基于少模光纤光栅的柱矢量光激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矢量光束,包括径向偏振,角向偏振和混合态偏振光,是指电场在光束横截面上具有轴对称分布的一类空间非均匀偏振光束。这种偏振特性使得柱矢量光束在光学捕获、粒子加速、激光加工、高分辨显示等领域有着显著的应用前景。
     在普通阶跃光纤的本征解中,LP11的四个简并模:TM01模、TE01模以及HE21e/0分别对应着径向,角向和混合态偏振光,因此利用少模光纤可以有效的激发柱矢量光束。通过将能量从基模耦合到高阶简并模LP11模上,并采用一定偏振控制手段即可实现径向偏振和角向偏振模式的选择输出。
     本文主要基于光纤模式特性和耦合模理论,分析不同类型少模光纤光栅的特性,并设计了相应的全光纤柱矢量激光器模型,提升在少模光纤内模式转换的效率,同时有效抑制光纤中LP01模成分,实现高偏振纯度的径向偏振和角向偏振光的可调谐输出。
     本研究课题得到了国家自然科学基金和中央高校基本科研业务费专项资金等项目的资助。
     本文主要研究内容包括:
     1.基于均匀布拉格光栅的少模掺镱光纤激光器研究。设计少模掺镱光纤激光器模型,利用少模光纤光栅选择满足位相匹配条件的自发辐射光,使其谐振输出。通过三维速率方程分析不同结构参数,如泵浦功率、掺杂容度、光栅锴振波长等,对少模光纤内模式竞争的影响。利用环形掺杂掺镱光纤或者光学滤波装置实现了对LP01模成分的完全抑制,得到了高纯度柱矢量光束输出,并且有效降低激光器的阈值功率,提升了斜率效率。
     2.横向非对称折射率分布的少模光纤光栅的研究。分析比较了不同光栅结构内,横向非对称折射率分布对模式的耦合以及耦合效率的影响。基于横向非对称长周期光栅,在普通少模光纤上实现了TE01模与其他简并模在波长上的分离。通过设计三环结构的光纤光栅,使得TM01模、TE01模以及HE21e/0模在光谱上的分离,实现了径向偏振和角向偏振的可调谐输出。
     3.少模光纤中螺旋光栅的研究。由于HE21e/0模的叠加可以生成高纯度的涡旋光束,基于单面曝光刻写的光栅所具有横向非均匀折射率分布的特点,设计了利用掩模板法刻写螺旋形布拉格光栅的方案。理论分析了少模光纤中布拉格型螺旋光栅的特性,并基于三环结构光纤光栅的特性,设计相应的少模光纤激光器得到了高纯度涡旋光束。
     本论文的主要创新点:
     1.建立三维速率方程分析少模掺镱光纤内不同横模场之间的模式竞争,设计利用环形掺杂掺镱光纤或者光学滤波装置的方案,完全抑制了激光器内的基模成分,得到高纯度柱矢量光束输出,同时激光器的斜率效率最高可以达到60%。
     2.通过在普通少模光纤内刻写横向非对称长周期光栅得到了TE01模的单横模输出。设计三环结构的光纤光栅,实现了TM01模、TE01模以及HE21e/0模在光谱上的分离,得到了径向偏振和角向偏振的可调谐输出。
     3.基于掩模板法,设计了布拉格型螺旋光栅的刻写方案。利用三环结构光纤光栅,在少模光纤中设计了基于布拉格型的螺旋光栅的光纤激光器得到了高纯度涡旋光束,并实现了不同阶次涡旋光束的可调谐输出。
Cylindrical vector (CV) beams, including radially, azimuthally and hybrid polarized beams, have attracted greatly attention in recent years. Characterized by its polarization symmetric, CV beams have many attractive applications, such as particle acceleration, optical trapping, laser machining, and microscope.
     Various methods have been used to generate CV beams, such as using an intracavity birefringent lens, producing a space-variant polarization converters or sub-wavelength grating. All-fiber designs are also proposed, which enable the generation in an easy and flexible way. The degenerate LPn mode includes radially (TM01), azimuthally (TE01) and hybrid (HE21e/o) polarized beams. By exciting LP11mode in a few-mode fiber, both TM01and TE01modes become switchable using polarization controllers (PCs).
     In this work, we using different kinds of few-mode fiber gratings to generated CV beams in few-mode fiber laser, with the aim to maximize the generation of LP11mode while minimized the effect of fundamental mode. By proper design the grating structure, we get a wavelength tunable output of radially and azimuthally polarized beam with high polarization purity.
     This work is supported by Chinese Universities Scientific Fund.
     The main research works as follows:
     1. Generating CV beams in an Ytterbium-doped few-mode fiber laser by using a uniform few-mode fiber Bragg grating (FM-FBG). Since the two propagation modes have different intensity distribution over the cross-section of the Ytterbium-doped fiber (YDF), we analyze the modes competition based on three-dimensional rate equations. With the aim to minimize the generation of fundamental mode, we analyze the behaviors of propagation mode competition under different conditions, such as resonant wavelength, pump power, YDF length or doping concentration. We find a pure CV beam can be generated by producing a doughnut doping YDF or using an wavelength filter.
     2. Contribution of the transverse asymmetric refractive index change profile on the coupling efficiency of fiber grating. It found that transverse asymmetric index profile could be induced during the writing of fiber Bragg gratings with UV side-exposure techniques. We find the coupling efficiency of LP01→LP11can reach100%using this kind of grating, and a pure TE01mode output can be generated on a transverse asymmetric long-period fiber grating (LPFG). By design an M-fiber grating, we get a wavelength tunable output of radially and azimuthally polarized beam.
     3. Generating vortex beams by design a helical-few-mode fiber grating. Vortex beams can be generated by a helical-grating in a few-mode fiber due to the superposition of degenerated HE21e/o mode, with a π/2relative phase shift. Since UV side-exposure can induced transverse asymmetric, the helical Bragg grating can be fabricated by rotation of the asymmetric index change along the fiber axis. By writing a helical fiber Bragg grating directly on an M-fiber, a high purity of the desired vortex beams can be generated on a few-mode fiber laser.
     The innovative work and results in this thesis are as follows:
     1. Based on three-dimensional rate equations, numerical analysis the modes competition in an YDF. A pure CV beam can be generated by producing a doughnut doping YDF or using an wavelength filter, while the generation of LP01mode is completely depressed, the slope efficiency can reach60%.
     2. Analysis the Contribution of the transverse asymmetric refractive index change profile on the coupling efficiency of fiber grating. A pure TE01mode output can be generated on a transverse asymmetric long-period fiber grating, and a wavelength tunable output of radially and azimuthally polarized beam can be generated by writing transverse asymmetric grating structure on a M-fiber.
     3. Design a method to fabricate helical Bragg gratings using a phase mask. Analysis the coupling theory on a helical fiber Bragg grating. A high purity of the desired vortex beams can be generated on a few-mode fiber laser by writing a helical fiber Bragg grating directly on an M-fiber.
引文
[1]Q. Zhan, "Cylindrical vector beams:from mathematical concepts to applications," Advances in Optics and Photonics, pp.1-57,2009.
    [2]R. Dorn, et al, "Sharper focus for a radially polarized light beam," Physical Review Letters, vol.91,2003.
    [3]M. Born and E. Wolf, "Principles of Optics," (Cambridge University Press),2002.
    [4]吕百达,”激光光学-光束描述,”高等教育出版社,2003.
    [5]Q. W. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Optics Express, vol.10, pp.324-331, Apr 2002.
    [6]H. F. Wang, et al, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photonics, vol.2, pp.501-505, Aug 2008.
    [7]C. Varin and M. Piche, "Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams," Applied Physics B-Lasers and Optics, vol.74, pp. S83-S88, Jun 2002.
    [8]Q. W. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Optics Express, vol.12, pp.3377-3382, Jul 26 2004.
    [9]V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," Journal of Physics D-Applied Physics, vol.32, pp.1455-1461, Jul 1999.
    [10]M. Meier, et al., "Material processing with pulsed radially and azimuthally polarized laser radiation," Applied Physics a-Materials Science & Processing, vol.86, pp.329-334, Mar 2007.
    [11]L. Novotny, et al., "Longitudinal field modes probed by single molecules," Physical Review Letters, vol.86, pp.5251-5254,2001.
    [12]W. Chen and Q. Zhan, "Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam," Optics Letters, vol.34, pp.722-724, Mar 15 2009.
    [13]W. Chen and Q. Zhan, "Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination," Optics Express, vol.15, pp. 4106-4111, Apr 2 2007.
    [14]Y. Q. Zhao, et al., "Creation of a three-dimensional optical chain for controllable particle delivery," Optics Letters, vol.30, pp.848-850, Apr 2005.
    [15]D. Pohl, "OPERATION OF A RUBY-LASER IN PURELY TRANSVERSE ELECTRIC MODE TE01," Applied Physics Letters, vol.20, pp.266-&,1972.
    [16]Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Optics Letters, vol.30, pp.3063-3065, Nov 15 2005.
    [17]V. G. Niziev, et al., "Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer," Applied Optics, vol.45, pp.8393-8399, Nov 20 2006.
    [18]M. A. Ahmed, et al, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers," Optics Letters, vol.32, pp.3272-3274, Nov 15 2007.
    [19]C. Rotschild, et al, "Adjustable spiral phase plate," Applied Optics, vol.43, pp. 2397-2399, Apr 20 2004.
    [20]Z. Bomzon, et al., "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Optics Letters, vol.27, pp.285-287,2002.
    [21]G. Machavariani, et al., "Spatially-variable retardation plate for efficient generation of radially-and azimuthally-polarized beams," Optics Communications, vol.281, pp. 732-738, Feb 2008.
    [22]M. R. Beversluis, et al, "Programmable vector point-spread function engineering," Optics Express, vol.14, pp.2650-2656, Apr 3 2006.
    [23]T. Grosjean, et al, "An all-fiber device for generating radially and other polarized light beams," Optics Communications, vol.203, pp.1-5, Mar 2002.
    [24]G. Volpe and D. Petrov, "Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams," Optics Communications, vol.237, pp.89-95, 2004.
    [25]R. Zheng, et al., "An all-fiber laser generating cylindrical vector beam," Optics Express, vol.18, pp.10834-10838, May 10 2010.
    [1]D. Hondros and P. Debye, "Electromagnetic waves in dielectrical wires," Annalen Der Physik, vol.32, pp.465-476, Jun 1910.
    [2]P. Debye, "The notion of probability in the theory of radiation," Annalen Der Physik, vol. 33, pp.1427-1434, Dec 1910.
    [3]K. C. Kao and G. A. Hockham, "DIELECTRIC-FIBRE SURFACE WAVEGUIDES FOR OPTICAL FREQUENCIES," Proceedings of the Institution of Electrical Engineers-London, vol.113, pp.1151-&,1966 1966.
    [4]Synder.光波导理论.
    [5]R. Kashyap, "Fiber bragg gratings " 1999.
    [6]T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol.15, pp. 1277-1294,1997.
    [7]T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," Journal of the Optical Society of America a-Optics Image Science and Vision, vol.14, pp. 1760-1773,1997.
    [8]A. Othonos, "Fiber Bragg gratings," Review of Scientific Instruments, vol.68, pp. 4309-4341,1997.
    [9]T. Mizunami, et al., "Bragg gratings in multimode and few-mode optical fibers," Journal of Lightwave Technology, vol.18, pp.230-235,2000.
    [10]J. N. Blake, et al., "FIBEROPTIC MODAL COUPLER USING PERIODIC MICROBENDING," Optics Letters, vol.11, pp.177-179,1986.
    [11]H. G. Park and B. Y. Kim, "INTERMODAL COUPLER USING PERMANENTLY PHOTOINDUCED GRATING IN 2-MODE OPTICAL FIBER," Electronics Letters, vol. 25, pp.797-799,1989.
    [12]K. O. Hill, et al., "EFFICIENT MODE CONVERSION IN TELECOMMUNICATION FIBER USING EXTERNALLY WRITTEN GRATINGS," Electronics Letters, vol.26, pp. 1270-1272,1990.
    [13]K. O. Hill, "APERIODIC DISTRIBUTED-PARAMETER WAVEGUIDES FOR INTEGRATED OPTICS," Applied Optics, vol.13, pp.1853-1856,1974 1974.
    [14]Matsuhar.M and K. O. Hill, "OPTICAL-WAVEGUIDE BAND-REJECTION FILTERS-DESIGN," Applied Optics, vol.13, pp.2886-2888,1974 1974.
    [15]J. Lauzon, et al., "IMPLEMENTATION AND CHARACTERIZATION OF FIBER BRAGG GRATINGS LINEARLY CHIRPED BY A TEMPERATURE-GRADIENT," Optics Letters, vol.19, pp.2027-2029, Dec 1 1994.
    [16]K. Sugden, et al., "CHIRPED GRATINGS PRODUCED IN PHOTOSENSITIVE OPTICAL FIBERS BY FIBER DEFORMATION DURING EXPOSURE," Electronics Letters, vol.30, pp.440-442, Mar 3 1994.
    [17]G. P. Agrawal and S. Radic, "PHASE-SHIFTED FIBER BRAGG GRATINGS AND THEIR APPLICATION FOR WAVELENGTH DEMULTIPLEXING," Ieee Photonics Technology Letters, vol.6, pp.995-997, Aug 1994.
    [18]F. Ouellette, et al., "BROAD-BAND AND WDM DISPERSION COMPENSATION USING CHIRPED SAMPLED FIBER BRAGG GRATINGS," Electronics Letters, vol. 31, pp.899-901, May 25 1995.
    [19]M. Ibsen, et al., "Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," Ieee Photonics Technology Letters, vol.10, pp.842-844, Jun 1998.
    [20]T. Erdogan and V. Mizrahi, "CHARACTERIZATION OF UV-INDUCED BIREFRINGENCE IN PHOTOSENSITIVE GE-DOPED SILICA OPTICAL FIBERS," Journal of the Optical Society of America B-Optical Physics, vol.11, pp.2100-2105, Oct 1994.
    [21]A. M. Vengsarkar, et al., "BIREFRINGENCE REDUCTION IN SIDE-WRITTEN PHOTOINDUCED FIBER DEVICES BY A DUAL-EXPOSURE METHOD," Optics Letters, vol.19, pp.1260-1262, Aug 1994.
    [22]P. N. Butcher and D. Cotter, "Elements of Nonlinear Optics," (Cambridge University Press),1990.
    [23]K. O. Hill, et al., "PHOTOSENSITIVITY IN OPTICAL FIBER WAVEGUIDES-APPLICATION TO REFLECTION FILTER FABRICATION," Applied Physics Letters, vol.32, pp.647-649,1978 1978.
    [24]G. Meltz, et al., "FORMATION OF BRAGG GRATINGS IN OPTICAL FIBERS BY A TRANSVERSE HOLOGRAPHIC METHOD," Optics Letters, vol.14, pp.823-825, Aug 1 1989.
    [25]J. M. Lerner, et al., "Diffraction gratings ruled and holographic-a review," Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol.240, pp.82-8,1980 1980.
    [26]M. Okai, et al., "NOVEL METHOD TO FABRICATE CORRUGATION FOR A LAMBDA/4-SHIFTED DISTRIBUTED FEEDBACK LASER USING A GRATING PHOTOMASK," Applied Physics Letters, vol.55, pp.415-417, Jul 31 1989.
    [27]G. Pakulski, et al., "FUSED-SILICA MASKS FOR PRINTING UNIFORM AND PHASE ADJUSTED GRATINGS FOR DISTRIBUTED FEEDBACK LASERS," Applied Physics Letters, vol.62, pp.222-224, Jan 18 1993.
    [28]K. O. Hill, et al., "BRAGG GRATINGS FABRICATED IN MONOMODE PHOTOSENSITIVE OPTICAL FIBER BY UV EXPOSURE THROUGH A PHASE MASK," Applied Physics Letters, vol.62, pp.1035-1037,1993.
    [29]R. Kashyap, "Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks," Electronics Letters, vol.34, pp.2025-2027, Oct 15 1998.
    [30]B. Malo, et al., "POINT-BY-POINT FABRICATION OF MICRO-BRAGG GRATINGS IN PHOTOSENSITIVE FIBER USING SINGLE EXCIMER PULSE REFRACTIVE-INDEX MODIFICATION TECHNIQUES," Electronics Letters, vol.29, pp.1668-1669, Sep 2 1993.
    [31]S. T. Oh, et al., "Fabrication of helical long-period fiber gratings by use of a CO2 laser," Optics Letters, vol.29, pp.1464-1466, Jul 2004.
    [1]T. H. Maiman, "STIMULATED OPTICAL RADIATION IN RUBY," Nature, vol.187, pp. 493-494,1960 1960.
    [2]M. G. Littman and H. J. Metcalf, "SPECTRALLY NARROW PULSED DYE-LASER WITHOUT BEAM EXPANDER," Applied Optics, vol.17, pp.2224-2227,1978 1978.
    [3]T. Hansch and P. Toschek, "THEORY OF A 3-LEVEL GAS LASER AMPLIFIER," Zeitschrift Fur Physik, vol.236, pp.213-&,1970 1970.
    [4]T. Numai, "Fundamentals of semiconductor lasers," 2004.
    [5]T. Y. Fan and R. L. Byer, "MODELING AND CW OPERATION OF A QUASI-3-LEVEL 946 NM ND-YAG LASER," IEEE Journal of Quantum Electronics, vol.23, pp.605-612, May 1987.
    [6]M. Loncar, et al., "Low-threshold photonic crystal laser," Applied Physics Letters, vol.81, pp.2680-2682, Oct 7 2002.
    [7]E. Snitzer, "OPTICAL MASER ACTION OF ND+3 IN A BARIUM CROWN GLASS," Physical Review Letters, vol.7, pp.444-&,1961 1961.
    [8]S. B. Poole, et al., "FABRICATION OF LOW-LOSS OPTICAL FIBERS CONTAINING RARE-EARTH IONS," Electronics Letters, vol.21, pp.737-738,1985 1985.
    [9]T. A. Birks, et al., "Endlessly single-mode photonic crystal fiber," Optics Letters, vol.22, pp.961-963, Jul 1997.
    [10]T. A. Birks and Y. W. Li, "THE SHAPE OF FIBER TAPERS," Journal of Lightwave Technology, vol.10, pp.432-438, Apr 1992.
    [11]L. Zenteno, "HIGH-POWER DOUBLE-CLAD FIBER LASERS," Journal of Lightwave Technology, vol.11, pp.1435-1446, Sep 1993.
    [12]E. Snitzer, "Double-clad, offset core Nd fiber laser in Optical Fiber Sensors," Vol.2 of OSA Technical Digest Series,1985.
    [13]A. P. Liu and K. Ueda, "The absorption characteristics of circular, offset, and rectangular double-clad fibers," Optics Communications, vol.132, pp.511-518, Dec 15 1996.
    [14]J. D. Myers and M. J. Myers, "Cladding pumped fibre laser," WO200247219-A; WO200247219-A1; US2004131091-A1; US6931032-B2.
    [15]H. R. Muller, et al., "Efficiency enhancement of cladding-pumped fiber laser structures," 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. NO.03TH8666), pp.613-613,012003.
    [16]V. Dominic, et al., "110W fibre laser," Electronics Letters, vol.35, pp.1158-1160, Jul 8 1999.
    [17]Y. Jeong, et al., "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electronics Letters, vol.40, pp.470-472, Apr 15 2004.
    [18]S. Qin, et al., "Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains," Optics Express, vol.14, pp.10522-10527, Oct 30 2006.
    [19]D. S. Moon, et al., "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Optics Express, vol.12, pp.6147-6152,2004.
    [20]H. L. An, et al., "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter," Optics Communications, vol.169, pp.159-165, Oct 1 1999.
    [21]C. L. Zhao, et al., "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Optics Communications, vol.230, pp.313-317, Feb 1 2004.
    [22]J. Yao, et al., "Active mode locking of tunable multi-wavelength fiber ring laser," Optics Communications, vol.191, pp.341-345, May 8 2001.
    [23]S. Shahi, et al., "Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber," Laser Physics Letters, vol.6, pp.454-457, Jun 2009.
    [24]G. A. Ball, et al., "STANDING-WAVE MONOMODE ERBIUM FIBER LASER," Ieee Photonics Technology Letters, vol.3, pp.613-615, Jul 1991.
    [25]M. Sejka, et al., "DISTRIBUTED-FEEDBACK ER3+-DOPED FIBER LASER," Electronics Letters, vol.31, pp.1445-1446, Aug 17 1995.
    [26]C. Spiegelberg, et al., "Compact 100 mW fiber laser with 2 kHz linewidth," Optical Fiber Communications Conference (OFC). (Trends in Optics and Photonics Series Vol.86) Postdeadline Papers (IEEE Cat. No.03CH37403), pp. PD45-1-3 vol.3,01 2003.
    [27]Y. Kaneda, et al., "200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser," Conference on Lasers and Electro-Optics (CLEO), pp.2 pp. vol.2-2 pp. vol.2,01 2004.
    [28]K. Gurs and R. Muller, "BREITBAND-MODULATION DURCH STEUERUNG DER EMISSION EINES OPTISCHEN MASERS (AUSKOPPELMODULATION)," Physics Letters, vol.5, pp.179-181,1963 1963.
    [29]蓝信炬,“激光技术,”科学出版社,2005.
    [30]R. Paschotta, et al., "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol.33, pp.1049-1056,1997.
    [31]I. Kelson and A. A. Hardy, "Strongly pumped fiber lasers," IEEE Journal of Quantum Electronics, vol.34, pp.1570-1577,1998.
    [32]C. H. Henry, "THEORY OF SPONTANEOUS EMISSION NOISE IN OPEN RESONATORS AND ITS APPLICATION TO LASERS AND OPTICAL AMPLIFIERS," Journal of Lightwave Technology, vol.4, pp.288-297,1986.
    [33]A. Hardy, "Signal amplification in strongly pumped fiber amplifiers," IEEE Journal of Quantum Electronics, vol.33, pp.307-313,1997.
    [34]Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," Journal of Lightwave Technology, vol.21, pp. 2262-2270, Oct 2003.
    [35]J. N. Blake, et al., "FIBEROPTIC MODAL COUPLER USING PERIODIC MICROBENDING," Optics Letters, vol.11, pp.177-179,1986.
    [36]T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol.15, pp. 1277-1294,1997.
    [37]T. Mizunami, et al., "Bragg gratings in multimode and few-mode optical fibers," Journal of Lightwave Technology, vol.18, pp.230-235,2000.
    [38]X. H. Feng, et al., "Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating," Ieee Photonics Technology Letters, vol.16, pp.762-764,2004.
    [39]C. G. Lu and Y. P. Cui, "Fiber Bragg grating spectra in multimode optical fibers," Journal of Lightwave Technology, vol.24, pp.598-604,2006.
    [40]T. Grosjean, et al., "An all-fiber device for generating radially and other polarized light beams," Optics Communications, vol 203, pp.1-5, Mar 2002.
    [41]R. Zheng, et al., "An all-fiber laser generating cylindrical vector beam," Optics Express, vol.18, pp.10834-10838, May 10 2010.
    [42]M. L. Gong, et al., "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Optics Express, vol.15, pp.3236-3246, 2007.
    [43]D. Z. Yang, et al., "Dual-wavelength high-power Yb-doped double-clad fiber laser based on a few-mode fiber Bragg grating," Optics and Laser Technology, vol.42, pp.575-579, Jun 2010.
    [44]J. E. Townsend, et al., "SOLUTION-DOPING TECHNIQUE FOR FABRICATION OF RARE-EARTH-DOPED OPTICAL FIBERS," Electronics Letters, vol.23, pp.329-331, Mar 1987.
    [45]M. C. Paul, et al., "Study of the fabrication parameters of large core Yb2O3 doped optical fibre through solution doping technique," Optics Communications, vol.283, pp. 1039-1046, Mar 2010.
    [46]T. Bhutta, et al., "Spatial dopant profiles for transverse-mode selection in multimode waveguides," Journal of the Optical Society of America B-Optical Physics, vol.19, pp. 1539-1543,2002.
    [47]A. Wang, et al, "The numerical analysis of a broadly tunable ytterbium-doped fiber ring laser," Proceedings of the SPIE, vol.55, pp.520-528,2005
    [1]H. Patrick and S. L. Gilbert, "GROWTH OF BRAGG GRATINGS PRODUCED BY CONTINUOUS-WAVE ULTRAVIOLET-LIGHT IN OPTICAL-FIBER," Optics Letters, vol.18, pp.1484-1486, Sep 1993.
    [2]K. Dossou, et al., "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," Journal of Lightwave Technology, vol.20, pp.1463-1470, Aug 2002.
    [3]A. M. Vengsarkar, et al., "BIREFRINGENCE REDUCTION IN SIDE-WRITTEN PHOTOINDUCED FIBER DEVICES BY A DUAL-EXPOSURE METHOD," Optics Letters, vol.19, pp.1260-1262, Aug 1994.
    [4]Y. Ming, et al., "Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings," Optics Express, vol.15, pp. 3685-36913691,22007.
    [5]Y. Hong-Gang, et al., "Effects of the asymmetric refractive index change profile on the reflection spectra of multimode fiber Bragg gratings," Proceedings of the SPIE-The International Society for Optical Engineering, vol.5970, pp. 597008-1-597008-597008-8597008-597008-8,282005.
    [6]D. S. Moon, et al., "Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Optics Express, vol.13, pp.5574-5579,2005.
    [7]J. N. Blake, et al., "FIBEROPTIC MODAL COUPLER USING PERIODIC M1CROBENDING," Optics Letters, vol.11, pp.177-179,1986.
    [8]H. G. Park and B. Y. Kim, "INTERMODAL COUPLER USING PERMANENTLY PHOTOINDUCED GRATING IN 2-MODE OPTICAL FIBER," Electronics Letters, vol. 25, pp.797-799,1989.
    [9]K. O. Hill, et al., "EFFICIENT MODE CONVERSION IN TELECOMMUNICATION FIBER USING EXTERNALLY WRITTEN GRATINGS," Electronics Letters, vol.26, pp. 1270-1272,1990.
    [10]K. H. Wanser, et al., "NOVEL FIBER DEVICES AND SENSORS BASED ON MULTIMODE FIBER BRAGG GRATINGS," Tenth International Conference on Optical Fibre Sensors, vol.2360, pp.265-268,1994.
    [11]F. Gao and C. Yang, "Numerical simulation on few-mode fiber grating with non-uniform transverse profile of refractive index change," Chinese Journal of Electron Devices, vol. 29, pp.114-117, March 2006.
    [12]R. Slavik, "Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber," Optics Communications, vol.275, pp.90-93, Jul 2007.
    [13]S. Ramachandran, et al., "Generation and propagation of radially polarized beams in optical fibers," Optics Letters, vol.34, pp.2525-2527, Aug 2009.
    [14]J. Bures and X. Daxhelet, "Single-mode TE 01 fibers," Proceedings of the SPIE-The International Society for Optical Engineering, vol.7134, pp.71342S (8 pp.)-71342S (8 pp.)71342S (8 pp.),2008 2008.
    [15]T. Erdogan, "Cladding-mode resonances in short-and long-period fiber grating filters," Journal of the Optical Society of America a-Optics Image Science and Vision, vol.14, pp. 1760-1773,1997.
    [16]C. Y. H. Tsao, et al., "MODAL CHARACTERISTICS OF 3-LAYERED OPTICAL FIBER WAVE-GUIDES-A MODIFIED APPROACH," Journal of the Optical Society of America a-Optics Image Science and Vision, vol.6, pp.555-563, Apr 1989.
    [17]P. Yeh, et al., "THEORY OF BRAGG FIBER," Journal of the Optical Society of America, vol.68, pp.1196-1201,1978.
    [1]M. Padgett, et al., "Light's orbital angular momentum," Physics Today, vol.57, pp.35-40, May 2004.
    [2]A. Ashkin, et al., "OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES," Optics Letters, vol.11, pp.288-290, May 1986.
    [3]V. Garces-Chavez, et al., "Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle," Physical Review Letters, vol.91, Aug 29 2003.
    [4]M. E. J. Friese, et al., "Optical alignment and spinning of laser-trapped microscopic particles," Nature, vol.394, pp.348-350, Jul 23 1998.
    [5]H. He, et al., "DIRECT OBSERVATION OF TRANSFER OF ANGULAR-MOMENTUM TO ABSORPTIVE PARTICLES FROM A LASER-BEAM WITH A PHASE SINGULARITY," Physical Review Letters, vol.75, pp.826-829, Jul 1995.
    [6]A. Aspect, et al., "EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS," Physical Review Letters, vol.49, pp.1804-1807,1982 1982.
    [7]Q. W. Zhan, "Properties of circularly polarized vortex beams," Optics Letters, vol.31, pp. 867-869, Apr 2006.
    [8]K. Kitamura, et al., "Focusing properties of vector vortex beams emitted by photonic-crystal lasers," Optics Letters, vol.37, pp.2421-2423, Jun 15 2012.
    [9]Z. Bomzon, et al., "Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings," Optics Letters, vol.26, pp.1424-1426, Sep 2001.
    [10]Y. Izdebskaya, et al., "Generation of higher-order optical vortices by a dielectric wedge," Optics Letters, vol.30, pp.2472-2474, Sep 15-2005.
    [11]P. Kurzynowski, et al., "Optical vortices generation using the Wollaston prism," Applied Optics, vol.45, pp.7898-7903, Oct 20 2006.
    [12]A. Volyar, et al., "Generation of single-charge optical vortices with an uniaxial crystal," Optics Express, vol.14, pp.3724-3729, May 1 2006.
    [13]C. S. Guo, et al., "Optimal annular computer-generated holograms for the generation of optical vortices," Journal of the Optical Society of America a-Optics Image Science and Vision, vol.22, pp.385-390, Feb 2005.
    [14]L. Allen, et al., "ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES," Physical Review A, vol.45, pp.8185-8189, Jun 1 1992.
    [15]M. W. Beijersbergen, et al., "ASTIGMATIC LASER MODE CONVERTERS AND TRANSFER OF ORBITAL ANGULAR-MOMENTUM," Optics Communications, vol. 96, pp.123-132, Feb 1993.
    [16]C. D. Poole, et al., "HELICAL-GRATING 2-MODE FIBER SPATIAL-MODE COUPLER," Journal of Lightwave Technology, vol.9, pp.598-604, May 1991.
    [17]D. McGloin, et al., "Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam," Applied Optics, vol.37, pp.469-472, Jan 1998.
    [18]P. Z. Dashti, et al., "Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber," Physical Review Letters, vol.96, Feb 2006.
    [19]V. Inavalli and N. K. Viswanathan, "Switchable vector vortex beam generation using an optical fiber," Optics Communications, vol.283, pp.861-864, Mar 2010.
    [20]N. Bozinovic, et al., "Control of orbital angular momentum of light with optical fibers," Optics Letters, vol.37, pp.2451-2453, Jul 2012.
    [21]C. N. Alexeyev and M. A. Yavorsky, "Generation and conversion of optical vortices in long-period helical core optical fibers," Physical Review A, vol.78, Oct 2008.
    [22]R. Kumar, et al., "Generation and detection of optical vortices using all fiber-optic system," Optics Communications, vol.281, pp.3414-3420, Jul 2008.
    [23]J. N. Blake, et al., "FIBEROPTIC MODAL COUPLER USING PERIODIC MICROBENDING," Optics Letters, vol.11, pp.177-179,1986.
    [24]S. T. Oh, et al., "Fabrication of helical long-period fiber gratings by use of a CO2 laser," Optics Letters, vol.29, pp.1464-1466, Jul 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700