C. Adaptive genetic algorithms for dynamic channel assignment in mobile cellular communication systems[J].IEEE Transactions on Vehicular Technology,2007,56(5Ⅰ):2685-2696.
    [92]Ciriaco Fernando, Abrao Taufik, Jeszensky Paul Jean E..Genetic algorithm applied to multipath multiuser channel estimation in DS/CDMA systems [C]. IEEE International Symposium on Spread Spectrum Techniques and Applications,2006:138-142.
    [93]Yamindi Jean-Baptiste, Wu Mu-Qing.The analytical method of genetic algorithm-Aided iterative joint channel estimation and multi-user detection[C].2009 Australasian Telecommunication Networks and Applications Conference, ATNAC 2009-Proceedings.
    [94]Ghasemmehdi Arash, Asghari Vahid Reza, Ardebilipour Mehrdad. Genetic algorithm assisted channel estimation for multi-user communication systems[J]. WSEAS Transactions on Communications,2006,5(5):930-934.
    [95]Fangjiong Chen, Sam Kwong, Gang Wei, et al. Blind linear channel estimation using genetic algorithm and SIMO model[J], Signal Processing 2003,83:2021-2035.
    [96]Ling Zhang, Xianda Zhang. MIMO channel estimation and equalization using three-layer neural networks with feedback[J]. Tsinghua Science & Technology,2007, 12(6):658-662
    [97]A.Touzni, I.Fijalkow. A globally convergent approach for blind MIMO adaptive deconvolution [J]. IEEE Trans. Signal Processing,2001,49(6):1166-1178.
    [98]Chengjin Zhang, Robert R. Bitmead. Subspace system identification for training-based MIMO channel estimation [J]. Automatica,2005,41(9):1623-1632.
    [99]Hassan Ali, Arnaud Doucet, Yingbo Hua. Blind SOS subspace channel estimation and equalization techniques exploiting spatial diversity in OFDM systems[J]. Digital Signal Processing 14 (2004):171-202.
    [100]Donatella Darsena, Giacinto Gelli, Luigi Paura, et al. Subspace-based blind channel identification of SISO-FIR systems with improper random inputs[J]. Signal Processing 84 (2004):2021-2039.
    [101]Amihood Patrick, Masry Elias, Milstein Laurence B., et al. The effects of channel estimation errors on a nonlinear precoder for multiple antenna downlink channels[J]. IEEE Transactions on Communications,2009,57(11):3307-3315.
    [102]Hyoung-Goo Jeon, Erchin Serpedin. A novel simplified channel tracking method for MIMO-OFDM systems with null sub-carriers[J]. Signal Processing 2008,88:1002-1016.
    [103]张贤达.现代信号处理[M].北京:清华大学出版社,北京,2003.
    [104]Hamid Nooralizadeh, Shahriar Shirvani Moghaddam. A novel shifted type of SLS estimator for estimation of Rician flat fading MIMO channels [J]. Signal Processing, 2010,90(6):1886-1893.
    [105]Yuan Tian, Xia Lei, Yue Xiao, et al. SAGE based joint timing-frequency offsets and channel estimation in distributed MIMO systems [J]. Computer Communications,2010, 33(17):2125-2131
    [106]Sheikh A.U.H., Shah S.F.A. Uplink channel estimation for IMT-DS system[C]. IEEE Vehicular Technology Conference,2001,4:2442-2446.
    [107]Mihai Enescu, Marius Sirbu, Visa Koivunen. Adaptive equalization of time-varying MIMO channels [J] Signal Processing,2005,85:81-93.
    [108]Chris Potter, Ganesh K. Venayagamoorthy, Kurt Kosbar. RNN based MIMO channel prediction [J].Signal Processing,2010,90(2):440-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700