航空信道的建模及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空事业的发展,航空通信越来越受到人们的关注,也将在未来无线移动通信发展中发挥越来越重要的作用。在航空通信中,由于飞行器的快速运动,接收信号受到航空信道的严重的多径衰落的影响。因此,对于航空信道进行精确、有效、合理的建模具有重要意义。
     本文主要研究了航空信道的模型的建立及其应用,完成的工作如下:
     (1)对无线信道的特性进行研究,主要分析了通信环境中移动台的移动速度、电波频率以及信道的时间选择性和频率选择性衰落特性。并在此基础上,重点研究了航空信道的传播特性,根据飞行器状态的不同,将航空信道分为飞行场景、起飞和降落场景、陆地滑行场景和对流层散射场景等四类不同的航空信道场景,并分析了与之对应的大尺度衰落和小尺度衰落的特性,主要包括路径传播损耗、衰落深度、衰落速率、多普勒功率谱和延迟功率谱。
     (2)在航空通信系统条件下,根据信道在四种不同场景下的特性分别建立了相应的信道模型,并对所有建立的模型进行了仿真,通过对实验结果与理论分析的比较,可以得出两者是一致的,从而验证了模型建立的合理性和有效性。
     (3)研究了传统的SC-FDE系统在所建立的航空信道模型(四种场景)下的应用并对其进行了仿真,由于航空信道的恶劣特性,传统的SC-FDE系统传输性能很差,无法满足通信需要,本文建议了SC-FDE系统的改进方案即基于Turbo编码的SC-FDE系统,并将改进系统在四种不同场景下的信道模型上进行了仿真,并与传统的SC-FDE系统的误码率性能进行分析和比较,验证了改进系统的有效性,从而使得通信系统在比较复杂的航空信道上也可以得到比较好的传输性能(如在起飞和降落场景下,在信噪比较小的情况下系统的误码率BER可达到10?6甚至更小),从而满足信息传输的要求。
     (4)为进一步提高SC-FDE系统的传输质量,本文还研究了系统的定时同步方法,提出了一种新的定时同步算法,并在四种不同的航空信道中进行了仿真,仿真结果表明,在不同的航空信道中,原有的Schmidl&Cox算法有比较明显的平台效应,对于符号的定时同步很不准确:而本文中提出的新算法则很好地克服了原有的算法中峰值长度较大且不容易定位的问题,更能可靠地定位传输符号的起始位置。
As the aviation enterprise develops, aeronautical communication attracts more and more attention and it will play a more important role in wireless mobile communication in the future. In the aeronautical communication, the rapid speed of the aircraft causes that the received signal suffers a lot from the multipath fading of the aeronautical channel. As a result, it is of great importance to build accurate, efficient and reasonable aeronautical channel models.
     This paper presents the simulation model of the aeronautical channel and its application. The main work in this paper is as follows:
     1. This paper studies the characters of the wireless channel, and mainly analyzes the speed of the mobile station in the communication environment, the frequency of the electric wave, the time selective fading character and the frequency selective fading character of the wireless channel. Based on this, the propagation characteristic of the aeronautical channel is specifically studied. According to the different state of the aircraft, the aeronautical channel consists of four different scenarios: en-route scenario, arrival and takeoff scenario, taxi scenario and troposcatter communication scenario, and the characters of large scale fading and small scale fading of each of the four scenarios were analyzed, such as the path loss, the fading depth, the fading rate, the Doppler power spectrum and the delay power spectrum.
     2. In the aeronautical communication, the channel models of the four different scenarios are separately built and simulated. The computer simulation result shows that the theory analysis agree with the experiment, and it proves the efficiency and rationality of the channel model.
     3. This paper studies the traditional SC-FDE system in the aeronautical channel models (four scenarios) and simulates it. Because of the bad transmission performance of the aeronautical channel, the traditional SC-FDE system has bad performance and can not satisfy the communication system. The improved SC-FDE system based on Turbo coding is proposed in this paper, and the simulation of the improved system in the four different scenario channels is analyzed and compared. The simulation result proves the efficiency of the improved system, and it has better transmission performance even in more complicated aeronautical channel and satisfies the communication, For example, in the channel of the arrival and takeoff scenario, the proposed improved SC-FDE system can achieve lower BER performance with 10?6 in the condition of low SNR.
     4. In order to further improve the transmission quality of the SC-FDE system, this paper studies the timing synchronization, and proposes a new timing synchronization method and simulated it in four different scenario channels. The results show that, in different aeronautical channels, the intrinsic Schmidl&Cox method has obviously plateau effect and it is not accurate for symbol timing synchronization. The new method in this paper can overcome the shortage in the Schmidl&Cox method in which the length of the peak value is large and it is difficult for symbol timing, and the new method can do better and more reliably in the symbol timing synchronization.
引文
[1] David Tse, Pramod Viswanath, Fundamentals of Wireless Communication [M].现代通信基础(中文版).北京:人民邮电出版社,2007.1
    [2]韦惠民,李国民,暴宇.移动通信技术[M].北京:人民邮电出版社,2006.10
    [3]廖晓滨,赵熙.第三代移动通信网络系统技术与应用基础教程[M].北京:电子工业出版社,2006.4
    [4]陆琦.无线通信衰落信道的实现[D].大连:大连海事大学. 2007.9
    [5]张玉艳,于翠波.数字移动通信系统[M].北京:人民邮电出版社,2009.2
    [6]周北望,韩小平. Wimax宽带无线技术及其发展前景[J].有线电视技术,2008,3
    [7]李仲令,李少谦,唐友喜,武刚.现代无线与移动通信技术[M].北京:科学出版社,2007.7
    [8] P. A. Bello, Aeronautical channel characterization [J], IEEE Trans Commun, 1973, COM-21: 548–563
    [9]王绘宇.移动信道建模与仿真及其在点到多点通信系统中的应用研究[D].重庆:重庆大学. 2007.4
    [10] William H.Tranter, K.Sam Shanmugan, Theodore S.Rappaport, Kurt L.Kosbar. principles of Communication Systems Simulation with Wireless Applications[M].通信系统仿真原理与无线应用(中文版)。北京:机械工业出版社,2007.11
    [11]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000.12
    [12] Andrea Goldsmith, Wireless Communications [M].无线通信(中午版).北京:人民邮电出版社,2007.6
    [13]王鹏,陈吉余,李栋.无线信道特性及仿真[J].中国传媒大学学报自然科学版,2006.13(2):11-14
    [14]张圣.陆地高速运动环境中移动通信多径信道研究[D].武汉:武汉理工大学.2006.3
    [15] John G. Proakis, Digital Communications [M].数字通信(中文版).北京:电子工业出版社,2008.1
    [16]张明高.对流层散射传播[M].北京:电子工业出版社,2004.10
    [17]师骋. VHF/UHF多径移动信道模型研究[D].哈尔滨:国防科技大学.2002.11
    [18]闫志刚,贺志强,杜志敏,吴伟陵.基于分层几何单反射原理的连续时间时变矢量信道模型[J].通信学报,2003.24(6):106-112
    [19]曹敦,蒋加伏.随机空时无线信道模型及Matlab仿真[J].计算技术与自动化,2006.25(4):91-94
    [20]习靖,习强,郑淑梅.地空信道二径模型及仿真[J]. Radio Engineering,2007.37(7):58-60
    [21]陈建民.地空天线的高度与多径干扰[J].无线电通信技术,2000.26(1):44-45
    [22]宋晓晋,宋铁成,沈连丰.移动通信衰落信道的建模与仿真[J].东南大学学报,2005. 35(3):338-342
    [23]谢益溪.天线电波传播――原理与应用[M].北京:人民邮电出版社,2008.7
    [24]秦鸿波,葛海龙,宋颖凤.由地空通信干扰到地面通信干扰的等效推算[J].电子对抗技术,2004. 34(10):37-51
    [25]霍尔.对流层传播与无线电通信[M].北京:国防工业出版社,1984.9
    [26]周月臣.移动通信工程设计[M].北京:人民邮电出版社,1994.12
    [27]牟薪苇,谢绍斌,鞠占生.短波地空通信链路电磁计算与仿真[J].山东大学学报,2007.37(6):71-73
    [28]刘圣民,熊兆飞.对流层散射通信技术[M].北京:国防工业出版社,1982.12
    [29]甘国田.对流层散射信道预测及分析[J]. Radio Communications Technology,1997.23(5):20-23
    [30]顾海龙,陈树新.对流层散射通信信道建模及系统性能仿真[J].通信技术,2008.41(9):26-28
    [31] ITU-R. Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems. P.617,2003
    [32] Gregory D.Durgin. Space-Time Wireless Channels [M].空-时无线信道(中文版).西安:西安交通大学出版社,2004.8
    [33]吴春艳,孙晨.移动无线信道多径衰落的仿真[J].山东交通学院学报,2005.13(1):11-13
    [34] Eric Hass. Aeronautical Channel Modeling [J]. IEEE Trans on Vehicular Technology, 2002.51:254-264
    [35] M. J. Gans. A power-spectral theory of propagation in the mobile-radio environment [J]. IEEE Trans. Veh. Technol., 1972.VT-21: 27-38
    [36]梁斌,朱洪波.移动通信Rician信道中的多普勒影响分析[J].南京邮电学院学报(自然科学版). 2002.22(1):11-14
    [37]徐以涛,王立军. WSSUS时变多径信道的统计特性与仿真[J].解放军理工大学学报(自然科学版). 2003.4(5):22-25
    [38] P. A. Bello. Characterization of randomly time-variant linear channels [J]. IEEE Trans. Commun. Syst., 1963.CS-11: 360–393
    [39] P. Hoeher. A statistical discrete-time model for the WSSUS multipathchannel [J]. IEEE Trans on Vehicular Technology, 1992.41:461–468
    [40]张国斌,黄湧. IEEE802. 16a单载波频域均衡方案的仿真[J].电讯技术,2007,47(3): 125-130.
    [41]马宏伟,龙沪强,管云峰.单载波频域均衡消除符号间干扰的研究[J].信息技术,2006,5:12-15
    [42] Sun Peng,Huang Guo-ce. The performance of MC-CDMA in VHF aeronautical channel [C]// The 4th IEEE International Conference on Wireless Communications, Networking and Mobile Computing. DaLian,LiaoNing,2008:1-3.
    [43]刘东华. Turbo码原理与应用技术[M].北京:电子工业出版社,2004.1
    [44]罗新民,薛少丽,田琛.现代通信原理[M].北京:高等教育出版社,2008.6
    [45]刘然,江修富,郝建华.利用训练符号进行SC-FDE系统粗定时同步算法的研究[J].国外电子测量技术,2008.27(7):25-28
    [46]张雪芬. SC-FDE系统中的定时同步研究[D].山东:山东大学,2006.4
    [47]刘然,江修富,郝建华.一种新的SC-FDE系统粗定时同步算法[J].电讯技术,2008.48(9):29-32
    [48] Timothy M. Schmidl, Donald C Cox. Robust Frequency and Timing Synchronization forOFDM [ J ]. IEEE Transactions on Communications, 1997.45 (12):1613– 1621
    [49]张晓辉. OFDM系统定时与载波频率同步研究[D].西安:西安电子科技大学,2001.1
    [50]陆辉. MIMO-OFDM系统同步技术研究与应用[D].西安:西安科技大学,2008.4
    [51]韩艳春. OFDM系统的同步技术研究[D].重庆:重庆大学,2007.4
    [52]张杰,胡钰.基于CAZAC序列的突发通信定时同步算法[J].无线电工程,2005.35(11):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700